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Nonlinear waves in coherently coupled Bose-Einstein condensates
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We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling
between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies
the dynamics of the elementary excitations. The spectrum has two branches, which are affected in different
ways. The upper branch experiences a modulational instability, which is stabilized by a long-wave–short-wave
resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small
dispersion it is described by a Korteweg–de Vries equation or by the Gardner equation, depending on the value
of the parameters of the system.

DOI: 10.1103/PhysRevA.93.043613

I. INTRODUCTION

The Bose-Einstein condensation of a mixture of different
hyperfine states of the same element (first realized by the JILA
group [1]) offers the possibility to transfer atoms from an
internal state to another one in a macroscopic matter wave.
This feature has driven a rich body of experimental studies of
phenomena such as the formation of spin domains, vortices,
and other nonlinear structures [2], internal Josephson effect
[3], formation of squeezed and entangled states [4], motion
of spin impurities [5], persistent currents [6], effective gauge
potentials [7], and spin-orbit coupled systems [8], which has
itself opened an avenue of new research: observation of a
superfluid Hall effect [9], of Zitterbewegung [10], of spin
Hall effect [11], of tunable Landau-Zener transitions [12], of a
Dicke-type phase transition [13], of the softening of a rotonlike
dispersion relation, etc. [14]. In some of the above cited works,
the change of internal state is only due to spin-dependent
collisions, but in others the coupling is externally driven by a
combination of radio frequency and microwave fields [15] or
by using Raman coupling lasers [16]. In the present study
we concentrate on an effective spin 1/2 system in which
two internal states are coherently coupled by an external
potential. In such a system, the coupling explicitly breaks the
U (1) × U (1) symmetry originating from the irrelevance of
global phase factors of each the two components: the relative
phase is no longer free and only remains a U (1) symmetry
for the global phase of the spinor. As a consequence, the two-
branched spectrum of the system has a single Goldstone mode
and the other branch is gapped. The mean-field dynamics of the
system is described by two coupled Gross-Pitaevskii equations
accounting for intraspecies and interspecies collisions for the
external coupling field and also possibly for a spin-orbit term.
The ground state of the system and the associated possible
phase transitions and the elementary excitations have been
theoretically studied in Refs. [17] and [18], as well as a rich
variety of nonlinear structures (Refs. [19] and [20]).

The reason for the protean aspect of the theoretical
approaches of the system lies in the fact that its dynamics is
described by a nonintegrable set of coupled Gross-Pitaevskii
equations, which do not admit simple integrable equations as
limiting cases. Even in the simpler case of a spinor condensate
in the absence of spin-orbit and Raman coupling, the integrable

limit is the so-called Manakov system (obtained when all
the nonlinear interaction constants are equal), which does
not pertain to the well-studied Ablowitz-Kaup-Newell-Segur
hierarchy and for which all the types of solutions are not yet
fully classified (see, e.g., Refs. [21]). The aim of the present
work is to partially clarify the rich nonlinear behavior of
the system by presenting a systematic study revealing how
nonlinear effects modify the elementary excitations of the
system.

The paper is organized as follows. The model, its ground
state, and linear excitations are described in Sec. II. We then
use a singular perturbation theory to describe in Sec. III how
excitations in the upper branch of the dispersion relation
are affected by nonlinear effects. The method is exposed in
Secs. III A, III B, and III C and the results are summarized and
discussed in Sec. III D. The technique used in Sec. III can also
be employed for describing the effects of nonlinearity on the
lower branch of the spectrum. However, for this branch another
approach can be used, which is more appropriate in the long
wave length limit. This is explained in Sec. IV and we show in
Secs. IV A and IV B how to deal with this issue. The general
doctrine is presented in Sec. IV C where we also discuss the
different regimes accessible in present-day experiments. Our
conclusions are summarized in Sec. V and some technical
aspects are detailed in Appendixes A and B.

II. MODEL AND ELEMENTARY EXCITATIONS

We consider a one-dimensional (1D) system described by
a two-component spinor order parameter �(x,t) = (ψ↑,ψ↓)t

(where the superscript t denotes the transposition) obeying the
following coupled Gross-Pitaevskii equations

i � ∂t� = H0 � +
(

α1|ψ↑|2 α2ψ
∗
↓ψ↑

α2ψ
∗
↑ψ↓ α1|ψ↓|2

)
�, (1)

where H0 is the single-particle Hamiltonian:

H0 = 1

2m

(
�

i
∂x − � k0 σz

)2

+ ��

2
σx, (2)

σx and σz being Pauli matrices. This corresponds to a
system with equal contribution of Rashba and Dresselhaus
coupling, as realized in spin-orbit coupled condensates (see,
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e.g., Ref. [22]). In Eq. (1), α2 = α↑↓ is the interspecies inter-
action coefficient, and for simplicity we have assumed equal
intraspecies interaction: α↑↑ = α↓↓ ≡ α1. In the following we
will consider the case of repulsive intraspecies interaction:
α1 > 0.

It is convenient to reparametrize the spinor wave function
[23] :

�(x,t) =
(

ψ↑
ψ↓

)
= √

ρ ei	/2

(
cos θ

2 e−iϕ/2

sin θ
2 eiϕ/2

)
. (3)

Here ρ(x,t) = |ψ↑|2 + |ψ↓|2 denotes the total density of
the condensate and 	(x,t) has the meaning of the velocity
potential of its in-phase motion; the angle θ (x,t) is the variable
describing the relative density of the two components [cos θ =
(|ψ↑|2 − |ψ↓|2)/ρ] and the phase ϕ(x,t) is the potential of their
relative (counterphase) motion. Accordingly, the densities of
the components of the condensate are given by

ρ↑(x,t) = |ψ↑|2 = ρ cos2(θ/2),
(4)

ρ↓(x,t) = |ψ↓|2 = ρ sin2(θ/2).

Their velocities are defined as

v↑(x,t) = 1
2 (	x − ϕx) − k0,

(5)
v↓(x,t) = 1

2 (	x + ϕx) + k0.

It will also be convenient to define the following velocity fields

U (x,t) = 	x and v(x,t) = ϕx. (6)

Equation (1), expressed in terms of the real fields 	, ρ, θ ,
and ϕ, reads

ρt = 1

2
[ρ (ϕx + 2k0) cos θ ]x − 1

2
(ρ 	x)x, (7a)

−	t = −1

2
cot θ

(ρ θx)x
ρ

+ 1

2

(
ρ2

x

2ρ2
− ρxx

ρ

)
+ 1

4

[
	2

x + θ2
x + (ϕx + 2k0)2]

+ (α1 + α2)ρ + �
cos ϕ

sin θ
, (7b)

−θt = 1

2
	xθx + 1

2ρ
[ρ(ϕx + 2k0) sin θ ]x + � sin ϕ, (7c)

ϕt = 1

2 sin θ

(ρ θx)x
ρ

− 1

2
	x(ϕx + 2k0)

+ (α1 − α2)ρ cos θ − � cos ϕ cot θ, (7d)

where we have used units such that � = 1 = m.
In all the following we will assume that the different

parameters of the Hamiltonian are fixed in such a way that
the ground state of the system corresponds to a configuration
in which both components are homogeneous (ρ = ρ0 and
θ = θ0), in phase (ϕ = 0), stationary (ρ, 	x , θ , and ϕx are
time independent) with equal densities (θ0 = −π/2 [24]). In
this case, one obtains 	 = −2 μ t , where

μ = k2
0

2
+ g1

2
− �

2
(8)
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g2/k
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ρ↑(x)

ρ↓(x)
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FIG. 1. Schematic phase space of the spin-orbit coupled system
as a function of the parameters �/k2

0 and g2/k2
0 . For each phase

the inset represents a typical density pattern. The boundary between
phases III and II corresponds to � + g2 = 2 k2

0 .

is the chemical potential. In this expression we have used
the notation g1 = (α1 + α2)ρ0. It will also be convenient to
define g2 = (α1 − α2)ρ0 and to introduce a rescaled density
n(x,t) = ρ(x,t)/ρ0.

In the absence of spin-orbit coupling (k0 = 0) this ground
state is stable provided � + g2 > 0 [17]. For a spin-orbit
coupled system, this ground state is denoted as the “single
minimum” or “zero momentum” or “phase III” ground state.
It is the true ground state of the system in a region of
parameters, which is schematically depicted in Fig. 1 (adapted
from Ref. [22]).

Although the present work is devoted to the study of
nonlinear effects in phase III, we note that the methods we
use also apply—with unessential modifications—in phase II,
which is a spin polarized phase where the system condensates
in a single plane-wave state with nonzero momentum. Phase I
(the so-called striped phase), which has a modulated ground-
state density deserves a special treatment.

A first insight in the dynamics of the system can be obtained
by linearizing Eqs. (7). For simplifying the notations we
introduce the column vector


(x,t) =

⎛⎜⎝n

	

θ

ϕ

⎞⎟⎠, with 
(0)(t) =

⎛⎜⎝ 1
−2μt

−π/2
0

⎞⎟⎠ (9)

being the ground state value of 
(x,t). We write


(x,t) = 
(0)(x,t) + 
′(x,t), (10)

where 
′(x,t) describes a small departure of the fields n, 	,
θ , and ϕ from their ground-state values. Inserting this Ansatz
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into (7) one obtains at first order in 
′ a system of the form

M(∂x,∂t ) 
′ = 0, (11)

where

M =

⎛⎜⎜⎜⎝
∂t

∂2
x

2 −k0∂x 0

− ∂2
x

2 + g1 ∂t 0 k0∂x

−k0∂x 0 ∂t − ∂2
x

2 + �

0 k0∂x
∂2
x

2 − � − g2 ∂t

⎞⎟⎟⎟⎠.

(12)
Equation (11) being linear one can expand 
′(x,t) on a basis
of plane waves of wave-vector k and angular frequency ω.
This amounts to look for solutions of the form 
′(x,t) =

̂′ exp[i(kx − ωt)] + c. c., where c. c. stands for complex
conjugate and 
̂′ is a constant column vector whose entries
are possibly complex. One then obtains a system of linear
equations, which reads

M1 
̂′ = 0, (13)

where

M1 = M(ik, − iω)

=

⎛⎜⎜⎜⎝
−iω − k2

2 −ik0k 0
k2

2 + g1 −iω 0 ik0k

−ik0k 0 −iω k2

2 + �

0 ik0k − k2

2 − � − g2 −iω

⎞⎟⎟⎟⎠. (14)

The system (13) has nontrivial solutions only if the determinant
of M1 vanishes. This fixes the dispersion relation of the
elementary excitations, with two branches ω = ω±(k), which
are represented in Fig. 2. They are solutions of

0 = ω4 − ω2

[
k4

2
+ 2k2

0k
2 + �k2 + �2 + (g1 + g2)

k2

2
+ �g2

]
+ k2

2

[
k2

2
+ � + g2 − 2k2

0

]
×

[(
k2

2
+ �

)(
k2

2
+ g1

)
− k2k2

0

]
. (15)

The upper branch ω = ω+(k) is gapped, with a dispersion
relation of the form

ω+(k) =
√

�(� + g2) + O(k2). (16)

The lower branch ω = ω−(k) is not gapped: it accounts for the
Goldstone mode corresponding to the spontaneous breaking
of the global U (1) symmetry of the system. One sees in
Fig. 2 that the upper branch is not qualitatively affected
by interaction effects, contrarily to the lower branch whose
long wavelength dispersion relation would be quadratic in
the absence of interaction and becomes linear in its presence.
The lower branch admits, for the positive k portion of the
spectrum, the following expansion (corresponding to linear
waves propagating in the positive-x direction):

ω−(k) = c k + c3 k3 + O(k5), (17)

where

c =
√

g1

2

(
1 − 2k2

0

� + g2

)
(18)

FIG. 2. The black solid lines represent the exact dispersion
relations ω+(k) (upper branch) and ω−(k) (lower branch), solutions
of Eq. (15). The figure is drawn in the case α1ρ0 = 1.2, α2ρ0 = 1.0,
k0 = 1.0, and � = 2.5. The (red) dashed line represent the long
wavelength expansion (17). The thin (blue) lines represent the
spectrum of the single particle Hamiltonian H0 [cf. Eq. (2)]. They
are obtained by taking g1 = g2 = 0 in Eq. (15): in this case one
obtains ω±(k) = k2/2 + �/2 ± [k2

0k
2 + �2/4]1/2.

is the sound velocity, and the parameter c3 verifies

4cc3 = 1

2
− 2k2

0

�(� + g2)

[
2� + g1 + g2

− (� + g1 + g2)(2� − g1 + g2)

2(� + g2)

− k2
0

(� + g1 + g2)2

(� + g2)2

]
. (19)

III. NONLINEAR PERTURBATION THEORY FOR
EXCITATIONS PROPAGATING IN THE UPPER BRANCH

We study in the present section how nonlinear effects
modify the structure of an excitation propagating in the upper
branch of the spectrum. For instance, one can anticipate that
nonlinear terms cause some modulations or anharmonicities
of this wave, and make it interact with the other branch of
the spectrum. Instead of the simple linear analysis of Sec. II
[Eqs. (9), (10) and following], we perform here a singular
perturbative expansion by writing the term 
′(x,t) in Eq. (10)
under the form (see, e.g., Refs. [25–29]):


′(x,t) =
∑
n�1

εn 
(n)(x,t,X,T1,T2). (20)

In this expansion ε is a small parameter.

X = εx and T2 = εT1 = ε2t, (21)

are multiscale coordinates aiming at describing the slow spatial
and temporal modulations of a wave packet of finite amplitude.
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(0) in (20) is the same as in (9) and we make the following
Ansatz for the form of the O(ε) term:


(1)(x,t,X,T1,T2) = 

(1)
0 (X,T1,T2)

+ (

̃

(1)
1 (X,T1,T2)eiβ(x,t) + c. c.

)
,

(22)

where

β(x,t) = kx − ωt. (23)

This means that we assume that the O(ε) solution of (7)
consists in a slowly varying contribution (


(1)
0 , [30]) plus

an oscillating term with a smoothly varying amplitude 
̃
(1)
1 .

We will see below that the nonoscillating contribution 

(1)
0 is

necessary for the consistency of the approach, meaning that
nonlinearity not only modifies the shape of a finite amplitude
wave but also affects the background on top of which the wave
propagates.

We enforce a behavior of type (22) only at order ε; it
then will be automatically verified at higher orders, with also
possible contributions from higher harmonics: see (34) for the
form of the O(ε2) solution.

The multiscale analysis consists in considering that the time
variables t , T1, and T2 (and also the spatial coordinates x and
X) are independent. One thus writes

∂x = k ∂β + ε∂X,

and ∂t = −ω ∂β + ε∂T1 + ε2∂T2 . (24)

The method applies for any value of k0, provided one remains
in phase III, but the general expressions are quite cumbersome:
For legibility we present the computation in the simpler case
k0 = 0.

A. Order ε

At this order, Eq. (7) reads [as already obtained in Eq. (11)]

M(k∂β, − ω∂β) 
(1) = 0, (25)

where M is defined in (12). Using the matrix M1 of Eq. (14)
and defining M0 by

M0 = M(0,0) =

⎛⎜⎝ 0 0 0 0
g1 0 0 0
0 0 0 �

0 0 −� − g2 0

⎞⎟⎠, (26)

one can rewrite Eq. (25) as

M0 

(1)
0 (X,T1,T2) = 0,

and M1 
̃
(1)
1 (X,T1,T2) = 0. (27)

For (27) to have nontrivial solutions we need to impose
detM1 = 0 (we already have detM0 = 0). As was seen in
Sec. II, this determines the dispersion relation. We study here
a wave propagating in the upper branch of the spectrum, that is,
in the expression (23) for β(x,t), one has ω = ω+(k). We then

obtain for the solutions 

(1)
0 and 
̃

(1)
1 of Eqs. (27) expressions

of the form:



(1)
0 (X,T1,T2) =

⎛⎜⎜⎜⎝
n(1)

	
(1)

θ
(1)

ϕ(1)

⎞⎟⎟⎟⎠ =

⎛⎜⎝0
1
0
0

⎞⎟⎠	
(1)

≡ R0 	
(1)

(X,T1,T2), (28)

and


̃
(1)
1 (X,T1,T2) =

⎛⎜⎜⎝
ñ(1)

	̃(1)

θ̃ (1)

ϕ̃(1)

⎞⎟⎟⎠ =

⎛⎜⎝ 0
0
1

i �

⎞⎟⎠θ̃ (1)

≡ R̃1 θ̃ (1)(X,T1,T2), (29)

where � = (1 + 2 g2

k2+2 �
)1/2. At this point 	

(1)
(X,T1,T2) and

θ̃ (1)(X,T1,T2) in expressions (28) and (29) are still unknown,
but we already collected some useful pieces of information on

the form of the wave: we see that n(1) = θ
(1) = ϕ(1) = ñ(1) =

	̃(1) = 0 and that ϕ̃(1) is proportional to θ̃ (1). In the case k0 �= 0,
n(1) and 	̃(1) are nonzero, but both are proportional to θ̃ (1), as
well as ϕ̃(1).

B. Order ε2

At this order Eq. (7) reads

M(k∂β, − ω∂β)[
(2)(x,t,X,T1,T2)]

= C0(X,T1,T2) + [C̃1(X,T1,T2)eiβ(x,t) + c. c.]

+ [C̃2(X,T1,T2)e2iβ(x,t) + c. c.]. (30)

with

C0(X,T1,T2) =

⎛⎜⎝0
1
0
0

⎞⎟⎠∂T1	
(1) +

⎛⎜⎝ 0
g2

0
0

⎞⎟⎠|θ̃ (1)|2, (31)

C̃1(X,T1,T2) =

⎛⎜⎝ 0
0
1

i �

⎞⎟⎠∂T1 θ̃
(1) +

⎛⎜⎝ 0
0

�k

i k

⎞⎟⎠∂Xθ̃ (1), (32)

and

C̃2(X,T1,T2) =

⎛⎜⎜⎝
i � k2

1
2

(
k2−2 �
k2+2 �

g2 − k2 − 2 �
)

0
0

⎞⎟⎟⎠(θ̃ (1))2. (33)

In expressions (32) and (33) we have used the same notation
� as in (29). The precise expressions (31), (32), and (33) for

C0, C̃1, and C̃2 result from the formulas (28) and (29) for 

(1)
0

and 
̃
(1)
1 .

Since the operator M(∂x,∂t ) is linear, the solution of
equation (30) consists of three contributions, one for each
of the source terms. Hence 
(2) is of the form


(2) =

(2)
0 (X,T1,T2) + [


̃
(2)
1 (X,T1,T2)eiβ + c. c.

]
+ [


̃
(2)
2 (X,T1,T2)e2iβ + c. c.

]
, (34)
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the different components being solutions of

M0 

(2)
0 (X,T1,T2) = C0(X,T1,T2), (35)

M1 
̃
(2)
1 (X,T1,T2) = C̃1(X,T1,T2), (36)

and

M2 
̃
(2)
2 (X,T1,T2) = C̃2(X,T1,T2); (37)

where M2 is defined similarly to M1 in Eq. (14) and M0 in
Eq. (26):

M2 = M(2ik, − 2iω+(k)). (38)

Equation (37) is easily solved because detM2 �= 0 [31]. We
do not write its solution explicitly, but it is necessary for next
order in ε: it contributes to the right-hand side of Eq. (44), in
particular to the expression (46) for the coefficient D̃1.

Solving Eqs. (35) and (36) is more complicated than solving
Eq. (37) because detM0 = 0 and detM1 = 0. Hence, if C0 is
not in the image space of M0 (or if C̃1 is not in the image space
of M1) one cannot find a solution. One must thus impose that
C0 is in the image space ofM0 and that C̃1 is in the image space
of M1. This can be done conveniently through the following
technique. Let us define L0 and L̃1 such that

Mt
0 L0 = 0 ⇒ L0 =

⎛⎜⎝1
0
0
0

⎞⎟⎠,

(39)

Mt
1 L̃1 = 0 ⇒ L̃1 =

⎛⎜⎝ 0
0
1

−i/�

⎞⎟⎠.

Multiplying (35) by the transposed row vector L
t

0 and (36) by
L̃ t

1 one obtains [32]

L
t

0 · C0(X,T1,T2) = 0, and L̃ t
1 · C̃1(X,T1,T2) = 0. (40)

The first of these equations is trivially satisfied. The second
imposes that

∂T1 θ̃
(1) + ω′

+(k)∂Xθ̃ (1) = 0, (41)

which implies the important physical result that the envelope
of the wave packet propagates with the group velocity ω′

+(k) =
dω+/dk.

Once Eq. (41) is satisfied, the compatibility condition (40)
is fulfilled and one can solve Eqs. (35) and (36). One obtains



(2)
0 (X,T1,T2) =

⎛⎜⎜⎝
1
g1

∂T1	
(1) + g2

g1
|θ̃ (1)|2

0
0
0

⎞⎟⎟⎠, (42)

and


̃
(2)
1 (X,T1,T2) =

⎛⎜⎜⎝
0
0

i k g2

ω2+(k)
∂Xθ̃ (1)

0

⎞⎟⎟⎠. (43)

C. Order ε3

At this order one obtains an equation whose form is quite
similar to that of Eq. (30) with additional harmonics:

M(k∂β, − ω∂β)[
(3)(x,t,X,T1,T2)]

= D0(X,T1,T2) + [D̃1(X,T1,T2)eiβ(x,t) + c. c.]

+ [D̃2(X,T1,T2)e2iβ(x,t) + c. c.]

+ [D̃3(X,T1,T2)e3iβ(x,t) + c. c.]. (44)

We need not write the expressions for D̃2 and D̃3 because
they are not necessary to determine the dynamic of θ̃ (1). The
terms D0 and D̃1 read (remember that for legibility we give
the explicit expressions only in the case k0 = 0)

D0 =

⎛⎜⎜⎜⎝
k(g1(k2+2 �+2 g2)+g2(k2+2 �+g2))

2 g1 ω+(k)
i g2

2 k

2 ω2+(k)

0
0

⎞⎟⎟⎟⎠∂X|θ̃ (1)|2

+

⎛⎜⎜⎜⎝
1
2 ∂2

X	
(1) − 1

g1
∂2
T1

	
(1)

∂T2	
(1)

0
0

⎞⎟⎟⎟⎠, (45)

and

D̃1 =

⎛⎜⎝ 0
0
1

i�

⎞⎟⎠∂T2 θ̃
(1) +

⎛⎜⎝ 0
0

i P (k)
Q(k)

⎞⎟⎠|θ̃ (1)|2θ̃ (1)

+

⎛⎜⎜⎜⎜⎝
0
0

−i
8 g2 �(g2+k2+2 �)+(k2+2 �)3

16 ω3+(k)
1
2 + k2g2

2 ω2+(k)

⎞⎟⎟⎟⎟⎠∂2
Xθ̃ (1)

+

⎛⎜⎜⎝
0
0
i k
2

−� k
2

⎞⎟⎟⎠θ̃ (1)∂X	
(1) +

⎛⎜⎜⎝
0
0
0
g2

g1

⎞⎟⎟⎠θ̃ (1)∂T1	
(1)

. (46)

In the above expression for D̃1 the quantities P (k) and Q(k)
are defined as

P (k) = −
√

2g2 + k2 + 2�

4(k2 + 2�)3/2F (k)

× [(k2 + 2�)4g2(−2g2� + k4 − 4k2� − 4�2)

+ (k2 + 2�)2(3k2 + 2�)(k2 − 2�)

+ 2g1k
2(4g2� + (k2 + 2�)2)], (47)

and

Q(k) = 1

4g1(k2 + 2�)F (k)

{ − 8g3
2(k2 + 2�)2

− g1(k2 + 2�)2
[
2g1k

2 + (3k2 + 2�)(k2 − 2�)]

+ 4g2
2g1(5k4 − 2k2� − 8�2)
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+ 4g2
2(k2 + 2�)(3k2 + 2�)(k2 − 2�)

+ 2g2
1g2(6k4 + 8k2�)

+ 2g1g2(k2 + 2�)(7k4 − 4k2� − 4�2)
}
, (48)

where

F (k) = −2g2(k2 + 2�) + 2g1k
2 + (3k2 + 2�)(k2 − 2�).

(49)
Following the same method as in Sec. III B, we write


(3) = 

(3)
0 (X,T1,T2) + [


̃
(3)
1 (X,T1,T2)eiβ(x,t) + c. c.

]
+ [


̃
(3)
2 (X,T1,T2)e2iβ(x,t) + c. c.

]
+ [


̃
(3)
3 (X,T1,T2)e3iβ(x,t) + c. c.

]
. (50)

We will not need to consider the contribution of the second and
third harmonics in (44) and (50). However, the contributions
of the first harmonic [D̃1(X,T1,T2) and 
̃

(3)
1 ] and of the zero

harmonic [D0(X,T1,T2) and 

(3)
0 ] are important. Reinserting

expression (50) in (44) yields:

M0 

(3)
0 (X,T1,T2) = D0(X,T1,T2), (51)

and

M1 
̃
(3)
1 (X,T1,T2) = D̃1(X,T1,T2). (52)

Again, for solving Eq. (51) one must make sure that D0 is in
the image space of M0: this yields

L
t

0 · D0(X,T1,T2) = 0, (53)

which writes

∂2
T1

	
(1) − c2 ∂2

X	
(1) = S(k) ∂X|θ̃ (1)|2, (54)

where c is the speed of sound [cf. Eq. (18)] and

S(k) = (g1 + g2)(k2 + 2 � + g2) + g1g2

2 ω+(k)/k
. (55)

The solution of (54) reads (computations are explained in
Appendix A):

	
(1)

(X,T1,T2) = W (k)
∫ X

dX|θ̃ (1)|2, (56)

where

W (k) = S(k)

[ω′+(k)]2 − c2
. (57)

Expression (56) combined with Eq. (41) shows that

∂T1	
(1) + ω′

+(k) ∂X	
(1) = 0. (58)

This result shows that the deformation of the background
propagates with the group velocity, as does the envelope of
the wave [which obeys the same equation, cf. (41)].

Finally, for being able to solve Eq. (52) we need D̃1 be in
the image space of M1:

L̃ t
1 · D̃1(X,T1,T2) = 0. (59)

This reads

i ∂T2 θ̃ (1) = − ω′′
+(k)

2
∂2
Xθ̃ (1) +

[(
P (k) − Q(k)

�

)
|θ̃ (1)|2

+ k

(
1 + g2

g1

k2 + 2 � + g2

k2 + 2 � + 2 g2

)
∂X	

(1)
]
θ̃ (1)

2
,

(60)

where ω′′
+(k) = d2ω+/dk2. One can reexpress the term ∂X	

(1)

using Eq. (56). One then obtains a nonlinear Schrödinger
equation (NLS) for θ̃ (1)(X,T1,T2):

i ∂T2 θ̃ (1) = −ω′′
+(k)

2
∂2
Xθ̃ (1) + geff(k)|θ̃ (1)|2θ̃ (1), (61)

with

geff(k) =1

2

(
P (k) − Q(k)

�

)
+ k

2

(
1 + g2

g1

k2 + 2 � + g2

k2 + 2 � + 2 g2

)
W (k). (62)

One has reached a point where the approach is self-contained,
as far as the first-order term 
(1) in expansion (20) is
concerned. One just needs to return to the actual variables
x and t using the reverse of transformations (24) [33]. We give
below final formulas valid even when k0 �= 0.

D. Final formulas and discussion

A nonlinear wave packet propagating in the upper branch
is described by a set of fields 
(x,t) of the form (10) with


′(x,t) = 
(x,t) + [
̃(x,t)ei(kx−ω+(k)t) + c. c.]. (63)

The component θ̃(x,t) of the envelope 
̃(x,t) is solution of

i ∂t θ̃ = −ω′′
+(k)

2
∂2
y θ̃ + geff(k)|θ̃ |2θ̃ , (64)

where y = x − ω′
+(k)t is the space coordinate in a frame

moving at the group velocity.
Once θ̃ (x,t) has been determined, the component 	(x,t) of

the background deformation is obtained as

	(x,t) = W (k)
∫ x

dx|θ̃ |2. (65)

The other components of the background and of the envelope
are given by


(x,t) =

⎛⎜⎜⎝
n(x,t)
	(x,t)
θ (x,t)
ϕ(x,t)

⎞⎟⎟⎠ = R 	(x,t), (66)

and


̃(x,t) =

⎛⎜⎜⎝
ñ(x,t)
	̃(x,t)
θ̃ (x,t)
ϕ̃(x,t)

⎞⎟⎟⎠ = R̃ θ̃ (x,t), (67)
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where R
t = (0,1,0,0) and

R̃ =

⎛⎜⎜⎜⎜⎜⎝
k(k2+2�)(2g2+k2−4k2

0+2�)−4k ω2
+(k)

8k0(k2+�)ω+(k)

− i((2g2+k2+2�)(k2+2�)+4k2k2
0−4ω+(k)2)

4kk0(k2+�)
1

i(k2(2g2+k2−4k2
0+2�)+4ω2

+(k))
4(k2+�)ω+(k)

⎞⎟⎟⎟⎟⎟⎠. (68)

We do not write here the explicit forms of W (k) and geff(k)
for k0 �= 0 because they are too cumbersome. However, it is
important for subsequent discussions to stress that Eq. (57) still
holds for k0 �= 0, but with a numerator S(k) whose expression
is different from the one given in Eq. (55) for the case k0 = 0.
On the other hand, the formulas (66), (67), and (68) are valid
even when k0 �= 0. Note that R is identical to R0 defined in
(28) and that R̃ reduces to R̃1 defined in (29) when k0 = 0.
In this case, the first two components of R̃ cancel and the
nonlinear structure corresponds to a polarization signal, with
oscillations of ρ↑ and ρ↓ preserving a fixed total density.

The nonlinear Schrödinger equation (64) describes the
spatiotemporal evolution of the envelope wave, which is
advected by the group velocity ω′

+(k) while dispersion and
nonlinearity give corrections to the dynamics of the wave train,
in particular for large times. It has been obtained through a
multiscale expansion assuming the existence of well-separated
spatial and temporal scales. The two spatial scales are the
wavelength ∼ k−1 [associated with the x dependence of the
phase β(x,t) (23)] and the length a characteristic of the spatial
variations of the envelope of the wave packet (associated to
coordinate X). These length scales should be widely different
and this corresponds to defining our small parameter as

ε = 1

ak
� 1. (69)

The three time scales legitimating the introduction of the three
different time coordinates t , T1, and T2 are:

τ � τ1 � τ2, (70)

where τ ∼ 1/ω+(k) is the period of the carrier wave. The
characteristic time τ1 is associated to the group motion of the
envelope. The time τ2 accounts for the fact that the envelope not
only propagates with the group velocity, but also changes form
because of higher-order dispersive effects and of nonlinearity
(both effects typical balance in a nonlinear wave such as
the soliton solutions discussed below). From Eqs. (41) and
(61) one can check that when the condition (69) is fulfilled
one has τ/τ1 ∼ τ1/τ2 ∼ ε, thus legitimating a posteriori the
introduction of the three time coordinates (21).

When geff(k) is positive, periodic wave trains with constant
amplitude formed in the upper branch of the spectrum are
dynamically stable. They can support nonlinear excitations
such as dark solitons. In this case θ̃—solution of (64)—is of
the form

θ̃(y,t) = �0 e−i geff (k) �2
0 t [cos α tanh(Y ) + i sin α], (71)

where �0 ∈ R+ is the amplitude of the wave train and α ∈
[0,π/2]; sin α is the dimensionless velocity of the dark soliton,

FIG. 3. θ , n↑, and n↓ as functions of y for a dark envelope soliton
(71) (top) and a bright envelope one (73) (bottom). The system’s
parameters are the same as in Fig. 4. For both plots �0 = 0.3. The
dark soliton is plotted for k = 2.5 [geff (k) = 1.4] and Vsol = 0 (black
soliton) and the bright soliton for k = 0.5 [geff (k) = −0.6].

cf. Eq. (72). The argument Y in (71) is

Y = y − Vsol t

ξeff(k)
cos α, where Vsol = sin α ceff(k), (72)

and ceff(k) = �0

√
geff(k)ω′′+(k) = ω′′

+(k)/ξeff(k).
In the case where geff(k) < 0, wave trains in the upper

branch are dynamically unstable (they experience a modula-
tional instability, see below), but one may observe stable bright
envelope solitons, for which the solution of (64) is of the form

θ̃ (y,t) = �0 exp
( − i

geff (k)
2 �2

0 t
)

cosh
(
�0

√
−geff (k)
ω′′+(k) y

) , (73)

where �0 is a positive real parameter governing the amplitude
of the soliton. Once θ̃ is known, the corresponding values of
the other fields describing the system are then given by (65),
(66), and (67). The density profiles of typical envelope solitons
are plotted in Fig. 3.

In order to get better insight on the type of dynamics
described by the envelope NLS equation (64), we show in
Fig. 4 how the effective nonlinear constant geff depends on k.

We see that geff(k) starts at low k with a negative value,
and since ω ′′

+(k) > 0, this means that wave trains in the
upper branch experience a modulational instability, see, e.g.,
Ref. [34] and references therein. Modulational instability in
Bose-Einstein condensates with repulsive interaction have
already been studied in the presence of an external optical
lattice potential [35] and for the counterflow of two miscible
species [36]. Here we consider a scenario closer to the
original Bejamin-Feir configuration [37], where nonlinearity
destabilizes a periodic wave train through generation of
spectral sidebands [see the discussion below, around Eqs. (76)
and (77)].

When discussing the physical origin of the modulational
instability in the present context, it is interesting to note that
geff(k) diverges and changes sign for a value of k, which is
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FIG. 4. The solid line represents geff (k) for the choice of param-
eters k0 = 0, g1 = 2.2, g2 = 0.2, and � = 2.5.

denoted as kLWSW in Fig. 4. For this value of k, the system
displays a so-called long-wave–short-wave resonance [38]. In
the present configuration this corresponds to a case where the
wave in the upper branch (with wave vector k) decays into
two waves, one in the same branch with a similar wave vector
(k′), and another one in the lower branch, with a small wave
vector (q, the long wave). The conditions of conservation of
momentum and energy read k = k′ + q and

ω+(k) = ω+(k − q) + ω−(q). (74)

Since q is small one can expand the first term of the right-hand
side of (74) as: ω+(k − q) 
 ω+(k) − q ω′

+(k), and also write
ω−(q) 
 c q. Hence, the phenomenon occurs at k = kLWSW

such that

ω′
+(kLWSW) = c, (75)

meaning that the condition of resonance is that the group
velocity of the short wave is equal to the phase velocity of
the long wave.

The location of the resonance is clearly seen in Fig. 4, at a
value of k in exact agreement with the value kLWSW determined
by (75). From the derivation leading to the NLS Eq. (64),
one can locate the mathematical origin of the resonance
phenomenon in Eq. (65), where W (k) as given by (57) clearly
diverges exactly at resonance. The phenomenological analysis
just presented assumes that this divergence corresponds to
a transfer of excitation from the upper branch to the lower
one, but one should ascertain that this is indeed the case
in our mathematical treatment. Indeed, it might seem from
Eq. (54) that the divergence is connected to a resonance with a

deformation of the background (of 	
(1)

), which might not be
exactly connected to the lower branch of excitation. A first clue
of this connection comes from the left-hand side of Eq. (54)
itself: in this equation, the zero mode of the operator acting

on 	
(1)

corresponds to a dispersion relation, which is the long
wave length approximation of the lower branch: ω′

−(k) 
 c k.
The second and final reason explaining why in this context

	
(1)

indeed represents the lower branch excitation comes
from the very reason for its appearance in (54): it originates

from Eq. (28), more precisely, from the specific form of 

(1)
0 ,

which is tailored to be representative of the kernel of M0.
Additionally, as can be checked by a comparison of the forms
and definitions of M1 (14) and M0 (26), M0 is the k → 0 limit
of M1 when ω = ω−(k): hence the background contributions
in the Ansatz (22) (and in the higher-order terms) is indeed
a low-k contribution in the lowest branch and the divergence
of W (k) in (57) indeed corresponds to a resonance between
the upper branch and the (long wavelength limit of) the lower
branch.

It is remarkable that the occurrence of the long-wave–
short-wave resonance is connected to a disappearance of the
modulational instability of the upper branch: as one can see
from Fig. 4 the nonlinear parameter geff(k) is positive when k

is larger than kLWSW and wave trains in the upper branch are
thus stable when their wave vector is larger than the one of the
long-wave–short-wave resonance. In order to appreciate the
origin of this phenomenon one first needs to get some physical
insight on the cause of the modulational instability. Since the
reasoning presented below is quite general, and for simplifying
the notations, we will here for a moment denote the dispersion
relation as ω(k) instead of ω+(k).

If one studies a wave train with wave vector k and constant
(real) amplitude �0, one finds from (64) that the corresponding
θ̃ (x,t) is equal to �0 exp[−igeff(k) �2

0 t]. Then, a perturbative
treatment of Eq. (64) readily shows (see, e.g., Refs. [39–41])
that small amplitude modulations of the carrier wave with
relative wave vector q and angular frequency � obey the
dispersion relation

(� − ω′(k) q)2 =
(

ω ′′(k) q2

2

)2

+ geff(k) �2
0 ω ′′(k) q2.

(76)
If geff(k) is negative, � will be imaginary (for low enough
values of q), meaning that the wave train is dynamically
unstable. The value q∗ of q corresponding to the largest
imaginary part of � , i.e., to the greatest growth rate of the
perturbations, verifies

ω ′′(k)

2
(q∗)2 = −geff(k) �2

0. (77)

One gets here a confirmation that the wave train is unstable
when ω ′′(k) geff(k) is negative. This corresponds to the
so-called Lighthill-Benjamin-Feir criterion of modulational
instability [34], which can be given the following intuitive
interpretation: one assumes that a wave train of finite amplitude
�0 corresponds to the renormalized dispersion relation

ωren(k) = ω(k) + geff(k) �2
0. (78)

The initial carrier wave at angular frequency ω(k) and wave
vector k may decay into two side bands according to the
following process:

ω(k) + ω(k) → ωren(k − q∗) + ωren(k + q∗),
(79)

k + k → (k − q∗) + (k + q∗),

where q∗ as given by (77) enforces the energy and momentum
conservation relations in the process (79), as can be checked
analytically (by an expansion in q∗) and is graphically
demonstrated in Fig. 5. It is clear that, when ω′′(k) > 0,
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FIG. 5. Illustration of the modulational instability process. The
straight solid line is the tangent to ω(p) at p = k. Two initial elemen-
tary excitations [k,ω(k)] can decay into [k − q∗,ωren(k − q∗)] and
[k + q∗,ωren(k + q∗)] provided q∗ verifies the above construction,
i.e., that the two black points are the intersections of the straight solid
line with the renormalized dispersion relation ωren(p). An expansion
of ω(p) at second order in the vicinity of k shows that (i) the white
point is the middle of the two black points [and this automatically
implies momentum and energy conservation in the process (79)] and
that (ii) q∗ defined by the above construction verifies Eq. (77).

the geometrical construction of Fig. 5 is only possible if
geff(k) < 0: in this case the wave train is modulationally
unstable.

Hence, we understand why the change of sign of geff(k)
observed in Fig. 4 when k crosses kLWSW changes the stability
of the wave train. Now it remains to understand the physical
reason for this change of sign. Actually, the reason for it
becomes clear when one focuses on the nonlinear term in
brackets in Eq. (60). The first part of this term [with the P (k)
and Q(k) contributions] is a genuine nonlinear self-interaction,

but the second part is proportional to k ∂X	
(1)

, i.e., to k U
(1)

,
which is a Doppler contribution to the energy of an excitation

moving over a background of velocity U
(1)

. For k < kLWSW,
the momentum q imparted to the lower branch is negative,

and the corresponding value of U
(1)

is also, as physically
clear and mathematically demonstrated by the fact that in
this case W (k) < 0 [see Eq. (57)]. It so happens that this
Doppler contribution is dominant over the self-interaction
terms, and, as a result, geff(k < kLWSW) < 0. On the contrary,
for k > kLWSW the momentum imparted to the lower branch

is positive, U
(1)

> 0 and geff(k > kLWSW) > 0. This ends our
discussion of the behavior of geff(k) around k 
 kLWSW and
the explanation for the disappearance of the modulational
instability when k � kLWSW.

Besides the long-wave–short-wave resonance, one can
notice another resonantlike structure in Fig. 4. It corresponds
to a generation of second harmonic according to the three
waves process

k + k → 2k, ω+(k) + ω+(k) → ω−(2k). (80)

The condition of conservation of momentum and energy in
the above process determines the value of the resonant wave
vector k−

SHG in excellent agreement with the location of the
divergence of geff(k) observed in Fig. 4. In the vicinity of k−

SHG
our approach fails [and the envelope NLS equation (64) is not
relevant] because the determinant of M2 vanishes, contrarily
to what has been stated after Eq. (38), and the procedure that
has been used for determining 
̃

(2)
2 from Eq. (37) is incorrect.

In this case the assumption that higher-order harmonics have
a very small contribution is wrong. The fact that second
harmonic generation is associated with vanishing of the
determinant of M2 is an immediate result of the definition (38)
and of energy conservation in the process (80): at resonance
one has M2 ≡ M[2 i k−

SHG, − 2i ω+(k−
SHG)] = M[2 i k−

SHG, −
iω− (2k−

SHG)]. The determinant of this last matrix is zero,
because, for any p, detM[ip, − iω−(p)] = 0, since ω =
ω−(p) is one of the dispersion relations of the system.

For concluding the discussion, it is interesting to notice that,
besides the second harmonic generation identified in Fig. 4,
there exists another possible generation of second harmonics,
which only involves excitations of the upper branch:

k + k → 2k,

ω+(k) + ω+(k) → ω+(2k).
(81)

This new process should induce a divergence of geff(k)
at the wave vector k = k+

SHG, which ensures energy
conservation in (81). Indeed, in this case we have a
linear system M[2 i k+

SHG, − 2i ω+(k+
SHG)] = M[2 i k+

SHG, −
iω+ (2k+

SHG)] that has a zero determinant because ω = ω+(p)
is one of the dispersion relations of the system. For the set
of parameters corresponding to Fig. 4, this second harmonic
generation should occur at k+

SHG = 1.612. It is then surprising
that this resonance is not seen in this figure. However, it is
clearly seen when k0 �= 0 (see Fig. 6), at the value predicted
by the conservation of energy in (81).

Actually, in the case where k0 = 0, at k = k+
SHG one

has detM2 = 0, and the divergent factor involved in the

FIG. 6. The solid line represents geff (k) for the choice of param-
eters k0 = 0.5, g1 = 2.2, g2 = 0.2, and � = 2.5. The location of the
resonances is determined by momentum and energy conservation in
the processes (74) (for kLWSW), (80) (for k−

SHG), and (81) (for k+
SHG).
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determination of 
̃
(2)
2 from Eq. (37) [and which results in a

divergence in the expression of geff(k)] is canceled by another
contribution. This can be easily understood by noticing that M
defined in Eq. (12) is a block matrix when k0 = 0:

M =
(
M− 0

0 M+

)
, (82)

whereM− andM+ are 2 × 2 matrices accounting for the lower
and the upper excitation branches. We are here interested in
second harmonic generation, i.e., in the specific matrix M2 =
M(2ik, − 2iω+(k)). In this case, we denote the matrices M−
and M+ as M2− and M2+ and their inverses are

M−1
2− = 1

ω2−(2k) − [2ω+(k)]2
adj(M2−), (83a)

M−1
2+ = 1

ω2+(2k) − [2ω+(k)]2
adj(M2+), (83b)

where “adj” denotes the adjugate matrix. The divergence of
geff(k

+
SHG) is associated with the divergence of the denominator

in (83b), corresponding to energy conservation in the process
(81). In the special case k0 = 0, the solution of Eq. (37) reads:


̃
(2)
2 =

(
M−1

2− 0
0 M−1

2+

)
C̃2, (84)

where C̃2 is given by Eq. (33) when k0 = 0: in this case its last
two components are zero. Eq. (84) then reads


̃
(2)
2 =

⎛⎜⎜⎝M−1
2−

(
i � k2

1
2

(
k2−2 �
k2+2 �

g2 − k2 − 2 �
))

M−1
2+

(
0
0

)
=

(
0
0

)
⎞⎟⎟⎠(θ̃ (1))2 (85)

and the possible divergence of the denominator of M−1
2+ is

masked. This is the reason for the inhibition of the second
harmonic generation process (81) when k0 = 0.

IV. NONLINEAR PERTURBATION THEORY FOR
EXCITATIONS PROPAGATING IN THE LOWER BRANCH

We now study the propagation of a sound pulse which, in a
linear approximation, would lie on the lower excitation branch.
The method used in Sec. III can be employed in the present
case. It yields for the nonlinear coefficient geff(k) a behavior
represented in Fig. 7.

The nonlinear coefficient diverges at large wavelength. This
is due to the fact that, for the lower branch, the analog of the
coefficient W (k) (57) diverges when k → 0 since ω′

−(0) = c.
In this case the nonlinear time tNL ∝ geff(k)−1 associated to
Eq. (64) diverges indicating that nonlinear structures form
extremely rapidly. tNL may become even smaller that the period
of the wave (except for waves of extremely small amplitude)
and in this case the technique of the envelope NLS fails.

In this long wavelength limit one can suggest an alternative
method consisting in deriving equations for the interacting
fields themselves instead of an effective equation for the
envelope. This method is based on the following reasoning:
In the linear regime and at the level of accuracy at which the
expansion (17) holds, any of the components of 
′(x,t)—n′,

FIG. 7. Nonlinear coefficient geff (k) for the envelope NLS equa-
tion describing a wave packet propagating in the lower excitation
branch. The curves are drawn for different values of �; the other
parameters are k0 = 1, g1 = 2.2, and g2 = 0.2.

say—satisfies the linear equation

n′
t + c n′

x − c3 n′
xxx = 0, (86)

where the last term describes a small dispersive correction to
the propagation with constant velocity c. If the amplitude n′ is
small but finite and such that this term has the same order of
magnitude as the leading nonlinear correction to (86) (which
is typically quadratic in n′), then nonlinear effects cannot be
omitted for correctly describing the propagation of the pulse.
In this regime one can try to derive an equation of the type
(86) with additional terms taking into account weak nonlinear
effects. The most natural extension of (86) is a Korteweg–de
Vries (KdV) equation in which a nonlinear term of the form
n′n′

x accounts for a dependence in density fluctuations (∝ n′)
of the velocity of sound.

A. Quadratic nonlinearity: KdV regime

It now is appropriate to work in a reference frame moving
at the speed of sound c, and to use x − ct and t as coordinates.
In order that the derivatives in equations of type (86) appear at
the same order, we define

ξ = ε1/2(x − ct), and τ = ε3/2t. (87)

where ε will henceforth be a small positive parameter. The
choice of the specific powers ε1/2 and ε3/2 in (87) (instead of
ε and ε3 for instance) will make sure that the derivatives in
equations of type (86) appear at the same order as the quadratic
nonlinear contribution [∝ n′n′

x , see Eq. (104) below]. In terms
of the new variables ξ and τ and of the velocities U and v

defined in Eq. (6), the system (7) reads

ε3/2nτ = ε1/2c nξ + ε1/2k0[n cos θ ]ξ

− 1

2
ε1/2[n(U − v cos θ )]ξ , (88a)
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ε3/2Uτ = ε1/2c Uξ − ε1/2k0 vξ

− ε1/2

[
ε

4

n2
ξ

n2
− ε

2

nξξ

n
− ε

cot θ

2

[n θξ ]ξ
n

]
ξ

− ε1/2

[
εθ2

ξ + U 2 + v2

4
+ g1n

]
ξ

+ ε1/2θξ

� cos θ

sin2 θ
cos ϕ + �

sin θ
v sin ϕ, (88b)

ε3/2θτ = ε1/2c θξ − � sin ϕ

− 1

2
ε1/2

(
Uθξ + [n (v + 2k0) sin θ ]ξ

n

)
, (88c)

ε3/2vτ = ε1/2c vξ − ε1/2k0 Uξ

+ ε1/2

[
ε

2 sin θ

[n θξ ]ξ
n

− U v

2
+ g2n cos θ

]
ξ

+ ε1/2θξ

� cos ϕ

sin2 θ
+ �v cot θ sin ϕ. (88d)

We perform a multiscale analysis by expanding (n,U,θ,v)
in the following way:⎛⎜⎝n(ξ,τ )

U (ξ,τ )
θ (ξ,τ )
v(ξ,τ )

⎞⎟⎠ =

⎛⎜⎝ 1
0

−π
2

0

⎞⎟⎠ + ε

⎛⎜⎜⎝
n(1)

U (1)

θ (1)

v(1)

⎞⎟⎟⎠ + ε2

⎛⎜⎜⎝
n(2)

U (2)

θ (2)

v(2)

⎞⎟⎟⎠ + · · · .

(89)
In agreement with the definitions (6) and (87) we have

U = ε1/2	ξ, and v = ε1/2ϕξ . (90)

Taking into account expansion (89) and the leading order (9)
for 	 and ϕ we thus have

	 = − 2ε−3/2μτ + ε1/2	(1) + ε3/2	(2) + · · ·
ϕ = ε1/2ϕ(1) + ε3/2ϕ(2) + · · · . (91)

Once the Ansätze (89) and (91) are inserted back into (88), the
leading term is O(ε1/2) and simply yields ϕ(1) = 0 (and thus
v(1) = 0). At next order (ε3/2) one obtains

K

⎛⎜⎜⎜⎜⎝
n

(1)
ξ

U
(1)
ξ

θ
(1)
ξ

ϕ(2)

⎞⎟⎟⎟⎟⎠ = 0, (92)

where

K =

⎛⎜⎜⎝
c − 1

2 k0 0
−g1 c 0 0
k0 0 c −�

0 −k0 � + g2 0

⎞⎟⎟⎠. (93)

Since detK = 0, Eq. (92) has nontrivial solutions. The kernel
of K is one dimensional; as a result, the solution of Eq. (92) is
of the form:⎛⎜⎜⎜⎜⎝

n
(1)
ξ

U
(1)
ξ

θ
(1)
ξ

ϕ(2)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
g1

c

1
c

k0g1

�+g2
k0
�

�+g1+g2

�+g2

⎞⎟⎟⎟⎠n
(1)
ξ ≡ R n

(1)
ξ . (94)

We also need (for later use) to determine the column vector L

such that

Kt L = 0 ⇔ Lt K = 0, (95)

This fixes

Lt ∝
(

1,
c

g1
,0, − k0

� + g2

)
. (96)

At order ε5/2 we obtain

K

⎛⎜⎜⎜⎜⎝
n

(2)
ξ

U
(2)
ξ

θ
(2)
ξ

ϕ(3)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1

A2

A3

A4

⎞⎟⎟⎟⎠, (97)

where

A1 = n(1)
τ + 1

2
[n(1)U (1)]ξ − k0[n(1)θ (1)]ξ ,

A2 = U (1)
τ + 1

2
U (1)U

(1)
ξ − �θ (1)θ

(1)
ξ

+ 1

2
n

(1)
ξξξ + k0v

(2)
ξ ,

A3 = θ (1)
τ + 1

2
U (1)θ

(1)
ξ − 1

2
v

(2)
ξ

+ k0θ
(1)θ

(1)
ξ + k0n

(1)n
(1)
ξ ,

A4 = − g2[n(1)θ (1)]ξ + 1

2
θ

(1)
ξξξ − c v

(2)
ξ . (98)

Performing the substitution (94), we can express the system
(97) in the following way:

K

⎛⎜⎜⎜⎜⎝
n

(2)
ξ

U
(2)
ξ

θ
(2)
ξ

ϕ(3)

⎞⎟⎟⎟⎟⎠ = Cτ n(1)
τ + C3 n

(1)
ξξξ + Cnl n

(1)n
(1)
ξ , (99)

with

Cτ =

⎛⎜⎜⎜⎝
1
g1

c

1
c

k0g1

�+g2

0

⎞⎟⎟⎟⎠, (100)

Cnl =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
2
√

g1(−2k2
0+�+g2)√

�+g2

g1

(
�

�+g2
+ g2

−2k2
0+�+g2

)
k0

(
g1(2k2

0+�+g2)
(�+g2)(−2k2

0+�+g2) + 1
)

− 2
√

2
√

g1g2k0√
�+g2

√
−2k2

0+�+g2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (101)

and

C3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
(�+g1+g2)k2

0
�(�+g2) − 1

2

− (�+g1+g2)k0

2�(�+g2)

k0(2(�+g1+g2)k2
0−(�+g2)(g1+g2))

√
2�(�+g2)3/2

√
−2k2

0+�+g2
g1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (102)
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Left multiplication of Eq. (99) by Lt gives

0 = (Lt · Cτ ) n(1)
τ + (Lt · Cnl) n(1)n

(1)
ξ + (Lt · C3) n

(1)
ξξξ . (103)

Equation (103) is a consistency condition: Eq. (97) admits a
solution only if the column vector A is in the image space of
K, which is implied by (103) [we used the same technique in
Sec. III, see Eqs. (40), (53), and (59)]. Explicitly, Eq. (103)
reads

n(1)
τ + 3g1

4c

(
1 − 2 �k2

0(
� + g2

)2

)
n(1)n

(1)
ξ − c3 n

(1)
ξξξ = 0, (104)

where c3 is the third-order coefficient of the dispersion relation
(17). Going back to the original coordinates x and t and
denoting n′(x,t) = n(x,t) − 1, we obtain the KdV equation

n′
t + c n′

x + γ1 n′ n′
x − c3 n′

xxx = 0, (105)

where

γ1 = 3g1

4c

(
1 − 2 �k2

0

(� + g2)2

)
. (106)

Once the solution of Eq. (105) is found, the other field variables
can be obtained using relations (94), which we rewrite here for
completeness in the final notation:

U (x,t) = g1

c
n′(x,t),

θ (x,t) = − π

2
+ k0g1

c (� + g2)
n′(x,t),

ϕ(x,t) = k0

�

� + g1 + g2

� + g2
n′

x(x,t).

(107)

Note that when n′ becomes of order of the nonlinear
coefficient in the KdV Eq. (105), that is when γ1 ∼ |n′| � 1,
the level of accuracy accepted here is not sufficient: the cubic
nonlinear terms (∼ n′ 2n′

x) neglected in the present treatment
have the same order of magnitude as the quadratic term in
Eq. (105). In this limit we have to consider the next order of
approximation.

B. Cubic nonlinearity: Gardner regime

As advocated in Sec. IV A, cubic nonlinearities become im-
portant when γ1 ∼ n′ is small: their contributions can therefore
be calculated from the system (7) choosing parameters such
that γ1 = 0. This is achieved when

k0 = � + g2√
2�

. (108)

For this choice of parameters, the sound velocity (18) reads

c = c� ≡
√−g1g2

2 �
. (109)

In this case the system can sustain long wavelength pertur-
bations only if g2 < 0, that is if α2 > α1, which we assume
henceforth (see however the discussion at the end of Sec. IV C
and Appendix B).

In this regime the coordinates defined in (87) are no
longer appropriate for the description of nonlinear excitations.

One should instead perform the computations with the new
coordinates:

ξ = ε(x − ct), and τ = ε3t. (110)

Then the system (88) rewrites:

ε3nτ = εc nξ + εk0[n cos θ ]ξ

− 1

2
ε[n(U − v cos θ )]ξ , (111a)

ε3Uτ = εc Uξ − εk0 vξ

− ε

[
ε2

4

n2
ξ

n2
− ε2

2

nξξ

n
− ε2 cot θ

2

[n θξ ]ξ
n

]
ξ

− ε

[
ε2θ2

ξ + U 2 + v2

4
+ g1n

]
ξ

+ εθξ

� cos θ

sin2 θ
cos ϕ + �

sin θ
v sin ϕ, (111b)

ε3θτ = εc θξ − � sin ϕ

− 1

2
ε

(
Uθξ + [n (v + 2k0) sin θ ]ξ

n

)
, (111c)

ε3vτ = εc vξ − εk0 Uξ

+ ε

[
ε2

2 sin θ

[n θξ ]ξ
n

− U v

2
+ g2n cos θ

]
ξ

+ εθξ

� cos ϕ

sin2 θ
+ �v cot θ sin ϕ. (111d)

We perform a multiscale analysis using the Ansätze (89);
U and v now read:

U = ε 	ξ , and v = ε ϕξ . (112)

The leading term in (111) is now O(ε) and reads, as previously,
ϕ(1) = 0. The next order O(ε2) is described by the same
system as in Eq. (92). Substituting U

(1)
ξ , θ

(1)
ξ , and ϕ(2) by their

expression in n(1) defined in (94), the order O(ε3) then reads:

K

⎛⎜⎜⎜⎜⎝
n

(2)
ξ

U
(2)
ξ

θ
(2)
ξ

ϕ(3)

⎞⎟⎟⎟⎟⎠ = Cnl n
(1)n

(1)
ξ , (113)

where Cnl is defined in Eq. (101). Since in this subsection k0

is fixed such that the non-linearity (γ1 ∝ LtCnl) in Eq. (105)
cancels, the choice of parameter (108) automatically implies
Lt · Cnl = 0 and from Eq. (113) one can only deduces that⎛⎜⎜⎜⎜⎝

n
(2)
ξ

U
(2)
ξ

θ
(2)
ξ

ϕ(3)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0

2
√

g1(−g2)
�+g2

g1(3g2�−g2
2+2�2)−g2(g2+�)2

√
2g2�(g2+�)

⎞⎟⎟⎟⎠n(1)n
(1)
ξ . (114)

Equation (113) is thus not conclusive and the expansion
at order O(ε3) is not sufficient to describe the dynamic
of nonlinear excitations. At next order [O(ε4)], taking into
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account the formula (114), we obtain:

K

⎛⎜⎜⎜⎜⎝
n

(3)
ξ

U
(3)
ξ

θ
(3)
ξ

ϕ(4)

⎞⎟⎟⎟⎟⎠ = Cτn
(1)
τ + Dnl n

(1)2
n

(1)
ξ + C3 n

(1)
ξξξ , (115)

where Cτ and C3 are defined in Eqs. (100), (102) and

Dnl =

⎛⎜⎜⎜⎜⎜⎜⎝

�
√

−g3
1g2+√−g1g2g2(g1−6g2)

2
√

2
√

�g2
2

− 3�g1

�+g2

− 2g2(�+g2)2+g1(�2−8g2�−5g2
2)

2
√

2
√

�g2(�+g2)√−g1g2(−6g3
2−g1(2�−g2)(�+g2))

2g2
2 (�+g2)

⎞⎟⎟⎟⎟⎟⎟⎠. (116)

Left multiplication of Eq. (115) by Lt gives

0 = (Lt · Cτ ) n(1)
τ + (Lt · Dnl) n(1)2

n
(1)
ξ + (Lt · C3) n

(1)
ξξξ ,

(117)
which reads

0 = n(1)
τ + 3 g1

8 c∗ |g2|
(

g1 − 4g2
2

� + g2

)
n(1)2

n
(1)
ξ − c3 n

(1)
ξξξ .

(118)
Going back to the original coordinates x and t we obtain the
modified KdV (mKdV) equation

n′
t + c∗ n′

x + γ2 n′ 2n′
x − c3 n′

xxx = 0, (119)

where

γ2 = 3 g1

8 c∗ |g2|
(

g1 − 4g2
2

� + g2

)

= 3

4
√

2

√
�g1

−g3
2

(
g1 − 4g2

2

� + g2

)
. (120)

In the regime where γ1 is not exactly zero, but of order n′,
we also have to take into account the quadratic nonlinearity of
Eq. (105), which finally yields

n′
t + c n′

x + γ1n
′n′

x + γ2 n′ 2n′
x − c3 n′

xxx = 0. (121)

This is the Gardner equation describing the evolution of
nonlinear polarization pulses in a coherently coupled two-
component condensate in the limit where the parameters of
the system are close to satisfy the condition (108). This can
be considered as an intermediate region where the quadratic
and cubic nonlinearities make contributions of the same order
of magnitude in the wave dynamics. In the limit of very
small γ1, the quadratic nonlinearity effects can be neglected,
the nonlinear polarization waves are correctly described
by the modified KdV equation (119). If instead γ1 is large, then
the cubic nonlinearity effects are negligible and the evolution
of nonlinear polarization pulses is described by the KdV
equation (105). Note that for consistency reasons, the value
of the sound velocity in (121) has to evaluated as not being
exactly equal to c∗, but has to include corrections ∝ γ 2

1 .
Once the solution of the Gardner equation (121) has been

found, the other field variables can be expressed in terms of n′
by the formulas (107) with account of (108).

C. Quartic nonlinearity: generalized KdV equation

The parameters of the system can be chosen in such a way
that not only γ1, but also γ2 cancels. This is achieved for the
choice (108) with the additional constrain

g1 = 4g2
2

� + g2
, (122)

which ensures that γ2 = 0. Note that for having a positive
value of g1, one must have � + g2 > 0, but this condition is
automatically fulfilled in phase III [cf. the definition (18) of
the sound velocity]. Computations very similar to the ones
exposed in Secs. IV A and IV B now lead to a higher-order
mKdV equation

0 = n(1)
τ + γ3 n(1)3

n
(1)
ξ − c3 n

(1)
ξξξ , (123)

where

γ3 = 5
√

2 g2
2 �(� − 2g2)(� + g2)9/2

√−g2�
. (124)

Finally, we can write the general form, which is able to
account for choices of parameters such that γ1 
 0 and γ2 
 0:

n′
t + C(n′)n′

x − c3 n′
xxx = 0, (125)

with

C(n′) = c + γ1 n′ + γ2 n′ 2 + γ3 n′ 3. (126)

Equation (125) is known as a generalized KdV equation [42].
At this point, it might be helpful to remind the strategy

followed in the present section: we study excitations of the
lower branch of the spectrum, which, in the linear regime and
in the long wave limit, are described by Eq. (86). In order to
analyze how nonlinearity affects these excitations, we consider
the modifications of the pulse propagation velocity induced by
the nonlinear effects: c → C(n′) with an expansion of the form
C(n′) = c + ∑

��1 γ� n′�. The multiscale analysis consists in
rescaling the variable (x,t) in the following way:

ξ = εa(x − c t) and τ = εbt, (127)

transforming Eq. (86) into

εbn′
τ =

∑
��1

εa+�γ� n′� n′
ξ + ε3ac3 n′

ξξξ . (128)

The analysis amounts to determine the coefficients γ�; this
has been done in Eqs. (106), (120) and Eq. (124). The first
correction is � = 1:

εbn′
τ = εa+1γ1 n′ n′

ξ + ε3ac3 n′
ξξξ . (129)

The approach is coherent if all orders in ε in Eq. (129) are
identical, i.e., if the stretched variables in (127) are chosen
with b = a + 1 = 3 a ⇒ (a = 1/2,b = 3/2).

The parameter γ1(g1,g2,k0,�) can vanish or become small
for a particular value of k0; the first-order correction � = 1 is
then no longer sufficient, and we must consider the correction
� = 2, which corresponds, by the same argument as the one
used after Eq. (129), to (a = 1,b = 3); these are the exponents
used in Sec. IV B. If γ2(g1,g2,k0,�) is also small, one has to
consider the next order, as done in the beginning of the present
section. The different orders considered and their regime of
relevance are recalled in Table I.
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TABLE I. List of the different nonlinear equations describing
the weakly nonlinear and weakly dispersive dynamics of excitations
which, in the linear regime, pertain to the lower dispersion branch.
The right column shows their successive regime of relevance of the
equations. The conditions γ1 = 0 and γ2 = 0 are precisely defined in
Eqs. (108) and (122). Note that each row assumes that the regime of
relevance of the upper rows is fulfilled.

Nonlinear equation Regime of relevance

� = 1 : KdV phase III
� = 2 : Gardner γ1 
 0 and g2 < 0
� = 3 : generalized KdV γ2 
 0 and |g2| < �

It is appropriate to discuss if the different regimes identified
in Table I can be reached with present-day experimental
realization of spin-orbit coupled BECs. The references [8]
consider the two states |mF = 0〉 = |↑〉 and |mF = −1〉 = |↓〉
of a 87Rb Bose-Einstein condensate in the F = 1 hyperfine
structure. The s-wave scattering lengths are (in units of the
Bohr radius) a↑↑ = 101.41 and a↑↓ = a↓↓ = 100.94. Since
a↑↑ − a↓↓ � 1

2 (a↑↑ + a↓↓) the simplifying assumption of a
common value of the nonlinear coupling α1 = �ω⊥(a↑↑ +
a↓↓) in (1) is legitimate (in this expression ω⊥ is the angular
frequency corresponding to a tight harmonic radial trapping
which ensures a quasi-1D behavior of the condensate [43]).
Besides, if necessary, the present formalism can be extended
to take into account the fact that a↑↑ and a↓↓ are not equal,
see Ref. [44]. Note that the recoil energy is typically 1

2k2
0 ∼

2 kHz (it is monitored by the wavelength and the relative
angle of the Raman lasers), whereas the interaction energy
1
2g1 = 1

2 (α1 + α2)ρ0 is of order (1/5) kHz (it depends on the
value of the radial trapping frequency and on the linear atomic
density).

One has α2 = 2�ω⊥a↑↓ < α1, hence g2 > 0, and it seems
from the discussion in the beginning of Sec. IV B that one can
never reach the interesting regime where γ1 = 0 and where
the nonlinear modulations of an excitation formed in the lower
branch is described by Gardner equation. However, g2 is small
(since α1 and α2 are so close) and, as explained in Appendix B,
generalizing the present approach by taking into account the
small detuning δ from the Raman resonance—not considered
in the main text—one can show that, even with a positive g2, it
is possible to reach a regime where the nonlinearity coefficient
γ1 cancels by correctly fixing the value of δ. However, for
keeping the discussion simple we will only consider here
the case of a small negative g2. The more relevant case of
a small positive g2 in the presence of a small detuning is
presented in Appendix B. The main conclusions are similar in
both cases. Then, for negative g2, the condition (108) leads
to � = 2k2

0 − 2g2 + O(g2
2), which corresponds to a value

of the Raman coupling frequency � typical in present-day
experiments. We recall however that for the system to remain
in the good side of the boundary between phase III and phase
II one needs to impose � > 2k2

0 − g2, which is verified by the
above choice of �, but not by a large extent. Hence, one can
reach a regime where the lower excitation branch is described
by Gardner dynamics, but this is obtained at the expense of

getting close to the phase III–phase II boundary. Away from
this boundary, the lower branch has a KdV dynamics.

V. CONCLUSION

In the present paper we have described how nonlinearity
affects the dynamics of elementary excitations of a coherently
coupled Bose-Einstein condensate. Excitations in the upper
branch of the spectrum display a modulational instability. As
discussed in the text, this instability is stabilized by a long-
wave–short-wave resonance: the momentum imparted by the
wave train formed in the upper branch to excitations in the
lower branch has a stabilizing effect when it has the same sign
that the velocity of the wave train. We also showed that the
system can experience second harmonic generation, and that
this mechanism may be inhibited by symmetry effects (namely
by the complete separation between density and polarization
modes, which occurs when k0 = 0).

Excitations in the lower branch are stable. In the long
wavelength limit they are affected by nonlinear effects in a
manner, which can generically be described by KdV dynamics.
For some specific configuration of the system’s parameters
(close to the phase II–phase III boundary) one has to use
a Gardner equation instead. It is interesting to note that the
Gardner regime is realized in the lower branch, which is a
mode mainly corresponding to density waves: hence, the wide
range of nonlinear excitations of Gardner’s equation (see, e.g.,
Ref. [45]) can be generated by means of a simple scalar
external potential, whereas for noncoherently coupled two
component condensates, where the Gardner regime is obtained
for a polarization mode [44], this can be achieved only thanks
to a polarization potential [46].

ACKNOWLEDGMENTS

We thank G. Martone and A. Recati for fruitful discussions.
A.M.K. thanks LPTMS, CNRS, Univ. Paris-Sud, Université
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APPENDIX A: SOLUTION OF EQ. (54)

In this Appendix we briefly explain how the solution of
Eq. (54) is obtained. Let us assume that it is of the form

	
(1) = W (k)

∫ X

dX|θ̃ (1)|2, (A1)

where W (k) is a constant [i.e., it depends on k, but not on
(X,T1,T2)]. One first remarks that

∂T1 |θ̃ (1)|2 = θ̃ (1)∗∂T1 θ̃
(1) + c. c.

Eq.(41)= −ω′
+(k) θ̃ (1)∗∂Xθ̃ (1) + c. c.

= −ω′
+(k) ∂X|θ̃ (1)|2. (A2)

It follows from this result and from the Ansatz
(A1) that ∂2

T1
	

(1) = W (k) [ω′
+(k)]2∂X|θ̃ (1)|2, and of course
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∂2
X	

(1) = W (k) ∂X|θ̃ (1)|2 [this is a direct consequence of (A1)].
Hence

∂2
T1

	
(1) − c2 ∂2

X	
(1)

= W (k) ([ω′
+(k)]2 − c2) ∂X|θ̃ (1)|2. (A3)

Equating the right-hand side of this expression to the right-
hand side of (54) determines the value of W (k) as given in
Eq. (57).

APPENDIX B: TAKING INTO ACCOUNT A SMALL
DETUNING FROM THE RAMAN RESONANCE

In this Appendix we rapidly present the treatment of the
lower excitation branch for a spin-orbit coupled condensate
(k0 �= 0) in the case where the system experiences a finite
detuning � δ from the Raman resonance. The single-particle
Hamiltonian H0 (2) has now an additional contribution:
1
2 � δ σz. The system (7) is not modified, except for Eq. (7d),
which now reads

ϕt = 1

2 sin θ

(ρ θx)x
ρ

− 1

2
	x(ϕx + 2k0)

+ (α1 − α2)ρ cos θ − � cos ϕ cot θ + δ. (B1)

The ground-state value of the fields is no longer given by
Eq. (9). One has now


(0)(x,t) =

⎛⎜⎝ 1
2k1x − 2μt

θ0

0

⎞⎟⎠, (B2)

where k1 is a variational parameter. Minimizing the energy per
particle one obtains [22]

k1 = k0 cos θ0. (B3)

The same result can be obtained in a different manner, by using
dynamical arguments: one keeps k1 as a free parameter, and
one studies the linear excitations of the system. By demanding
that the system is dynamically stable, i.e., that the frequency
of elementary excitations remains real, one obtains the result
(B3).

In the presence of a finite δ, the ground-state value θ0 is no
longer exactly equal to −π/2 as in (9) and μ is not given by
Eq. (8). Instead one has [from (B1) and (7b)](

2k2
0 − g2

)
cos θ0 + � cot θ0 = δ, (B4)

and

μ = k2
0

2
(1 + cos2 θ0) + g1

2
+ �

2 sin θ0
. (B5)

Equation (B4) determines the value of θ0. Depending on the
system’s parameters it has either four or two solutions. In the
first case, only one corresponds to the minimum of the energy
per particle (the other is the maximum) and the system can be
considered to be in the single minimum phase III. In the second
case there are two nonequivalent minima and the system is in
phase II. In the regime where k2

0 is larger than g2/2 and where
� > 0, one can show that the boundary between these two

FIG. 8. Sound velocities c± as a function of �. The systems’
parameters are k0 = 1, g1 = 2.2, and g2 = 0.2. When δ = 0, the
transition from phase III to phase II occurs at � = 2k2

0 − g2 = 1.8,
and above � = 1.8 one is in phase III with a single sound velocity.
When δ �= 0 one can show that c+(−δ) = c−(δ) and c−(−δ) = c+(δ).
This is the reason why the sign of δ is not specified in the figure.

regimes corresponds to(
2 k2

0 − g2
)2/3 = �2/3 + |δ|2/3. (B6)

In the case δ = 0 the solution of (B4) is θ0 = −π/2 if � >

2k2
0 − g2 and (B6) corresponds to the standard transition line

between phases II and III, which is reproduced in Fig. 1. It
is important to stress that in the presence of a finite detuning
δ the second-order phase transition from phase III to phase II
strictly speaking disappears because the system does not cross
any phase transition line when � varies [47]. For instance,
the velocity of sound vanishes at the transition region when
δ = 0 [cf. Eq. (18)], whereas it remains finite when δ �= 0 (cf.
Fig. 8). Also, when δ �= 0, even in what has been identified
above as the single minimum phase, the system has a small
spin polarization and condensates into a state with a small but
finite momentum.

The matrix K of Eq. (93) now reads

K =

⎛⎜⎜⎝
c − 1

2 −k0 sin0 0
−g1 c − k0 cos0 � cos0 sin−2

0 0
−k0 sin0 0 c − 2k0 cos0 −�

g2 cos0 −k0 � sin−2
0 −g2 sin0 0

⎞⎟⎟⎠,

(B7)
where, for gaining space, we have written sin0 and cos0 instead
of sin θ0 and cos θ0. In formula (B7) the sound velocity c is not
given by (18): it now depends on δ. It can be determined
through the computation of the dispersion relation in the
system, or more simply just by imposing the cancelation
of detK. For nonzero δ the ground state breaks Galilean
invariance and in our 1D configuration one obtains two
velocities of sound, one for each direction of propagation. The
first one, denoted as c+, corresponds to waves propagating in
the same direction as the ground state (for which U (0)

x = 2k1)
and the other (c−) propagates in the opposite direction. A
typical case is displayed in Fig. 8. Note that this figure is
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interrupted at low values of � in order to prevent the system
to get into phase I.

Following the procedure exposed in Sec. IV A one can
determine the form of the KdV equation, which describes
how long wavelength excitations propagating along the lower
branch of the spectrum are affected by nonlinearity when
δ �= 0. In this case the nonlinear parameter γ1 is different
from the value given by expression (106) (which corresponds
to the δ = 0 case). We do not write the explicit form of
γ1 when δ �= 0 because it is too cumbersome. Instead, we
rather plot γ1 as a function of � for different values of δ in
Fig. 9.

As for the sound velocity, the value of the nonlinear
coefficient depends of the direction of propagation of the wave.
We denote as γ +

1 (γ −
1 ) the value of γ1 corresponding to wave

trains propagating in the same (the opposite) direction than
the momentum of the ground state. One has the symmetry
relation γ +

1 (−δ) = γ −
1 (δ). When � < 2k2

0 − g2 the nonlinear
coefficient is discontinuous at δ = 0, as θ0 and k1 are, and this
corresponds to the crossing of the first-order transition line in
the plane (�,δ) [47].

One sees in the figure that there exist values of δ for
which the nonlinear coefficient cancels even for � > 2k2

0 − g2,
provided � is not too large. It is important to notice that
this cancellation of γ1 is obtained for a positive g2, contrarily
to what occurs when δ = 0. Note however, that for � = 2.5
the nonlinear coefficient cannot be canceled by imposing a

FIG. 9. γ +
1 as a function of δ for several values of �. The

system’s parameters are k0 = 1, g1 = 2.2, and g2 = 0.2. The curve
is discontinuous when � < 2k2

0 − g2 = 1.8 because in this case the
system meets a first-order phase transition at δ = 0. For the present
choice of parameters γ +

1 can be canceled by changing the value of δ

when � = 1.5 or 2.5, but not when � = 2.5.

finite value of the detuning δ. When γ1 cancels, the effective
nonlinear dynamics of the system is no longer described by a
KdV equation, but rather by a Gardner equation.
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E. Nicklas, J. Estève, and M. K. Oberthaler, Nature (London)
464, 1165 (2010); M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A.
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A. R. Perry, and I. B. Spielman, Nature (London) 498, 201
(2013).

[12] A. J. Olson, S.-J. Wang, R. J. Niffenegger, C.-H. Li, C. H.
Greene, and Y. P. Chen, Phys. Rev. A 90, 013616 (2014).

043613-16

http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1103/PhysRevLett.82.2228
http://dx.doi.org/10.1103/PhysRevLett.82.2228
http://dx.doi.org/10.1103/PhysRevLett.82.2228
http://dx.doi.org/10.1103/PhysRevLett.82.2228
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1126/science.1062527
http://dx.doi.org/10.1103/PhysRevLett.94.040403
http://dx.doi.org/10.1103/PhysRevLett.94.040403
http://dx.doi.org/10.1103/PhysRevLett.94.040403
http://dx.doi.org/10.1103/PhysRevLett.94.040403
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1103/PhysRevLett.102.030405
http://dx.doi.org/10.1103/PhysRevLett.102.030405
http://dx.doi.org/10.1103/PhysRevLett.102.030405
http://dx.doi.org/10.1103/PhysRevLett.102.030405
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://dx.doi.org/10.1103/PhysRevLett.103.250401
http://dx.doi.org/10.1103/PhysRevLett.103.250401
http://dx.doi.org/10.1103/PhysRevLett.103.250401
http://dx.doi.org/10.1103/PhysRevLett.103.250401
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature10654
http://dx.doi.org/10.1038/nature10654
http://dx.doi.org/10.1038/nature10654
http://dx.doi.org/10.1038/nature10654
http://dx.doi.org/10.1103/PhysRevLett.103.150601
http://dx.doi.org/10.1103/PhysRevLett.103.150601
http://dx.doi.org/10.1103/PhysRevLett.103.150601
http://dx.doi.org/10.1103/PhysRevLett.103.150601
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevA.84.043609
http://dx.doi.org/10.1103/PhysRevA.84.043609
http://dx.doi.org/10.1103/PhysRevA.84.043609
http://dx.doi.org/10.1103/PhysRevA.84.043609
http://dx.doi.org/10.1038/nature12954
http://dx.doi.org/10.1038/nature12954
http://dx.doi.org/10.1038/nature12954
http://dx.doi.org/10.1038/nature12954
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1038/nphys2905
http://dx.doi.org/10.1038/nphys2905
http://dx.doi.org/10.1038/nphys2905
http://dx.doi.org/10.1038/nphys2905
http://dx.doi.org/10.1073/pnas.1202579109
http://dx.doi.org/10.1073/pnas.1202579109
http://dx.doi.org/10.1073/pnas.1202579109
http://dx.doi.org/10.1073/pnas.1202579109
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1088/1367-2630/15/7/073011
http://dx.doi.org/10.1038/nature12185
http://dx.doi.org/10.1038/nature12185
http://dx.doi.org/10.1038/nature12185
http://dx.doi.org/10.1038/nature12185
http://dx.doi.org/10.1103/PhysRevA.90.013616
http://dx.doi.org/10.1103/PhysRevA.90.013616
http://dx.doi.org/10.1103/PhysRevA.90.013616
http://dx.doi.org/10.1103/PhysRevA.90.013616


NONLINEAR WAVES IN COHERENTLY COUPLED BOSE- . . . PHYSICAL REVIEW A 93, 043613 (2016)

[13] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, and
P. Engels, Nature Comm. 5, 4023 (2014).

[14] M. A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P. Engels,
Phys. Rev. A 90, 063624 (2014); S.-C. Ji, L. Zhang, X.-T. Xu,
Z. Wu, Y. Deng, S. Chen, and J.-W. Pan, Phys. Rev. Lett. 114,
105301 (2015).

[15] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E.
Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari,
Phys. Rev. Lett. 81, 243 (1998); D. S. Hall, M. R. Matthews, C.
E. Wieman, and E. A. Cornell, ibid. 81, 1543 (1998).

[16] K. C. Wright, L. S. Leslie, and N. P. Bigelow, Phys. Rev. A
77, 041601(R) (2008); 78, 053412 (2008); J. Higbie and D. M.
Stamper-Kurn, Phys. Rev. Lett. 88, 090401 (2002).

[17] P. B. Blakie, R. J. Ballagh, and C. W. Gardiner, J. Opt. B 1, 378
(1999); C. P. Search and P. R. Berman, Phys. Rev. A 63, 043612
(2001); P. Tommasini, E. J. V. de Passos, A. F. R. de Toledo Piza,
M. S. Hussein, and E. Timmermans, ibid. 67, 023606 (2003);
C. Lee, W. Hai, L. Shi, and K. Gao, ibid. 69, 033611 (2004);
M. Abad and A. Recati, Eur. Phys. J. D 67, 148 (2013).

[18] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett.
105, 160403 (2010); T.-L. Ho and S. Zhang, ibid. 107, 150403
(2011); Y. Zhang, L. Mao, and C. Zhang, ibid. 108, 035302
(2012); W. Zheng and Z. Li, Phys. Rev. A 85, 053607 (2012);
Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 108,
225301 (2012); G. I. Martone, Y. Li, L. P. Pitaevskii, and S.
Stringari, Phys. Rev. A 86, 063621 (2012); Y. Zhang, G. Chen,
and C. Zhang, Sci. Rep. 3, 1937 (2013); W. Zheng, Z.-Q. Yu,
X. Cui, and H. Zhai, J. Phys. B 46, 134007 (2013); Y. Li, G. I.
Martone, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 110,
235302 (2013). S. Maronov, M. Modugno, and E. Y. Sherman,
J. Phys. B: At. Mol. Opt. Phys. 48, 115302 (2015).

[19] D. T. Son and M. A. Stephanov, Phys. Rev. A 65, 063621
(2002); J. J. Garcı́a-Ripoll, V. M. Pérez-Garcı́a, and F. Sols,
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