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(Received 2 March 2015; published 6 July 2015)

We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein
condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions
accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a
sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the
Hawking process. The signature of the quantum behavior persists even at temperatures larger than the
chemical potential.
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Forty years ago Hawking [1] discovered that black holes
are not completely “black”, as general relativity predicts,
but emit particles in the form of thermal radiation at the
characteristic temperature TH ¼ κ=2πcl, where cl is the
speed of light and κ the horizon’s surface gravity (we use
units such that ℏ ¼ kB ¼ 1). This subtle quantum mechani-
cal effect can be understood as arising from a pair-
production process in the near-horizon region, in which
one member of the pair gets trapped inside the black hole,
leaving the other “free” to propagate outside and reach
infinity. Unfortunately, it seems impossible to observe
Hawking radiation in the astrophysical context, because
in ordinary situations of gravitational collapse TH is much
lower than the temperature of the microwave background
radiation [2]. Different scenarios have been proposed that
would allow the formation of low-mass black holes with
higher values of TH, but they remain speculative. Among
these are the suggestions that mini black holes might have
been seeded by density fluctuations in the early Universe
[3], or could be formed at particle accelerators due to the
existence of large extra dimensions [4].
In 1981 Unruh [5] used the mathematical equivalence

between the propagation of light in a gravitational black
hole and that of sound in a fluid undergoing a subsonic-
supersonic transition (henceforth denoted as an “acoustic
black hole”) to predict, using Hawking’s original analysis,
that acoustic black holes will emit a thermal flux of
phonons (analog Hawking radiation) from their acoustic
horizon. Several physical systems have since been pro-
posed to detect the analog of Hawking radiation. Recent
investigations attempted to realize acoustic horizon in water
tanks experiments [6], via ultrashort pulses in optical fibers

[7] or in a transparent Kerr medium [8], by propagating
coherent light in nonlinear media [9], in the flow of
microcavity polaritons [10], and in atomic Bose-Einstein
condensates (BECs) [11], see Fig. 1.
Because of their low temperatures, BECs offer particu-

larly favorable experimental conditions [12], since one can
reach situations in which TH is only one order of magnitude
lower than the background temperature in typical ultracold
atomic-vapor experiments. This is a significant improve-
ment with respect to the gravitational case, but it still seems
too low to attempt a direct detection of the emitted
phonons. Fortunately, acoustic black holes have another
advantage compared to gravitational ones: the interior of
the analog black hole (region of supersonic flow) is
accessible to experiments. One can then test the existence
of the Hawking effect through the basic pair-production
process of Hawking quanta (in the exterior of the acoustic
black hole) and of their partners (in the interior). It was

FIG. 1 (color online). Schematic representation of an acoustic
black hole in a BEC. The density profile nðxÞ is the black solid
line. Vu and cu (Vd and cd) are the asymptotic upstream
(downstream) flow and sound velocities. The upstream (down-
stream) asymptotic flow is subsonic (supersonic). The interior of
the analog black hole is shaded in this figure and in Fig. 2.
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shown in [13] that this process features characteristic peaks
in the correlation function of the density fluctuations and
that these peaks exist in BECs. A signature of the Hawking
effect, amplified by a laser-type instability [14] in a black-
hole–white-hole setting, has been recently observed
in Ref. [15].
In the present Letter we consider new observables,

namely the one- and two-body momentum distributions,
and show that they yield a direct signature of the Hawking
effect and of its quantum nature. The motivation for our
approach comes from the recent experiment [16] where
momentum correlators were used to observe the acoustic
analogue of the dynamical Casimir effect [17], a pair-
creation process bearing strong analogies with the Hawking
effect, in which correlated particles are created in a
homogeneous system by a rapid temporal modulation of
the system’s Hamiltonian. The momentum correlations are
particularly interesting because, as shown below, they offer
a signature of the quantum nature of the Hawking effect
much less affected by the background temperature T than
the real-space correlation signal—of intrinsically hydro-
dynamic nature [13]—which has been recently studied in
the T ¼ 0 limit [18].
What we denote as an analog black hole is a stationary

one-dimensional (1D) flow in which the asymptotic
upstream velocity is subsonic and the asymptotic down-
stream velocity is supersonic. Such configurations, from
idealized to more realistic ones, have been proposed in
Refs. [13,19–23]. It has been experimentally demonstrated
in Ref. [11] and theoretically shown in Ref. [24] how some
could be reached by a dynamical process. One of these
configurations is schematically represented in Fig. 1. The
sonic horizon is the place where the velocity of the flow
equals the speed of sound.
In such a structure, the dynamics of elementary excita-

tions is encoded in a S matrix that describes how modes
incoming from infinity (upstream or downstream) are
scattered by the horizon [20,21]. Far from the horizon,
the flow is uniform (with constant velocity and density) and
the distant incoming and outgoing modes are thus plane
waves. Their lab-frame dispersion relations are of the
Bogoliubov type (for the excitations propagating on top
of a uniform condensate, see, e.g., [25]), Doppler shifted by
the background flow velocity,

ðω − Vðu=dÞkÞ2 ¼ c2ðu=dÞk
2

�
1þ 1

4
k2ξ2ðu=dÞ

�
: ð1Þ

In this expression ω is the frequency of the plane wave, k its
momentum relative to the background flow, and ξðu=dÞ ¼
1=mcðu=dÞ is the (upstream or downstream) healing length.
The dispersion relations (1) are represented in Fig. 2, where
upstream and downstream modes are denoted as “u” and
“d”. We follow the conventions of Refs. [21,23] and label
the modes as “in” (such as, for instance, d1in) or “out”

(such as uout) depending on whether their group velocity
points toward the horizon (for the “in” modes) or away
from the horizon (for the “out” modes), as pictorially
described in the lower part of Fig. 2. In the upstream
subsonic region the dispersion relation is qualitatively
similar to that of a condensate at rest, with one ingoing
and one outgoing u channel; new modes appear in the
downstream supersonic region where we have two ingoing
and two outgoing modes, denoted as d1 and d2. The new
d2 modes have negative norm (see, e.g., [26]). From this
analysis one can identify the three relevant scattering
channels (each is initiated by one of the three ingoing
modes) and compute the coefficients of the S matrix
[21,23]. This, in turn, makes it possible to expand the
creation and annihilation operators ψ̂†ðpÞ and ψ̂ðpÞ on the
scattering channel operators and to determine the popula-
tion operator n̂ðpÞ ¼ ψ̂†ðpÞψ̂ðpÞ of the state with lab-
frame momentum p ¼ kþmVðu=dÞ, where k is the relative
momentum of Eq. (1).
It is important to present the experimental detection

scheme used for measuring the momentum distribution,
because this precisely defines how the quantities described

FIG. 2 (color online). Two upper plots: upstream and down-
stream dispersion relations ωðkÞ [from Eq. (1)]. In each plot the
horizontal dashed line is fixed by the chosen value of ω. The
labeling of the modes is explained in the text; their direction of
propagation is represented by an arrow. u and d1 modes (d2
modes) have a positive (negative) norm. The d2 modes disappear
for ω > Ω. The lower plot schematically represents the black-
hole configuration in real space and the different modes bearing
propagation of elementary excitations.
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in the present Letter should be theoretically evaluated.
The detection employed in Ref. [16] that motivates our
approach consists of opening the trap and letting the
elementary excitations be converted into particles expelled
from both ends of the condensate, according to a process
known as “phonon evaporation” [27]. As demonstrated
in Ref. [16], after an adiabatic opening of the trapping
potential, a measure of the velocity distribution of these
particles gives access to the momentum distribution hn̂ðpÞi
within the condensate and to the correlator g2 defined
below in Eq. (2) [28].
Figure 3 displays the one-body momentum distribution

hn̂ðpÞi corresponding to the above-defined procedure in
the T ¼ 0 limit. The top part of this figure sketches the
expected typical experimental result. The shaded peaks
are the upstream and downstream momentum distribution
of the condensate, centered around Pu and Pd
(Pðu=dÞ ¼ mVðu=dÞ). The lower part of the figure displays
our theoretical results obtained within the so-called “water-
fall configuration”where the sonic horizon is induced by an
external potential step [23]. Very similar results are
obtained for another realistic configuration (denoted as
“δ-peak configuration” in Ref. [23]) where the horizon is
induced by a sharply localized potential. In our theoretical
description, the system behaves as a perfect 1D BEC (see
the discussion at the end of the Letter). In this case the
components of the momentum distribution corresponding
to the condensate (the dashed lines at p ¼ Pu and p ¼ Pd

in the lower part of Fig. 3) are sharp δ distributions; they are
not broadened by phase fluctuations and finite experimental
resolution as in the top panel.
It is noteworthy that the presence or absence of a horizon

can be inferred from the structure of the one-body
momentum distribution hn̂ðpÞi. As illustrated in Fig. 3,
when a horizon is present, one has two peaks withPd > Pu.
On the other hand, without a horizon, one always has
Pd ≤ Pu, the equality being realized in the δ-peak
configuration [31].
The side distributions around the peaks in Fig. 3

are signatures of the quantum fluctuations and are propor-
tional to the elements of the S matrix (Sud2 is, for instance,
the complex and ω-dependent scattering amplitude describ-
ing the scattering from the ingoing downstream channel
d2in towards the outgoing upstream channel uout). In
particular, the left shoulder of the peak around Pu in
Fig. 3 corresponds to the Hawking quanta escaping from
the horizon along the uout channel, and the left shoulder
of the peak around Pd to their partners (d2out channel) [32].
At T ¼ 0, the existence of these shoulders stems directly
from the Hawking effect; they disappear in the absence of
the horizon.
We now consider the normally ordered momentum

correlation function (two-body signal)

g2ðp; qÞ ¼
h∶n̂ðpÞn̂ðqÞ∶i
hn̂ðpÞihn̂ðqÞi : ð2Þ

Instead of presenting here the detailed analytical evaluation
of g2 corresponding to the different possible steps of the
experimental procedure that our theoretical approach is
able to describe (see Ref. [31]), we, rather, graphically
display g2 at T ¼ 0 in Fig. 4. This plot exhibits the genuine
Hawking correlations: in the absence of a horizon, the
T ¼ 0 normal-ordered g2 would be uniformly equal to 1. In
our stationary setting, spontaneous particle creation à la
Hawking is triggered by the existence of the negative-norm
d2in mode. The process is possible within an energy-
conserving framework because the d2 modes carry a
negative energy [33,34]. Hence, the observation of the new
correlation lines uout−d2out, d1out−d2out, and uout−d1out is
direct evidence of the existence of the negative-norm (neg-
ative-energy) d2 modes and of a region of supersonic flow.
As discussed below, we work within a perfect condensate
approximation where the momenta are exactly δ correlated
along these curves. Compared to the one-body signal dis-
played in Fig. 3, the measure of the momentum correlation
function has the advantage of yielding a signal located around
easily identifiable curves. These curves—and therefore
the Hawking process—terminate at momenta for which the
d2 modes disappear: this corresponds to the regime where
ω > Ω in Fig. 2.
Let us now turn to the quantitative study of the nature

of correlations along the lines identified in Fig. 4. The

FIG. 3 (color online). Momentum distribution hn̂ðpÞi within
the condensate. The figure is drawn in the T ¼ 0 limit. The top
panel is a schematic representation of a typical experimental
result. The lower panel displays the analytic result in the waterfall
configuration with Vu=cu ¼ 0.5, Vd=cd ¼ 4 ¼ Vd=Vu. The thick
vertical dashed lines correspond to the upstream and downstream
condensates located at p¼Pu and p¼Pd (where here Puξu¼0.5
and Pdξu ¼ 2).

PRL 115, 025301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JULY 2015

025301-3



occurrence of entanglement and the quantum nature of the
Hawking process can be tested through the violation of the
Cauchy-Schwarz inequality, as recently studied in a similar
context in Refs. [35]. More specifically, the Cauchy-
Schwarz inequality is violated along the characteristic
Hawking quanta–partner correlation lines uout − d2out of
Fig. 4 if (see, e.g., [36])

g2ðp; qÞjuout−d2out >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðp; pÞjuout × g2ðq; qÞjd2out

q
: ð3Þ

In Fig. 5 this corresponds to the region located above
the dashed horizontal black line. In the Bogoliubov
approach used in the present Letter, Wick’s theorem yields
g2ðp; pÞjuout ¼ g2ðq; qÞjd2out ¼ 2 for all temperatures; as a
result, the right-hand side of inequality (3) is equal to 2. The
computations are done in a setting where the system is in an
initial thermal state at temperature T ≠ 0, and where the
population of quasiparticles is adiabatically converted into
real particles upon opening the trap. As expected, the
region of violation of the Cauchy-Schwarz inequality
decreases when T increases [37], but even at relatively
high temperatures (T > 1.5mc2u and > 10TH) the momen-
tum correlation signal remains a clear signature for revealing
the quantum nature of the Hawking signal [38].

Finally, it is important to stress that the results presented
in this Letter are obtained within a Bogoliubov approxi-
mation assuming perfect condensation of the 1D Bose
system. This approximation is valid in an intermediate
density regime—denoted as “1D mean field” in Ref. [39]—
where the system is accurately described by an order
parameter obeying an effective 1D Gross-Pitaevskii equa-
tion. At low density, phase fluctuations destroy the long-
range order and the possibility of a true Bose-Einstein
condensate, and blur the sharp correlations of Fig. 4 [40].
At large density, phase fluctuations can be neglected, but
one cannot omit the effect of transverse confinement, which
induces a modification of the dispersion relation and
creates new transverse dispersion modes [41], resulting
in the appearance of new correlation lines in Fig. 4. One
should, however, keep in mind that for a typical system
(say, 87Rb, 23Na, or 4He atoms in a guide with a transverse
confinement of angular frequency ω⊥ ¼ 2π × 500 Hz) the
1D mean-field approximation used in the present Letter is
quite relevant because it holds for a range of linear densities
varying over 4 orders of magnitude [42].
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FIG. 4 (color online). Momentum-correlation pattern of
g2ðp; qÞ in the presence of a black-hole horizon at T ¼ 0. This
plot is drawn for the same configuration and the same parameters
as the lower panel of Fig. 3. The dotted lines are the momenta of
the upstream and downstream condensates (Pu and Pd). The
momenta are expressed in units of ξ−1u . Except for the colored
correlation lines, g2ðp; qÞ is uniformly equal to 1. The colors are
used for a nonambiguous identification of the correlation lines.
As is obvious from the definition (2), the figure is symmetric with
respect to the diagonal.

FIG. 5 (color online). The value of g2ðp; qÞ along the uout −
d2out correlation line (violet line in Fig. 4) is plotted as a function
of p (expressed in units of ξ−1u ) for different temperatures. The
Cauchy-Schwarz inequality is violated when g2ðp; qÞ is larger
than 2. The temperatures are expressed in units of the upstream
chemical potential mc2u (0 ≤ T ≤ 2). For the set of parameters
chosen here and in the previous figures, the Hawking temperature
is TH ¼ 0.134.
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