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We provide a classification of the possible flows of two-component Bose-Einstein condensates evolving from
initially discontinuous profiles. We consider the situation where the dynamics can be reduced to the consideration
of a single polarization mode (also denoted as “magnetic excitation”) obeying a system of equations equivalent
to the Landau-Lifshitz equation for an easy-plane ferromagnet. We present the full set of one-phase periodic
solutions. The corresponding Whitham modulation equations are obtained together with formulas connecting
their solutions with the Riemann invariants of the modulation equations. The problem is not genuinely nonlinear,
and this results in a non-single-valued mapping of the solutions of the Whitham equations with physical wave
patterns as well as the appearance of interesting elements—contact dispersive shock waves—that are absent in
more standard, genuinely nonlinear situations. Our analytic results are confirmed by numerical simulations.
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I. INTRODUCTION

The first experimental realizations of Bose-Einstein con-
densation of single species ultracold atomic vapors [1,2]
were soon followed by their multicomponent counterparts [3]
which appeared to be nontrivial extensions of the previous
ones, the dynamical and nonlinear aspects of phase separation
revealed to be particularly rich [4,5]. Over the years, numerous
studies have been devoted to theoretical and experimental
investigations associated with these specific features, namely
nonlinearity and dynamics in multicomponent Bose-Einstein
condensates (BECs); see, e.g., the reviews [6,7] and chapters
in the books [8–10].

The specific physical ingredients of this body of research
are the (intra- and interspecies) interactions, the negligible
viscosity, and the large dispersive effects. Another important
aspect is the different degrees of freedom associated with
the different types of motion of the components. For two-
component systems one can schematically separate global
in-phase motion—associated with density fluctuations—from
out-of-phase motion, associated with a “polarization” or “mag-
netic” degree of freedom. This appealing classification of the
dynamical behaviors of the system is however oversimplified:
in many instances, a clean separation between these idealized
types of excitation is not possible, even at the perturbative level
(see, e.g., the discussion in [11]). However, a recent theoretical
breakthrough has been made in Ref. [12] where it has been
shown that for stable two-component mixtures close to the
immiscibility region, the density and magnetization degrees of
freedom decouple, even at the nonlinear level. The polarization
sector is particularly interesting; different solitons have been
initially identified in Ref. [12] and a rich variety of nonlinear
excitations rapidly followed [13]: cnoidal waves, nonlinear
trigonometric waves, algebraic solitons. The interest of these
studies is not uniquely theoretical: the regime of parameters
for which the dynamics of polarization excitations decouples
from that of density excitations corresponds to systems of
experimental interest; for instance, it is exactly realized in the
mixture of the two hyperfine states |F = 1,mF = ±1〉 of 23Na

[14], and, to a good approximation, in the mixture of hyperfine
states of 87Rb considered in Refs. [15] (|1,1〉 and |2,2〉) and
[16] (|1, − 1〉 and |1,0〉 or |1, − 1〉 and |2, − 2〉).

An investigation of the one-dimensional Riemann problem
for polarization excitations was started in Ref. [13], which was
motivated by the study of two-species counterflow considered
in Ref. [15]: an initial value problem has been considered,
consisting, for each component, in piecewise constant initial
(relative) density and velocity, with a single discontinuity. The
importance of this type of problems lies in the facts that, first,
their solution involves characteristic wave patterns arising in
the space-time evolution of quite general initial pulses, and,
second, a number of real physical situations can be reduced
to the discussion of the dynamics of initial discontinuities.
The interest of this so-called “Riemann problem” was first
realized in the framework of compressible fluid dynamics,
where the well-known viscous shocks play a key role in
the classification of evolutions of initial discontinuities (see,
e.g., Ref. [17]). Extension of this approach to systems where
dispersion effects play a dominant role—instead of viscous
ones—started with the groundbreaking work of Gurevich and
Pitaevskii [18] for the Korteweg–de Vries (KdV) equation,
in which dispersive shock waves (DSWs) were approximated
by nonlinear modulated waves whose evolution was described
by means of Whitham theory of modulations [19,20]. The
theory of DSWs has been much developed since and has found
numerous different applications (see, e.g., a recent review
[21] and references therein). In particular, the classification
of the space-time evolution of initial discontinuities was
established for waves whose dynamics is described by the
nonlinear Schrödinger (NLS) equation [22,23] and by the
Kaup-Boussinesq (KB) equation [24,25]. In all these cases
(KdV, NLS, and KB), the evolution of the DSW is governed by
the dynamical Whitham equations for the so called “Riemann
invariants” [17] who have a one-to-one correspondence with
relevant physical variables. However, the problem becomes
much more complicated when this mapping is multivalued,
even when the Whitham equations can be represented in
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a diagonal form. For instance, different types of structures
appear in such systems, as was indicated in Ref. [26] for
the case of the modified KdV (mKdV) equation. The full
solution of the Riemann problem for the Gardner equation
(related with the modified KdV equation) was given in
Ref. [27] and this solution was adapted to the mKdV case
in Ref. [28]. These examples refer to a unidirectional wave
propagation described by a single nonlinear wave equation.
However, similar complicated wave structures were discussed
in Ref. [29] for the nonintegrable Miyata-Camassa-Choi
equation describing two-directional propagation of two-layer
shallow water waves.

The case considered in Ref. [13] combines two difficulties:
(i) as in the problems studied in Refs. [26–28], it corresponds
to a situation where the dispersionless Riemann invariants are
nonmonotonously dependent on the physical variables, that
is, the problem is not genuinely nonlinear (see, e.g., [30])
and, (ii) as in Ref. [29], it corresponds to a two-directional
wave propagation described by a system of two nonlinear
equations. To avoid too many complications, the study of
Ref. [13] was initially restricted to a region of parameters
where the dependence of the Riemann invariants on the
physical variables remains monotonous, that is, the problem
considered was actually genuinely nonlinear. In the present
paper we extend this study and give the full solution of the
Riemann problem for the space-time evolution of polarization
waves in a two-component BEC. Our approach is based
on the remark made in Ref. [13] that, for the regime of
parameters identified in Ref. [12], nonlinear polarization
waves can be described by the dissipationless Landau-Lifshitz
(LL) equation with uniaxial easy-plane anisotropy [31,32].
The exact integrability of this equation—which belongs to the
Ablowitz-Kaup-Newell-Segur hierarchy—makes it possible
to develop a Whitham modulational theory (Sec. IV) for
describing configurations where nonlinear waves are slowly
modulated, as observed in dispersive shocks. This will permit
us to formulate a principle of classification valid for all the
numerous wave patterns arising from the evolution of initial
discontinuities.

An interesting aspect of the present work is its relevance
to systems pertaining to widely different domains in physics.
Configurations similar to the ones studied in the present work
can be investigated in neighboring fields such as nonlinear
fiber optics and also exciton-polariton condensed systems.
But the physical ingredients characterizing the phenomena we
are interested in—nonlinearity, weak dissipation, dispersion
in a multicomponent system—are also encountered in quite
different settings. As a result, the solution of the Riemann
problem we give in the present work is also relevant to
fluid mechanics [33–37] and to the nonlinear magnetization
dynamics of anisotropic ferromagnets [38–40].

The paper is organized as follows: The model and the
relevant dynamical equations are presented in Sec. II. The
exact integrability of the easy-plane Landau-Lifshitz equa-
tions is used in Sec. III for writing its explicit one-phase
solutions, determining the corresponding Riemann invariants,
and writing the Whitham modulational equations. The full
classification of the solutions of the Riemann problem is
presented in Sec. V in terms of the combination of specific
wave patterns, which we denote as “building blocks” or “key

elements” which are first analyzed in Sec. IV. Finally, we
present our conclusions in Sec. VI.

II. MODEL

We consider a one-dimensional system consisting in an
elongated two-component BEC described by the order param-
eters ψ↑(x,t) and ψ↓(x,t). The dynamics of the system is
described by two coupled Gross-Pitaevskii equations:(

ih̄∂t + h̄2∂2
x

2m

)(
ψ↑
ψ↓

)
=

(
g↑↑|ψ↑|2 g↑↓ψ∗

↓ψ↑
g↑↓ψ∗

↑ψ↓ g↓↓|ψ↓|2
)(

ψ↑
ψ↓

)
,

(1)
where g↑↑ and g↓↓ are the intraspecies nonlinear constants; g↑↓
is the interspecies one. We consider the limit where g↑↑ ≈ g↓↓
and denote as g their common value (the situation where these
two constants are not exactly equal is treated in Ref. [11]). We
denote as δg the difference g − g↑↓ and consider the situation

0 < δg � g. (2)

The left condition is the mean-field miscibility condition of
the two species (see, e.g., Refs. [8,9]). The right condition
implies that the three interaction constants are close to each
other and that the system is close to the region of immiscibility.
As discussed in Refs. [12,13], in this situation the density and
magnetic degrees of freedom effectively decouple.

The spinor wave function is parametrized as [41](
ψ↑
ψ↓

)
= √

ρ ei�/2 �, where � =
(

cos θ e−iφ/2

sin θ eiφ/2

)
. (3)

In this expression ρ(x,t) is the total density and
θ (x,t) governs the relative densities of the two com-
ponents: ρ↑(x,t) = |ψ↑|2 = 1

2 ρ (1 + cos θ ) and ρ↓(x,t) =
|ψ↓|2 = 1

2 ρ (1 − cos θ ). �(x,t) and φ(x,t) are potentials for
the velocity fields v↑ and v↓ of the two components, namely,

v↑(x,t) = h̄

2m
(�x − φx), v↓(x,t) = h̄

2m
(�x + φx). (4)

(Throughout the text the x and t indices denote partial
derivatives, whereas numerical indices denote space com-
ponents of vectors.) The small perturbations of a uniform
BEC of total density ρ0 with equal fractions of the two
components (θ = π/2) correspond to total density fluctuations
which propagate with velocity cd = [ρ0(g − δg/2)/m]1/2 and
polarization excitations with velocity cp = (ρ0δg/2m)1/2. In
the limit (2) these two velocities are widely different. As
a result, even an initial state consisting of a mixture of
density and polarization fluctuations rapidly separates into
density perturbations propagating at large velocity cd away
from a region where only polarization excitations take place.
For considering these excitations, it is appropriate to rescale
the lengths in units of the polarization healing length ξp =
h̄/(2mρ0δg)1/2 and time in units of τp = ξp/cp. Once this
is done, it has been shown in [13] that the dynamics of
the polarization excitations is accounted for by the following
system of coupled equations:

θt + 2 θx φx cos θ + φxx sin θ = 0,
(5)

φt − cos θ
(
1 − φ2

x

) − θxx

sin θ
= 0.
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The other fields are fixed by the conditions ρ(x,t) = ρ0 and
(�x − φx cos θ )x = 0. Introducing the effective spin (σ1, σ2,
and σ3 are the Pauli matrices)

S = �† σ � =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ (6)

and the magnetization M = −S, one can easily verify that
the system of equations (5) is equivalent to the dissipationless
Landau-Lifshitz equation for an easy-plane ferromagnet:

∂tM = Heff ∧ M, where Heff = ∂2
x M − M3 e3, (7)

e3 being a unit vector of the z axis. We have found that this
form of the equations of motion is particularly appropriate
for numerical simulations. The reason is that, contrarily to the
systems (5) [and (8); see below], it does not involve small
denominators when the density of one of the components gets
very small. The other interesting feature of this system is that
the anisotropic Landau-Lifshitz system (7) is integrable by
the inverse scattering transform method and the corresponding
Lax pair is known (see, e.g., [42,43]). This result has been used
in Ref. [44] to derive periodic solutions for ferromagnets with
an easy-axis anisotropy, and we shall adapt here this approach
to the easy-plane case (7).

For future convenience, we introduce a third version
of (5): Let us define the quantities w(x,t) = cos θ = S3 =
−M3 = (ρ↑ − ρ↓)/ρ0 describing the variations of the relative
density, and v(x,t) = φx = (v↓ − v↑)/(2cp) which represents
the nondimensional relative velocity. In terms of these two
fields the equations of motion read

wt − [(1 − w2)v]x = 0,

vt − [(1 − v2)w]x +
[

1√
1 − w2

(
wx√

1 − w2

)
x

]
x

= 0. (8)

Before embarking to the study of nonlinear phenomena,
it is interesting to briefly consider linear perturbations of
a stationary configuration: let a uniform background be
characterized by a relative density w0 and a relative velocity
v0. Small perturbations of the type

w = w0 + w′(x,t), v = v0 + v′(x,t), with |v′| ,|w′| � 1

can be sought under the form of plane waves with wave vector
k and angular frequency ω. Linearizing the system (8) one
obtains the following dispersion relation:

ω = (
2w0v0 ±

√(
1 − w2

0

)(
1 − v2

0

) + k2
)
k. (9)

By definition we always have |w0| = | cos θ0| � 1, however
v0 can have any value, and for |v0| > 1 the frequency ω is
complex for small enough wave vectors k. This implies a
long wavelength modulational instability of a system with
large relative velocity of the two components, more precisely
for a background relative velocity v↓ − v↑ larger than 2cp.
This mechanism of instability has been theoretically studied
in Ref. [45].

In what follows, we consider the dynamically stable
situation where |v0| < 1. In this case the large wavelength limit
of the dispersion relation (9) corresponds to waves propagating

with the “polarization” or “magnetization” sound velocity

c± = 2w0v0 ±
√(

1 − w2
0

)(
1 − v2

0

)
. (10)

For a uniform system in which both components have equal
densities (w0 = 0) and no relative velocity (v0 = 0) one gets
c± = ±1, i.e., going back to dimensional quantities, the speed
of the magnetic sound is ±cp as expected. We note that the +
sign (− sign) in expression (10) corresponds to polarization
excitations propagating to the right (to the left) with respect to
the background in the reference frame in which the total flux
of the condensate is zero.

Limiting regimes

For some specific values of the field variables, the
anisotropic Landau-Lifshitz system (7) can be approximated
by simpler nonlinear models. In the present subsection we
consider two limiting cases: the nonlinear Schrödinger equa-
tion (Sec. II 1) and the Kaup-Boussinesq system (Sec. II 2).
These limiting regimes will be used in Secs. V A and V B to
help classifying the large number of different solutions of the
Riemann problem.

1. Nonlinear Schrödinger regime

In the regime where w(x,t) is close to unity and v(x,t)
is small, defining w′(x,1) = 1 − w(x,t) one can rewrite the
system (8) keeping only terms up to second order in the small
quantities v and w′:

w′
t + 2(w′v)x = 0,

vt + 2vvx + w′
x +

[
w′2

x

4w′2 − w′
xx

2w′

]
x

= 0. (11)

Defining n = w′/2 and changing variable to T = 2t , the
system (11) can be cast in the form

nT + (nv)x = 0,

vT + vvx + nx +
[

n2
x

8n2
− nxx

4n

]
x

= 0, (12)

which is the hydrodynamic form of the defocusing nonlinear
Schrödinger equation

iψT = − 1
2ψxx + |ψ |2ψ. (13)

The system (12) is obtained from the standard form (13)
by means of the Madelung transform [n = |ψ |2 and v =
(arg ψ)x]. We note that a similar approximation is also valid
for w(x,t) close to −1 and small v(x,t).

2. Kaup-Boussinesq regime

In the regime where v(x,t) is close to unity and w(x,t)
is small, defining v′(x,t) = 1 − v(x,t), one can rewrite the
system (8) keeping only terms up to second order in the small
quantities v′ and w:

wt + 2wwx + v′
x = 0,

(14)
v′

t + 2(v′w)x − wxxx = 0.

One defines here u = √
2 w, h = v′ and changes the spatial

variable to X = x/
√

2. This casts the approximate system (14)
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into the canonical Kaup-Boussinesq form [46]

ut + uuX + hX = 0,
(15)

ht + (hu)X − 1
4uXXX = 0.

Again a similar approximation can be derived when v(x,t) is
close to −1 and w(x,t) small.

III. PERIODIC SOLUTIONS AND WHITHAM EQUATIONS

Among the key elements that are generated during the
evolution of nonlinear waves, an important role is played by the
DSWs that can be represented as modulated periodic solutions
of the corresponding nonlinear wave equation. Consequently,
for classifying the wave patterns evolving from an initial
discontinuity in the polarization mode, we have to present the
periodic solutions of the LL equation in the most convenient
form and to derive the corresponding Whitham modulation
equations.

In Ref. [13] the periodic solutions have been found by a
direct method, and were not parametrized in terms of Riemann
invariants. The Whitham equations were used in El’s form [47]
which provides the main information concerning the evolution
of initial steplike discontinuous distributions without requiring
the knowledge of the Riemann invariants. However, for solving
the full Riemann problem it is more appropriate to use methods
based on the explicit knowledge of the Riemann invariants. In
this section we shall obtain the periodic solutions of the LL
equation by means of the finite gap integration method, give
the explicit form of the Riemann invariants, and derive the
corresponding Whitham modulation equations.

A. One-phase finite-gap integration method of the easy-plane
Landau-Lifshitz equation

In this subsection, relying on the finite gap integration
method, we list all the traveling wave solutions of the LL
equation (7) [Eqs. (39)–(52)]. These solutions are naturally
parametrized in terms of the roots of the “resolvent” R
[defined in Eq. (36)]. At the end of the subsection, and in view
of the implementation of the Whitham averaging technique
(Sec. III B), we relate these roots to the ones of another
characteristic polynomial [P defined in Eq. (22)] formed by
the squared basis functions of the associated linear problem.

As well known, the LL equation (7) is integrable by the
inverse scattering transform method (see, e.g., [42,43]). The
corresponding Lax pair can be written as

∂

∂x

(
ψ̃1

ψ̃2

)
=

(
F G

H −F

)(
ψ̃1

ψ̃2

)
, (16)

∂

∂t

(
ψ̃1

ψ̃2

)
=

(
A B

C −A

)(
ψ̃1

ψ̃2

)
, (17)

where

F = iλ

2
M3, G = −1

2

√
1 − λ2M−,

H = −1

2

√
1 − λ2M+,

A = i

2
(1 − λ2)M3 + λ

4
[(M−)xM+ − M−(M+)x],

B = 1

2
λ
√

1 − λ2M− + i

2

√
1 − λ2[(M3)xM− − M3(M−)x],

C = 1

2
λ
√

1 − λ2M+ − i

2

√
1 − λ2[(M3)xM+ − M3(M+)x].

(18)

In (18) M± = M1 ± iM2 and λ is a constant spectral param-
eter. Periodic solutions for ferromagnets with an easy-axis
anisotropy were found in Ref. [44] and we shall here adapt
the approach used in this reference to the easy-plane case
of Eq. (7). The 2 × 2 linear problems (16) and (17) have
two linearly independent basis solutions which we denote
as (ψ̃1, ψ̃2)T and (ϕ̃1, ϕ̃2)T . We define the “squared basis
functions”

f = − i

2
(ψ̃1ϕ̃2 + ψ̃2ϕ̃1), g = ψ̃1ϕ̃1, h = −ψ̃2ϕ̃2, (19)

which obey the linear equations

fx = −iHg + iGh, (20a)

gx = 2iGf + 2Fg, (20b)

hx = −2iHf − 2Fh, (20c)

and

ft = −iCg + iBh, (21a)

gt = 2iBf + 2Ag, (21b)

ht = −2iCf − 2Ah. (21c)

It is easy to check that the expression f 2 − gh does not
depend on x and t by virtue of Eqs. (20) and (21), however it
can depend on the spectral parameter λ. The (quasi)periodic
solutions are distinguished by the condition that the term f 2 −
gh be a polynomial P (λ). For the one-phase case which we are
interested in, it suffices to consider a fourth degree polynomial,

f 2 − gh = P (λ) =
4∏

i=1

(λ − λi)

= λ4 − s1λ
3 + s2λ

2 − s3λ + s4, (22)

where si are standard symmetric functions of the four zeros
(λ1, λ2, λ3, and λ4) of the polynomial:

s1 =
∑

i

λi, s2 =
∑
i<j

λiλj , s3 =
∑

i<j<k

λiλjλk,

s4 = λ1λ2λ3λ4. (23)

We write the solution of Eqs. (20) and (21) under the form

f (x,t) = M3λ
2 − f1(x,t)λ + f2(x,t),

g(x,t) = M−
√

1 − λ2(λ − μ(x,t)),

h(x,t) = M+
√

1 − λ2(λ − μ∗(x,t)),

(24)

where, to simplify computations, we have chosen the coef-
ficients of the terms with the highest degrees in λ in such a
way that the identity (22) is already satisfied at order λ4. The
quantities f1(x,t), f2(x,t), μ(x,t), and μ∗(x,t) in (24) are yet
unknown functions; μ(x,t) and μ∗(x,t) are a priori unrelated,
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but we shall soon establish that they are complex conjugate
one to the other, hence the notation.

Plugging expressions (24) back into (22) and equating the
coefficients of the powers of λ yields four conservation laws:

− 2f1w + (1 − w2)(μ + μ∗) = s1,

2f1f2 − (1 − w2)(μ + μ∗) = s3,

f 2
1 − 2f2w + (1 − w2)(μμ∗ − 1) = s2,

f 2
2 − (1 − w2) μμ∗ = s4, (25)

where we have used the above defined notation w ≡ −M3 and
have also taken into account the normalization

M+M− + M2
3 = 1. (26)

Substitution of (24) into (20) and (21) gives, after equating the
coefficients of powers of λ, a number of differential equations;
we shall write down here the ones which are the most important
for our purpose. For instance Eq. (20a) gives

wx = − i

2
(1 − w2)(μ − μ∗), f1,x = 0, f2,x = wx. (27)

After factoring out the term
√

1 − λ2, the equality of the
coefficients of the terms of order λ in both sides of Eq. (20b)
yields

(M−)x/M− = i(f1 + wμ). (28)

This equation, with account of φx = v, M− =
−√

1 − w2 exp(−iφ), and of the first of Eqs. (27), leads to
the following expression for the relative velocity:

v = −f1 − 1
2 (μ + μ∗)w. (29)

The variable μ satisfies the equation

μx = i
√

P (μ), (30)

which can be easily obtained by putting the free parameter λ

equal to μ in Eq. (20b). Substitution of (28) and (27) into (21b)
where the parameter λ is taken equal to μ gives, owing to the
first of identities (25), the equation μt = −(i/2)s1

√
P (μ) =

−(1/2)s1μx . This indicates that μ depends on the variable
ξ = x − (s1/2)t only, that is

μξ = i
√

P (μ), ξ = x − V t, V = 1
2 s1. (31)

Formally, Eq. (31) can be solved in terms of elliptic functions
and it is then parametrized by the zeros of the polynomial P (λ).
However, even for given values of these zeros, the trajectory
of μ in the complex μ plane is not known and therefore it
is impossible to prescribe the initial value of μ without some
additional study. This difficulty can be overcome by the method
suggested in Ref. [48], according to which the parameters
f1, f2, μ, μ∗ are to be represented as functions of w. This
yields the solution in a so-called “effective” form, not subject
to any additional constraint.

After simple manipulations on the system (25), we find, for
a given set of λi (i = 1,2,3,4), four possible forms of f1:

f1 = ±
√

(1 + s2 + s4 + s ′
4)/2, (32a)

and

f1 = ±sgn(s1 + s3)
√

(1 + s2 + s4 − s ′
4)/2, (32b)

where we have defined

λ′
i =

√
1 − λ2

i , s ′
4 = λ′

1λ
′
2λ

′
3λ

′
4, (33)

and made use of the identity (1 + s2 + s4)2 − (s1 + s3)2 =
(s ′

4)2. The factor sgn(s1 + s3) is introduced for making f1 (and
its derivatives with respect to λi) continuous functions of λi .
For f2 we obtain in all cases

f2 = (s1 + s3)/2f1 + w, (34)

and the variables μ,μ∗ are given by the expressions

μ,μ∗ = s1 + 2f1w ± 2i
√−R(w)

2(1 − w2)
, (35)

where

R(w) = w4 + s1 + s3

f1
w3 + s2w

2 +
(

f1s1 − s1 + s3

f1

)
w

+ 1

4

(
s2

1 − 4 − 4s2 + 4f 2
1

)
. (36)

Since μ depends on ξ only, the same holds for w, which, as
follows from Eqs. (27) and (35), satisfies the equation

wξ =
√

−R(w). (37)

This equation admits a real solution when w oscillates between
two of the zeros of R(w) (provided they both are located in
the interval [−1,1]), in a domain where R(w) � 0, and in this
case, on sees from (35) that μ and μ∗ are complex conjugated
variables, as was anticipated earlier.

Actually, Eq. (37) coincides with Eq. (30) of Ref. [13] [with
Q(w) replaced by R(w)] and we shall reproduce here briefly
its solutions for convenience and future references. We denote
the zeros of R as w1 � w2 � w3 � w4.

(a) We first consider the periodic solution corresponding to
oscillations of w in the interval

w1 � w � w2. (38)

In this case the solution of Eq. (37) can be written as

w = w2 − (w2 − w1)cn2(W,m)

1 + w2−w1
w4−w2

sn2(W,m)
, (39)

where it is assumed that w(0) = w1,

W =
√

(w3 − w1)(w4 − w2) ξ/2, (40)

and

m = (w4 − w3)(w2 − w1)

(w4 − w2)(w3 − w1)
, (41)

cn and sn being Jacobi elliptic functions [49]. The wavelength
of the oscillating function (39) is

L = 4K(m)√
(w3 − w1)(w4 − w2)

, (42)

where K(m) is the complete elliptic integral of the first kind
[49]. In the limit w3 → w2 (m → 1) the wavelength tends to
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infinity and the solution (39) transforms to a soliton

w = w2 − w2 − w1

cosh2 W + w2−w1
w4−w2

sinh2 W
. (43)

This is a “dark soliton” for the variable w.
The limit m → 0 can be reached in two ways.
(i) If w2 → w1, then we get

w ∼= w2 − 1
2 (w2 − w1) cos[k(x − V t)],

k =
√

(w3 − w1)(w4 − w1). (44)

This is a small-amplitude limit describing propagation of a
harmonic wave.

(ii) If w4 = w3 but w1 �= w2, then we get a nonlinear wave
represented in terms of trigonometric functions:

w = w2 − (w2 − w1) cos2 W

1 + w2−w1
w3−w2

sin2 W
,

W =
√

(w3 − w1)(w3 − w2) ξ/2. (45)

If we take the limit w2 − w1 � w3 − w1 in this solution, then
we return to the small-amplitude limit (44) with w4 = w3.
On the other hand, if we take here the limit w2 → w3 = w4,
then the argument of the trigonometric functions becomes
small and we can approximate them by the first terms of their
series expansions. This corresponds to an algebraic soliton of
the form

w = w2 − w2 − w1

1 + (w2 − w1)2(x − V t)2/4
. (46)

(b) In the second case, the variable w oscillates in the
interval

w3 � w � w4. (47)

Here again, a standard calculation yields

w = w3 + (w4 − w3)cn2(W,m)

1 + w4−w3
w3−w1

sn2(W,m)
, (48)

with the same definitions (40), (41), and (42) for W , m, and
L, respectively, and w(0) = w4. In the soliton limit w3 → w2

(m → 1) we get

w = w2 + w4 − w2

cosh2 W + w4−w2
w2−w1

sinh2 W
. (49)

This is a “bright soliton” for the variable w.
Again, the limit m → 0 can be reached in two ways.
(i) If w4 → w3, then we obtain a small-amplitude harmonic

wave

w ∼= w3 + 1
2 (w4 − w3) cos[k(x − V t)],

k =
√

(w3 − w1)(w3 − w1). (50)

This is a small-amplitude limit describing a harmonic wave.
(ii) If w2 = w1, then we obtain another nonlinear trigono-

metric solution,

w = w3 + (w4 − w3) cos2 W

1 + w4−w3
w3−w1

sin2 W
,

W =
√

(w3 − w1)(w4 − w1) ξ/2. (51)

If we assume that w4 − w3 � w4 − w1, then this reproduces
the small-amplitude limit (50) with w2 = w1. On the other
hand, in the limit w3 → w2 = w1 we obtain the algebraic
soliton solution:

w = w1 + w4 − w1

1 + (w4 − w1)2(x − V t)2/4
. (52)

The solutions presented above are parametrized by the zeros
wi (i = 1,2,3,4) of the polynomial (36) whose coefficients
are expressed in terms of the zeros λi of the polynomial
P (λ) which plays a key role in the finite-gap integration
method. As we shall see, the parameters λi represent the
Riemann invariants in the Whitham modulation theory. We
want to express the solutions of (37) in terms of these Riemann
invariants: we therefore need to express the wi’s in terms of the
λi’s explicitly, without having to solve the algebraic equation
R(w) = 0. This has been already achieved in Ref. [44], but
we shall derive here expressions under a form which is more
convenient for subsequent applications. To this end, we rewrite
the identity (22) using explicit formulas for the functions f ,
g, and h:

P (λ) =
(

−wλ2 − f1λ + s1 + s3

2f1
+ w

)2

− (1 − w2)(1 − λ2) ×
[
λ − s1 + 2f1w + 2

√
R(w)

2(1 − w2)

]

×
[
λ − s1 + 2f1w − 2

√
R(w)

2(1 − w2)

]
.

Let λ = λi be a zero of the polynomial P (λ) and w be also one
of the zeros of R(w). Then, for a given w, the above identity
yields two equations,

− wλ2
i − f1λi + s1 + s3

2f1
+ w

= ±
√

1 − w2λ′
i

[
λi − s1 + 2f1w

2(1 − w2)

]
,

for the four roots λi . We assume that λ1 and λ2 correspond to
the upper sign and that λ3 and λ4 correspond to the lower sign.
We temporarily introduce the notation

Ni = 2f1wλ′
i + (

s1 + s3 − 2f 2
1 λi

)
/λ′

i = 2f1λ
′
iw + s̃i ,

(53)
where s̃i is a notation for (s1 + s3 − 2f 2

1 λi)/λ′
i . The use of

formulas (32) for f1 yields

s̃i = (s1 − λi)λ
′
i + s4

λ′
i

λi

∓ s ′
4
λi

λ′
i

, (54)

where the upper sign corresponds to Eq. (32a), and the lower
one to Eq. (32b). It is then possible to rewrite Eq. (53) under
the form

Ni = ± f1√
1 − w2

[2λi(1 − w2) − s1 − 2f1w]. (55)

Dividing expressions (55) for the Ni’s one by the other for
various pairs of i and j ( �= i), we get

Ni

Nj

= ± 2λi(1 − w2) − s1 − 2f1w

2λj (1 − w2) − s1 − 2f1w
,
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where the plus signs applies for N1/N2 and N3/N4 and the
minus one for the other choices of these pairs. Consequently
we have

1 − w2 = s1 + 2f1w

2

Ni ± Nj

λjNi ± λiNj

(56)

with the same sign convention. Equating these expressions for
1 − w2 to each other, we obtain a number of equations—linear
and quadratic in the Ni’s. For example, from the equality

N1 + N2

λ2N1 + λ1N2
= N2 − N3

λ3N2 − λ2N3
(57)

we get the first relationship of the system,

(λ3 − λ2)N1 + (λ3 − λ1)N2 − (λ2 − λ1)N3 = 0,

(λ3 − λ2)N1 + (λ3 − λ1)N2 + (λ2 − λ1)N3 = 0,

(λ3 − λ2)N1 − (λ3 − λ1)N2 + (λ2 − λ1)N3 = 0,

(λ3 − λ2)N1 − (λ3 − λ1)N2 − (λ2 − λ1)N3 = 0, (58)

and the three others can be obtained by considering equalities
of the type (57) for other choices of pairs of indices. Although
these equations are not linearly independent (one can check
that one of them is a linear combination of the other three), we
prefer to deal with all of them to get symmetrical expressions
for all four roots of the resolvent. Indeed, using the expression
(53) for Ni , each of the relationships (58) becomes a linear
equation for w and yields one of the zeros of the polynomial
R(w). As a result we obtain the formulas

w1 = − 1

2f1

(λ3 − λ2)s̃1 + (λ3 − λ1)s̃2 − (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 + (λ3 − λ1)λ′

2 − (λ2 − λ1)λ′
3

,

w2 = − 1

2f1

(λ3 − λ2)s̃1 + (λ3 − λ1)s̃2 + (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 + (λ3 − λ1)λ′

2 + (λ2 + λ1)λ′
3

,

w3 = − 1

2f1

(λ3 − λ2)s̃1 − (λ3 − λ1)s̃2 − (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 − (λ3 − λ1)λ′

2 − (λ2 − λ1)λ′
3

,

w4 = − 1

2f1

(λ3 − λ2)s̃1 − (λ3 − λ1)s̃2 + (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 − (λ3 − λ1)λ′

2 + (λ2 − λ1)λ′
3

,

(59)

where the wi’s are ordered according to w1 � w2 � w3 � w4

under the suppositions that λ1 � λ2 � λ3 � λ4 and f1 > 0.
A change of sign of f1 leads to a simple reordering of the
expressions for the wi’s. We see that the zeros λi of the
polynomial P (λ) and the zeros wi of the polynomial R(w)
are related by the symmetrical formulas (59), therefore we
shall call R(w) the resolvent of the polynomial P (λ) (for
example, in the case of NLS equation an analogous method
yields the well-known Ferrari cubic resolvent used for solving
in radicals fourth degree algebraic equations). Formulas (59)
are equivalent to those obtained in Ref. [44], however they are
more convenient for the study of degenerate cases presented
below. It is important to note that we have four values of
f1 for each set of the λi’s [and corresponding values (54)
for s̃i], which are thus mapped by the formulas (59) to four
sets of wi’s. This multiplicity of mappings will prove of
tremendous importance when applying the Whitham theory of
modulations to the representations (39) and (48) of the periodic
solutions. Before addressing this crucial question we first need
to demonstrate that the parameters λi (i = 1,2,3,4) are the

Riemann invariants of the Whitham system for the averaged
conservation laws. This is achieved in the next section.

B. Whitham equations

In modulated waves the λi’s become slowly varying
functions of the space and time variables and their evolution
is governed by the Whitham modulation equations. Whitham
showed in Refs. [19,20] that these equations can be obtained
by averaging the conservation laws of the full nonlinear
system over fast oscillations (whose wavelength L changes
slowly along the total wave pattern). Generally speaking, in
cases where the periodic solution is characterized by four
parameters, this averaging procedure leads to a system of four
equations of the type wi,t + ∑

j vij (w1,w2,w3,w4)wj,x = 0
with 16 entries of the “velocity matrix” vij . However, the
Landau-Lifshitz equation being completely integrable, this
system of four equations reduces to a diagonal “Riemann
form” for the λi’s, similarly to what occurs for the usual Rie-
mann invariants of nondispersive waves (see, e.g., Ref. [17]).
As a result, the λi’s are called the Riemann invariants of the
dispersive nonlinear wave. We shall study their properties by
using the method devised in Refs. [50,51].

First of all, we notice that Eq. (35) implies that, during
the oscillations of w, the variable μ describes a cycle in the
complex plane which encloses either points λ1 and λ2 or points
λ3 and λ4 [according to Eq. (30) the variable μ runs along
one of the two loops of an hyperelliptic curve while the w

variable oscillates within the corresponding interval]. Hence,
from Eq. (31) one can derive the following expression for the
wavelength:

L =
∮

dμ√−P (μ)
= 4K(m)√

(λ3 − λ1)(λ4 − λ2)
. (60)

Comparison of this expression with Eq. (42) leads to the
identities

m = (w4 − w3)(w2 − w1)

(w4 − w2)(w3 − w1)
= (λ4 − λ3)(λ2 − λ1)

(λ4 − λ2)(λ3 − λ1)
, (61)

and

(w4 − w2)(w3 − w1) = (λ4 − λ2)(λ3 − λ1). (62)

From (20b) and (21b) and owing to the normaliza-
tion condition (26) one gets Bgx − Ggt = 2(BF − AG)g =
1
2

√
1 − λ2[i M3M− + λ(M−)x]g. Using the equations of mo-

tion (7) this last term can be rewritten as gGt − gBx . Dividing
by g2, one can cast the resulting identity under the form

∂

∂t

(√
P (λ)

G(λ)

g(λ)

)
− ∂

∂x

(√
P (λ)

B(λ)

g(λ)

)
= 0. (63)

We shall use this equation as the generating function of the
conservation laws of the Landau-Lifshitz equation: a series
expansion in inverse powers of λ gives an infinite number of
conservation laws of this completely integrable system. The
factor

√
P (λ) has been introduced to transform the identity

(22) to the form
(

f√
P (λ)

)2

− g√
P (λ)

h√
P (λ)

= 1,
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so that the right-hand side is independent of the variations
of λi in a modulated wave, hence the densities and fluxes in
the conservation laws can change due to modulations only,
as it should be, and any changes caused by λ-dependent
normalization of the f,g,h functions are excluded.

Substitution of Eqs. (18) and (24) into (63) and its simple
transformation with the use of Eqs. (25) and (28) gives

∂

∂t

(√
P (λ)

λ − μ

)
+ ∂

∂x

[√
P (λ)

(
1 + s1/2

λ − μ

)]
= 0.

Averaging of the density and of the flux in this expression over
one wavelength L (60) yields the generating function of the
averaged conservation laws:

∂

∂t

[√
P (λ)

L

∮
dμ

(λ − μ)
√−P (μ)

]

+ ∂

∂x

[√
P (λ)

L

∮ (
1 + s1/2

λ − μ

)
dμ√−P (μ)

]
= 0. (64)

The condition that in the limit λ → λi the singular terms cancel
yields ∮

dμ

(λi − μ)
√−P (μ)

∂λi

∂t

+
(

L + s1

2

∮
dμ

(λi − μ)
√−P (μ)

)
∂λi

∂x
= 0. (65)

From the definition (60) of L one obtains∮
dμ

(λi − μ)
√−P (μ)

= −2
∂L

∂λi

,

which makes it possible to cast Eq. (65) under the form of a
Whitham equation for the variables λi :

∂λi

∂t
+ vi

∂λi

∂x
= 0, (66)

where the Whitham velocity vi is given by

vi = s1

2
− L

2∂L/∂λi

, for i ∈ {1,2,3,4}. (67)

By means of Eq. (60) one obtains the following explicit
expressions:

v1 = 1

2

4∑
i=1

λi − (λ4 − λ1)(λ2 − λ1)K(m)

(λ4 − λ1)K(m) − (λ4 − λ2)E(m)
,

v2 = 1

2

4∑
i=1

λi + (λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m) − (λ3 − λ1)E(m)
,

v3 = 1

2

4∑
i=1

λi − (λ4 − λ3)(λ3 − λ2)K(m)

(λ3 − λ2)K(m) − (λ4 − λ2)E(m)
,

v4 = 1

2

4∑
i=1

λi + (λ4 − λ2)(λ4 − λ1)K(m)

(λ4 − λ1)K(m) − (λ3 − λ1)E(m)
,

(68)

where K(m) and E(m) are complete elliptic integrals of the
first and second kind, respectively.

In a modulated wave representing a DSW, the Riemann
invariants change with x and t . The DSW occupies a region in

x

λ1

λ2

λ3

λ4

m = 1 m = 0

(a)

x

λ1

λ2

λ3

λ4

m = 1 m = 0

(b)

FIG. 1. Sketches of the space dependence of the Riemann
invariants along a DSW. In both cases the limit λ2 = λ3 corresponds
to the soliton edge. The polarity of the solitons depends on the choice
of solution of formulas (59) by which the solution of the Whitham
equations are mapped onto the parameters wi . The small amplitude
edge corresponds to λ3 = λ4 in case (a) and to λ1 = λ2 in case (b).

space at the edges of which two Riemann invariants coincide.
There are two possible situations represented schematically
in Fig. 1. In both cases the soliton edge corresponds to λ3 =
λ2 (m = 1) and at this edge the Whitham velocities are given
by

v1 = 1
2 (3λ1 + λ4), v2 = v3 = 1

2 (λ1 + 2λ2 + λ4),

v4 = 1
2 (λ1 + 3λ4), for λ3 = λ2. (69)

The small amplitude limit m = 0 can be obtained in two ways.
If λ3 = λ4 [Fig. 1(a)], then we get

v1 = 1

2
(3λ1 + λ2), v2 = 1

2
(λ1 + 3λ2),

v3 = v4 = 2λ4 + (λ2 − λ1)2

2(λ1 + λ2 − 2λ4)
, (70)

and if λ2 = λ1 [Fig. 1(b)], then

v1 = v2 = 2λ1 + (λ4 − λ3)2

2(λ3 + λ4 − 2λ1)
,

v3 = 1

2
(3λ3 + λ4), v4 = 1

2
(λ3 + 3λ4). (71)

As one can see from Eqs. (59), for λ2 = λ1 we have w2 =
w1 and for λ3 = λ4 we have w3 = w4. Consequently, Eqs. (70)
and (71) represent also the Whitham velocities for evolution
of shocks approximated by the trigonometric solutions (51)
and (45), respectively. We shall call them “trigonometric
shocks.” As we shall see, they play an important role in the
classification of the possible wave structures evolving from
initial discontinuities.

We can now proceed to the description of key elements
(“building blocks”) from which the wave patterns are con-
structed.

IV. KEY ELEMENTS

The Riemann problem we consider in the present work
consists in the study of the time evolution of an initial steplike
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structure of the form

w(x,t = 0) =
{
wL if x < 0,

wR if x > 0,

v(x,t = 0) =
{
vL if x < 0,

vR if x > 0.
(72)

We consider the hyperbolic case where the four boundary
values wL, wR , vL, and vR are contained in the interval [−1,1].
The initial distribution involves no characteristic constants
having the dimension of a length or a time, however the system
(8) has soliton solutions and the width of these solitons can
be considered as a characteristic length, of order unity (in
dimensioned units, it is of order of the polarization healing
length ξp). Nevertheless, if we consider nonlinear structures
at a much larger scale, as is the case for modulated waves
whose envelopes change little over a wavelength, then we
can neglect such a “microscopic” length scale and look for
smooth solutions of the Whitham equations. In short: at
the “macroscopic” scale there is no characteristic length in
the initial conditions (72) and the solutions of the Whitham
equations can be sought as functions of the self-similar variable
z = x/t only.

There exist also smooth solutions of the original system
(8) in which not the envelopes, but the functions w(x,t) and
v(x,t) themselves depend slowly on the space coordinate.
This corresponds to a hydrodynamic regime in which one
can neglect the higher derivatives in the second equation
of the system (8). Again, such hydrodynamic approximate
solutions can only depend on the self-similar variable z = x/t .
These smooth nondispersive waves can contribute—as DSWs
do—to the whole wave structures arising from the space-time
evolution of the initial profiles (72).

It is convenient, in a first stage, to select particular initial
conditions for which the time evolved wave structure reduces
to a single type of wave (hydrodynamic, modulated cnoidal,
modulated trigonometric, etc.). In a second step (Sec. V) we
will proceed to the full classification of the structures evolving
from arbitrary initial conditions, but in the present section
we shall first identify what we denote as “key elements,”
solutions of the Riemann problem for specific values of the
boundary value constants. These are the building blocks of
which are composed the general self-similar solution of the
Riemann problem. We shall start with the hydrodynamic key
elements which are solutions for which dispersive effects can
be neglected.

A. Plateau and rarefaction waves

As stated above, nonlinear polarization waves with typical
length scale much larger than unity can be described in
the framework of a dispersionless treatment in which the
dispersive term in (8) is omitted:

wt − [(1 − w2)v]x = 0, vt − [(1 − v2)w]x = 0. (73)

We shall denote these equations as Bellevaux-Ovsyannikov
equations since they were first obtained independently by these
authors in the theory of two-layer shallow water dynamics
[33,34] (see also [35–37]).

First of all, we note that these equations have a simple
solution

w(x,t) = w = const, v(x,t) = v = const. (74)

In spite of its “triviality,” such a solution can play an important
role as an element of a complex self-similar structure. In this
context, this flow is limited to a finite region of space, whose
edge points (say x+ and x−) move with constant velocities
s± = x±/t (see below). We shall call such an expanding region
of constant flow a “plateau region.”

Now, since both variables w and v depend on the single
variable z, they can be considered as functions of each other
and, hence, such self-similar solutions are denoted as “simple
wave” solutions of the hydrodynamic equations (73); see, e.g.,
Ref. [52]. For their study it is convenient to transform the
Bellevaux-Ovsyannikov system to a diagonal Riemann form
by defining the Riemann invariants [35],

r± = vw ±
√

(1 − v2)(1 − w2). (75)

As a result we obtain the system

∂t r± + v±(r−,r+) ∂xr± = 0, (76)

where v± are the “Riemann velocities,”

v− = 3
2 r− + 1

2 r+ = 2vw −
√

(1 − v2)(1 − w2),

v+ = 1
2 r− + 3

2 r+ = 2vw +
√

(1 − v2)(1 − w2).
(77)

Equations (76) are reminiscent of the equations of com-
pressible gas dynamics; see, e.g., Refs. [17,51]. We note
here that, although the relative density w(x,t) = cos θ (x,t)
is constrained to vary between −1 and 1, the relative velocity
v(x,t) can assume, generally speaking, any values (as will be
exemplified in Secs. V A and V B). However, in the regime we
consider here, because of the assumption of slow variation of
the field v(x,t), a value larger than 1 (or lower than −1) suffers
from a dynamical instability because it induces perturbations
which grow exponentially (as in the uniform case discussed in
Sec. II), resulting in oscillations which cannot be treated within
the dispersionless approximation. The Riemann variables (75)
are thus always properly defined only in the “hyperbolicity
region”

−1 � v,w � 1, (78)

where the velocities (77) are real.
One can also remark that the Riemann velocities (77)

expressed in terms of v and w correspond to the sound velocity
(10) for a uniform background characterized by w and v, in
agreement with the long wavelength approximation which is
at the heart of the dispersionless approximation.

For a simple wave solution, one of the Riemann invariants
is constant, and this condition [namely, either r−(v,w) = const
or r+(v,w) = const] gives, when applied to Eq. (75), the
above mentioned relationship between the variables v and
w. Consequently, on the (v,w) plane these simple wave
solutions are depicted as arcs of the ellipse (r± − vw)2 =
(1 − v2)(1 − w2) or

(v + w)2

2(1 + r)
+ (v − w)2

2(1 − r)
= 1, (79)
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v
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r

−r

−r

(a)

v
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r

r

−r

−r

(b)

FIG. 2. Simple-wave solutions in the (v,w) plane. Along these
branches of ellipse only one Riemann invariant varies; the value of
the constant other one is denoted by r . In (a) we have r > 0 and
in (b) r < 0. Red arcs correspond to r+ = const and blue ones to
r− = const.

where r denotes the constant value of r+ or r−. This
ellipse is inscribed into a square −1 � w,v � 1 [domain of
hyperbolicity; cf. (78)] and touches its sides at four points with
coordinates

(1,r), (−1, − r), (−r, − 1), and (r,1). (80)

If r− + r+ � 0 (i.e., when w and v have the same sign),
the physical variables are expressed in terms of the Riemann
invariants by the formulas

w = ±
√

1
2

[
1 + r−r+ ±

√
(1 − r2−)(1 − r2+)

]
,

v = ±
√

1
2

[
1 + r−r+ ∓

√
(1 − r2−)(1 − r2+)

]
. (81)

Otherwise, for r− + r+ � 0 (i.e., when w and v have opposite
signs),

w = ±
√

1
2

[
1 + r−r+ ±

√
(1 − r2−)(1 − r2+)

]
,

v = ∓
√

1
2

[
1 + r−r+ ∓

√
(1 − r2−)(1 − r2+)

]
. (82)

It is clear that in the expressions (81) and (82) one should have
|r±| � 1.

On the ellipses (79) we can express w as a function of v in
an explicit form. To do so, it is convenient to distinguish four
arcs and to write

w(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r+v +
√

(1 − r2+)(1 − v2), −1 � v � r+ = Cst,

r+v −
√

(1 − r2+)(1 − v2), −r+ = Cst � v � 1,

r−v −
√

(1 − r2−)(1 − v2), −1 � v � −r− = Cst,

r−v +
√

(1 − r2−)(1 − v2), r− = Cst � v � 1.

(83)

In Fig. 2 the arcs for constant r− are shown in blue and those
for constant r+ in red. The value of the constant is denoted as r .
On these arcs, the Riemann invariant which varies reaches its
maximal value (equal to 1) on the diagonal w = v (for r+) or
on the antidiagonal w = −v (for r−); at the end points—whose
coordinates are listed in (80)—it is equal to r .

The dependence of w and v on the self-similar variable
z = x/t is found at once by noticing that in this case the
system (76) reduces to

(v− − z)
dr−
dz

= 0, (v+ − z)
dr+
dz

= 0. (84)

Hence, if one of the Riemann invariants is constant, the
Riemann velocity of the other must be equal to z. Thus we
arrive at two possible solutions r− = const, v+ = x/t ≡ z and
r+ = const, v− = x/t ≡ z. Let us consider the first one in
some detail. It is characterized by the relations

v+ = 1

2
r− + 3

2
r+ = z = x

t
, r− = const. (85)

More explicitly, we have two equations,

v+ = 2vw +
√

(1 − v2)(1 − w2) = z,

r− = vw −
√

(1 − v2)(1 − w2) = const,

which yield

w(z) = ±{
1
6

[
3 + 2r−z − r2

−

± 2
√

(1 − r2−)(z − 1
2 r− + 3

2

)(
1
2 r− + 3

2 − z
)]}1/2

, (86)

and

v(z) = r− + z

3 w(z)
. (87)

The solution has thus four branches—corresponding to four
possible choices of signs in (86)—that are located within the
interval

1
2 r− − 3

2 � z � 1
2 r− + 3

2 . (88)

Comparing (88) and (85) one sees that at the end points we have
r+ = ±1. The four branches of the solutions are represented
in Fig. 3. It is important to stress that the solution expressed
in terms of the Riemann invariants by Eq. (85) is mapped into
four arcs in the (v,w) plane and four functions w = w(z) given
by Eq. (86).

Similar formulas and plots can be obtained for the solution
r+ = const,v(r−,r+) = x/t ≡ z.

The simplest concrete situation of physical interest is
represented in Fig. 4(a). It consists in the path in the (v,w) plane
formed by a single arc AB which corresponds to a rarefaction
wave shown in Fig. 4(b). This arc is described by the last
of formulas (83). Here the initial jump (72) in the relative
density evolves into a smooth rarefaction wave, similarly to
what occurs in the “dam break problem” in compressible
fluid dynamics when a gas expands into vacuum flowing
along a tube after removal of a wall. At the initial state both
components are at rest, vL = vR = 0, the total density is fixed,
i.e., ρ↑ + ρ↓ = 1 everywhere and does not change with time,
and initially we have ρ = ρL

↑ = 1 for x < 0, ρ = ρR
↑ < 1 for

x > 0. This means that we have a “vacuum” of the component
ρ↓ for x < 0 at the initial time. The value of the constant
Riemann invariant is fixed by the parameters of the flow at point

A: r− = −
√

1 − w2
R = −2

√
ρR

↑ (1 − ρR
↑ ). The parameters of

the flow at the matching point A preserve their values during

the time evolution and therefore r+(A) =
√

1 − w2
R = −r−.
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z

w

zmaxzmin zm −r−

w0

1

w(zmax)

A

B

FIG. 3. Dispersionless simple-wave solutions w(z) plotted as
functions of z = x/t . The figure is drawn for r− = const. This
constant value is expressed by means of (75) in terms of two constants,
w0 > 0 and v0 = 0, i.e., r− = −

√
1 − w2

0 < 0 and w0 =
√

1 − r2−.
Here zmax = 1

2 r− + 3
2 , w(zmax) = √

(1 + r−)/2, zmin = 1
2 r− − 3

2 , and
w(zmin) = √

(1 − r−)/2. The value w = 1 is reached for z = zm =
2r− = −2

√
1 − w2

0. The arc between points A and B is used below
for constructing an “expansion into vacuum” solution; see Fig. 4.

Consequently, this edge of the rarefaction wave propagates
to the right at a velocity s+ = [r− + 3r+(A)]/2 = −r− =√

1 − w2
R = 2

√
ρR

↑ (1 − ρR
↑ ), which coincides with the po-

larization sound velocity (10) in this case. At point B

we have w(B) = 1, hence r+(B) = v(B) = r− = −
√

1 − w2
R ,

and this edge propagates to the left with velocity s− =
[r− + 3r+(B)]/2 = 2r− =

√
1 − w2

R = −4
√

ρR
↑ (1 − ρR

↑ ). As

we see, this is not the sound velocity of waves in the component
ρ↑, but rather the maximal velocity of expansion of the
component ρ↓ into its vacuum. This quasi-one-dimensional
flow of two-component BEC was studied numerically in
Ref. [15] and analytically in Ref. [13].

In the above solution, the rarefaction wave connects two
plateaus with parameters vL = r−, wL = 1 and vR = 0, wR =√

1 − r2−, in such a way that the Riemann invariant r− is

v

w

wR
A

B (a)

z

ρ↑,↓

−r−2r−

ρR
↑ρL

↑ = 1

ρR
↓ρL

↓ = 0

A
B (b)

FIG. 4. (a) The solid blue arc represents a simple-wave solution
with wL = 1, wR > 0, and vR = vL = 0 in the (v,w) plane. (b)
Corresponding density profiles ρ↑,↓ plotted as functions of z = x/t .

z

rL
−

rL
+

r−

r+

rR
−

rR
+

s− s+

(a)

z

rL
−

rL
+

r−

r+

rR
−

rR
+

s− s+

(b)

FIG. 5. Sketches of the behavior of the Riemann invariants in
rarefaction wave solutions of the hydrodynamic equations with
boundary conditions (89): (a) r− = const, rL

+ < rR
+ ; (b) r+ = const,

rL
− < rR

− .

constant along the wave and the plateaus. It is clear that
this solution can be generalized to any rarefaction waves
connecting two plateaus provided the following two conditions
are fulfilled. First, one of the Riemann invariants must have
the same value on both plateaus,

(a) rL
− = rR

− or (b) rL
+ = rR

+ . (89)

Second, since the one of the Riemann invariants which varies
is a solution of type (85) which depends monotonously on
z, the dependence of the Riemann invariants in terms of
the physical parameters must also be monotonous in order
to keep the solution single valued. This means that the two
edge points of the rarefaction wave must lie within one of the
four triangles which are obtained by cutting the hyperbolicity
square by its diagonals along which the Riemann invariants
reach their extremal values. We shall denote these triangles
as monotonicity triangles. They play an important role
in the classification of the wave patterns because they define
the domains where the characteristic velocities (77) satisfy
the conditions of genuine nonlinearity (see, e.g., Ref. [30]).
Besides that, both edge points must lie on the same branch
of the ellipse and should not be separated by a point where
the ellipse touches a side of the hyperbolicity square (the four
sides of this square correspond to v = ±1 and w ∈ [−1,1]
or w = ±1 and v ∈ [−1,1]). For these rarefaction wave
solutions, the behavior of the Riemann invariants considered
as functions of z is displayed in Fig. 5. The edge velocities of
the rarefaction waves are equal to

(a) s− = 1
2 rL

− + 3
2 rL

+, s+ = 1
2 rR

− + 3
2 rR

+ ;
(90)

(b) s− = 3
2 rL

− + 1
2 rL

+, s+ = 3
2 rR

− + 1
2 rR

+ .

As we shall see in the next sections, such rarefaction waves are
among the key elements from which a generic wave pattern
may be composed. Obviously, their observation implies that
rL
+ < rR

+ in case (a) or rL
− < rR

− in case (b), which imposes
conditions on the parameters of the initial discontinuity. It
is natural to ask what happens if the boundary conditions
correspond to opposite inequalities (namely rL

+ > rR
+ or rL

− >

rR
− ); this question leads us to the study of another type of key

element—dispersive shock waves.
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z

rL
−

rL
+
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λ2

λ3

λ4

rR
−

rR
+

s− s+

(a)

z

rL
−

rL
+

λ1

λ2

λ3

λ4

rR
−

rR
+

s− s+

(b)

FIG. 6. Sketches of the behavior of the Riemann invariants
in DSW solutions of the Whitham equations with the boundary
conditions (a) rL

− = rR
− , rL

+ > rR
+ or (b) rL

+ = rR
+ , rL

− > rR
− .

B. Cnoidal dispersive shock waves

If we try naively to use a formal self-similar solution of the
type (85) for describing a wave satisfying boundary conditions
such that rL

+ > rR
+ or rL

− > rR
− , then we arrive at once to

physically meaningless multivalued solutions (see, e.g., [51])
which represent the simplest wave breaking situation. In this
case, the major insight of Gurevich and Pitaevskii [18] has been
to take into account the dispersive effects which lead to the gen-
eration of oscillations in regions where the physical variables
have large spatial derivatives: the multivalued solution must
be replaced by a modulated nonlinear periodic solution whose
parameters satisfy the Whitham equations (at least for large
enough evolution time). As a matter of fact, this oscillating
wave structure replaces the well-known shock waves occurring
in viscous compressible fluid dynamics and hence it is called
a dispersive shock wave (DSW).

From a formal point of view, we look again for self-similar
solutions, here not for the equations (76), but instead for
the Whitham equations (66). Assuming in these equations
that the λ’s depend only on the variable z = x/t we obtain
at once

{vi(λ) − z}dλi

dz
= 0, i = 1,2,3,4. (91)

In the case where the Whitham velocities are given by Eq. (68),
one can satisfy this system if three Riemann invariants remain
constant while the fourth one varies in such a way that the
expression in the curly brackets vanishes. We assume that at
both its edges the DSW matches with a smooth solution of
the hydrodynamic equations and therefore at these edges the
averaged equations should reproduce the same dynamics as the
dispersionless hydrodynamic equations do. The comparison
of the limiting expressions (69)–(71) with the diagonal form
of the hydrodynamic equations (76) and (77) shows that
the matching conditions can be satisfied if the Riemann
invariants behave as represented in Fig. 6. It is clear that
wave structures of this type appear only if the flows at the
edges of the DSW satisfy either the condition (a) rL

− = rR
− or

(b) rL
+ = rR

+ which coincide with (89). According to Fig. 6,
the three constant Riemann invariants in the solutions of the
Whitham equations are determined by the boundary conditions
and the z dependence of the remaining one is determined
by the vanishing of the expression in curly brackets in

Eqs. (91):

(a) λ1 = rL
−, λ2 = rR

+ , λ4 = rL
+,

v3(rL
−,rR

+ ,λ3(z),rL
+) = z;

(92)
(b) λ1 = rR

− , λ3 = rL
−, λ4 = rL

+,

v2(rR
− ,λ2(z),rL

−,rL
+) = z.

These formulas show that the edge velocities of the DSW
are unambiguously determined by the values of the Riemann
invariants at its boundaries. They are equal to

(a) s− = 1

2
(rL

− + 2rR
+ + rL

+),

s+ = 2rL
+ + (rR

+ − rR
− )2

2(rR+ + rR− − 2rL+)
;

(b) s− = 2rR
+ + (rL

+ − rL
−)2

2(rL+ + rL− − 2rR+ )
,

s+ = 1

2
(rR

− + 2rL
+ + rR

+ ).

(93)

However, the situation changes in what concerns the envelopes
of the DSWs, because the mapping (59) of the λ’s to the
physical parameters (v,w) is multivalued. As a result, each
of the λ diagrams in Figs. 6(a) or 6(b) corresponds to four
different DSWs. To clearly see this, let us consider the limiting
expressions of Eqs. (59) at the edges of the DSW.

We first assume that f1 > 0 is given by Eq. (32a). Then,
after some calculations, we obtain for the case of Fig. 6(a), at
the soliton edge with λ3 = λ2, the expressions

w1 = −
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(+)
1,4 − 2λ2λ

′
2E

(−)
1,4

]
, (94a)

w2 = w3 = −
√

1
2 (1 + λ1λ4 − λ1λ

′
4), (94b)

w4 =
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(+)
1,4 + 2λ2λ

′
2E

(−)
1,4

]
, (94c)

where, for shortening the formulas, we have introduced the
notations

S
(±)
i,j = λiλj ± λ′

iλ
′
j , and E

(±)
i,j = λiλ

′
j ± λ′

iλj . (95)

At the small amplitude edge with λ3 = λ4 one obtains

w1 = −
√

1
2

[
1 + (

2λ2
4 − 1

)
S

(+)
1,2 − 2λ4λ

′
4E

(−)
1,2

]
, (96a)

w2 = −
√

1
2

[
1 + (

2λ2
4 − 1

)
S

(+)
1,2 + 2λ4λ

′
4E

(−)
1,2

]
, (96b)

w3 = w4 =
√

1
2 (1 + λ1λ2 − λ1λ

′
2). (96c)

If we change the sign of f1, then, for f1 < 0,
these expressions will also change sign with appropriate
reordering.

In a similar way, for the case of Fig. 6(a) and when f1 > 0 is
given by Eq. (32b), we obtain at the soliton edge with λ3 = λ2
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the expressions

w1 = −
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(−)
1,4 + 2λ2λ

′
2E

(+)
1,4

]
, (97a)

w2 = w3 = −
√

1
2 (1 + λ1λ4 + λ1λ

′
4), (97b)

w4 =
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(−)
1,4 − 2λ2λ

′
2E

(+)
1,4

]
, (97c)

and at the small amplitude edge with λ3 = λ4 the expressions

w1 = w2 = −
√

1
2 (1 + λ1λ2 + λ1λ

′
2). (98a)

w3 = −
√

1
2

[
1 + (

2λ2
4 − 1

)
S

(−)
1,2 + 2λ4λ

′
4E

(+)
1,2

]
, (98b)

w4 =
√

1
2

[
1 + (

2λ2
4 − 1

)
S

(−)
1,2 − 2λ4λ

′
4E

(+)
1,2

]
. (98c)

Again, if we change the sign of f1 then, for f1 < 0, these
expressions also change signs with appropriate reordering.

We now consider the diagram of Fig. 6(b) and assume that
f1 > 0 is given by Eq. (32a). Then we obtain at the soliton
edge with λ3 = λ2 the expressions

w1 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(+)
1,4 − 2λ3λ

′
3E

(−)
1,4

]
, (99a)

w2 = w3 =
√

1
2 (1 + λ1λ4 − λ1λ

′
4), (99b)

w4 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(+)
1,4 + 2λ3λ

′
3E

(−)
1,4

]
, (99c)

and at the small amplitude edge with λ2 = λ1 the expressions

w1 = w2 = −
√

1
2 (1 + λ3λ4 − λ3λ

′
4), (100a)

w3 =
√

1
2

[
1 + (

2λ2
1 − 1

)
S

(+)
3,4 − 2λ1λ

′
1E

(−)
3,4

]
, (100b)

w4 =
√

1
2

[
1 + (

2λ2
1 − 1

)
S

(+)
3,4 + 2λ1λ

′
1E

(−)
3,4

]
. (100c)

If we take f1 < 0 then these expressions will also change their
signs with appropriate reordering.

At last, for the case of Fig. 6(b), when f1 > 0 is given
by Eq. (32b), we obtain at the soliton edge with λ3 = λ2 the
expressions

w1 = −
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(−)
1,4 + 2λ3λ

′
3E

(+)
1,4

]
, (101a)

w2 = w3 = −
√

1
2 (1 + λ1λ4 + λ1λ

′
4), (101b)

w4 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(−)
1,4 − 2λ3λ

′
3E

(+)
1,4

]
, (101c)

and at the small amplitude edge with λ2 = λ1 the expressions

w1 = w2 = −
√

1
2 (1 + λ3λ4 + λ3λ

′
4). (102a)

w3 = −
√

1
2

[
1 + (

2λ2
1 − 1

)
S

(−)
3,4 + 2λ1λ

′
1E

(+)
3,4

]
, (102b)

w4 =
√

1
2

[
1 + (

2λ2
1 − 1

)
S

(−)
3,4 − 2λ1λ

′
1E

(+)
3,4

]
. (102c)

If f1 < 0 then these expressions will also change their signs
with appropriate reordering.

v

w

L1

R1

L2

R2

L3

R3

L4

R4

FIG. 7. Plots of the ellipses of the (v,w) plane along which the
Riemann invariants rL

− = rR
− = −0.7 (blue), rL

+ = 0.8 (red), and rR
+ =

0.1 (green) are constant. Their crossing points define possible values
of (v,w) at the edges of the DSWs.

Thus we see indeed that each diagram in Fig. 6 corresponds
to four different sets of values for the wi’s. It is important to
notice that for each set, the edges of these DSWs match with
plateaus and assume limiting values coinciding with the disper-
sionless expressions (81) or (82). To avoid possible confusion,
it is worth noticing that the above limiting expressions are
correct not only for the self-similar situation but also for the
general case schematically represented in Fig. 1.

It is convenient to symbolize the occurrence of a DSW by
a diagram in the (v,w) plane. Let us consider for instance
a possible DSW corresponding to Fig. 6(a). The equal
Riemann invariants rL

− = rR
− both correspond to the ellipse

(79) represented in Fig. 7 by a blue line. Its intercepts with
the ellipse corresponding to the constant rL

+—shown in red—
represent possible values of vL and wL at the left (soliton) edge;
its intercepts with the ellipse corresponding to the constant
rR
+—shown in green—represent possible values of vR and wR

at the right (small amplitude) edge. As we see in the figure,
we get four possible pairs of boundary conditions leading to
cnoidal dispersive shocks having all the same edge velocities
but describing different physical situations. In particular, wL

in L1 is given by Eq. (94b) with λ1 = rL
− = rR

− , λ4 = rL
+, and

wR in R1 by Eq. (96c) with λ1 = rL
− = rR

− , λ2 = rL
+. It is

important to notice that each pair of boundary points (L3 and
R3, say) is located within a triangle obtained by cutting the
hyperbolicity square by its diagonals. It means that a cnoidal
DSW is possible only if both its edge points belong to the
same monotonicity triangle (region of genuine nonlinearity,
earlier defined in Sec. IV A). Since the edge points of the DSW
belong to an ellipse of constant Riemann invariant, we can
schematically represent each DSW by an arc of this ellipse in
the (v,w) plane. But we should keep in mind that—at variance
with the dispersionless situation—the actual plot representing
how v and w evolve within a DSW displays large oscillations
and noticeably departs from this ellipse, with which it has only
the edge points in common.
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FIG. 8. Plots of the functions wi(z) (red) and of the associated
dispersive shock waves (blue) corresponding to the diagram Fig. 6(a)
and to the four possible choices of f1 in Eqs. (32). In each case, two
of the wi(z)’s are the envelopes of the oscillatory structure, either w1

and w2 or w3 and w4, as is clear from Eqs. (39) and (48).

The substitution of the solutions (92) into (59) gives the
dependence of the wi’s in term of z. Since we have four sets
of formulas corresponding to the four different choices of
f1 [Eqs. (32a) and (32b)], each of the two solutions (a) and
(b) in (92) corresponds to four possible oscillatory behaviors
for the DSW. The plots of the functions wi(z) produced by
the diagram Fig. 6(a) are shown in Fig. 8: cases (a) and (b)
correspond to the positive signs in Eqs. (32) and to arcs
L1R1 and L2R2 in Fig. 7; cases (c) and (d) correspond
to the negative signs in Eqs. (32) and to arcs L3R3 and
L4R4 in Fig. 7. Obviously, the plots 8(c) and 8(d) can be
obtained from the plots 8(a) and 8(b) by the transformation
w → −w. It is worth noticing that if we exchange the left
and right boundary conditions, then the time evolution of
the initial flow yields to the formation, not of a DSW, but
of a rarefaction wave, such as considered in the previous
subsection. In Fig. 9 we compare the analytic solution in the
Whitham approximation with the exact numerical solution of
the Landau-Lifshitz system for the case shown in Fig. 8(a),
with vL = −0.659, wL = −0.076, vR = −0.906, and wR =
0.331, which corresponds to rL

− = rR
− = −0.7, rL

+ = 0.8, and
rR
+ = 0.1. One can see that the envelope functions resulting

from the Whitham approach (dashed lines) agree very well
with the exact numerical solution.

In a similar way, the diagram Fig. 6(b) with rL
+ = rR

+
produces four other wave structures which correspond to four
arcs connecting the crossing points of the red and green ellipses
in Fig. 7. Since this case does not differ essentially from the
above presented one, we shall not discuss it further.

The DSWs studied in the present subsection, as the
rarefaction waves presented in Sec. IV A, can serve as key
elements involved in the description of a general wave structure
evolving from the initial conditions (72). They can be observed

w4

w3

wR

wL

z

w

0.5 1 1.5

0.2

0.4

0.6

FIG. 9. Dispersive shock wave evolving from an initial disconti-
nuity with parameters corresponding to the points L1,R1 in Fig. 7,
with rL

− = rR
− = −0.7, rL

+ = 0.8, rR
+ = 0.1, which corresponds to

vL = −0.659, wL = −0.076, vR = −0.906, and wR = 0.331. The
edge velocities are equal to s− = 0.15 and s+ = 1.45. The analytic
solution determined within the Whitham approximation scheme is
shown by a blue line and the corresponding envelope functions by
dashed black lines. The numerical solution computed for an evolution
time t = 100 is shown by a red line. According to our definition
v = (v↓ − v↑)/(2cp), and the wave structure with these parameters
propagates to the right.

alone, in their genuine form, only if the points corresponding
to the left and right boundaries belong to the same triangle of
monotonicity. The transitions between two triangles imply one
more element, contact dispersive shocks, and related structures
which we consider in the next section.

C. Contact dispersive shock waves

We now turn to the study of the situation where the left
and right boundary points belong to different monotonicity
triangles. In this case the problem is no longer genuinely
nonlinear. We shall start by studying the simplest possible
configuration in which the Riemann invariants have equal
values at both edges of the shock, i.e., when rL

− = rR
− , and rL

+ =
rR
+ . This situation resembles the one of the so called “contact

discontinuities” which play an important role in the theory of
viscous shocks (see, e.g., Ref. [17]); therefore we shall denote
the wave structures arising in this case as contact dispersive
shock waves (CDSWs). (To avoid any confusion, we should
mention that in the dynamics of immiscible condensates,
interfaces between two components may appear which play
the same role as the one played by contact discontinuities in
the theory of viscous shocks; see, e.g., Ref. [53].) In the case of
a CDSW the “left” and “right” ellipses of constant Riemann
invariants in the (v,w) plane coincide with each other; cf.
Fig. 10. The intersections of the ellipses r

(L,R)
− = const and

r
(L,R)
+ = const define four points denoted as A1, A2, B1, and

B2 in Fig. 10. These points can refer to either the left or the
right edge depending on the choice of f1.

First of all, we should determine the generic behavior of
the Riemann invariants in the case of interest here, and draw
diagrams representing the solutions of the Whitham equations
equivalent to the ones displayed in Figs. 5 and 6. To be definite,
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A2

B2

A1

B1

v

w

FIG. 10. Plots of the ellipses of the (v,w) plane along which the
Riemann invariants rL

− = rR
− = −0.7 (red) and rL

+ = rR
+ = 0.1 (blue)

are constant. Their crossing points define possible values of (v,w) at
the edges of the contact dispersive shock.

let us consider the example represented in Fig. 10, with a left
edge corresponding to point A1, and a right one to B1. In this
case, the arc of ellipse connecting the end points crosses the
main diagonal w = v of the hyperbolicity square along which
one of the dispersionless Riemann invariants takes its maximal
value, equal to unity: r+ = 1. This means that in the formal
dispersionless solution, the invariant r+ would first increase
and reach its maximal value r+ = 1, then decrease down to the
initial value rR

+ = rL
+ along the same “path” r+ = 2

3 (z − 2rL
−)

[cf. Eq. (85)]. By analogy with the case of a regular cnoidal
shock considered in the preceding subsection, it is natural
to assume that the actual behavior of the Riemann invariants
λi corresponding to the Whitham equations reproduces here
also the same qualitative structure as the one expected on
the basis of the dispersionless analysis. This leads in the
present case to the situation depicted in Fig. 11(a), where
the invariants λ1 and λ2 remain constant within the shock
region (and match the boundary conditions: λ1 = rL

− = rR
− ,

λ2 = rL
+ = rR

+ ), whereas the two other Riemann invariants

z

rL
−

rL
+

λ1

λ2

λ3 = λ4

rR
−

rR
+

1

s− s+

(a)

z

rL
−

rL
+

λ1 = λ2

λ3

λ4

rR
−

rR
+

−1

s− s+

(b)

FIG. 11. Sketches of the behavior of the Riemann invariants in
contact dispersive shock wave solutions of the Whitham equations
with the boundary conditions (a) rL

− = rR
− or (b) rL

+ = rR
+ .

are equal (λ3 = λ4) and satisfy the same Whitham equation
v3(rL

−,rL
+,λ4,λ4) = v4(rL

−,rL
+,λ4,λ4) = z [with v3 and v4 given

by the appropriate version of Eq. (70)]. We thus get

λ1 = rL
− = rR

− , λ2 = rL
+ = rR

+ ,

v3 = v4 = 2λ4 + (rL
+ − rL

−)2

2(rL+ + rL− − 2λ4)
= z,

(103)

where the last formula determines the dependence of λ4 on z,
which can be presented in an explicit form

λ4(z) = 1
4 [z + rL

+ + rL
− +

√
(z − rL+ − rL−)2 + 2(rL+ − rL−)2].

(104)

Here z varies within the interval s− � z � s+ with

s− = 3rL
+ + rL

−
2

, s+ = 2 + (rL
+ − rL

−)2

2(rL+ + rL− − 2)
. (105)

The wavelength in this case is given by the formula

L = 2π√
[λ4(z) − rL−][λ4(z) − rL+]

. (106)

Substitution of this solution into Eqs. (96) yields the depen-
dence of the parameters wi on z which, in turn, determines—
according to Eq. (51)—the oscillatory structure of w(x,t) in
a different type of shock which we shall call, as mentioned
above, a contact dispersive shock wave.

In a similar way, we may consider the diagram represented
in Fig. 11(b) which corresponds in the (v,w) plane to
paths crossing the antidiagonal w = −v. The solution of the
Whitham equations takes the form [see Eq. (71)]

v1 = v2 = 2λ1 + (rL
+ − rL

−)2

2(rL+ + rL− − 2λ1)
= z,

λ3 = rL
− = rR

− , λ4 = rL
+ = rR

+ , (107)

or

λ1(z) = 1
4 [z + rL

+ + rL
− −

√
(z − rL+ − rL−)2 + 2(rL+ − rL−)2]

(108)

where z belongs to the interval s− � z � s+ with

s− = −2 + (rL
+ − rL

−)2

2(rL+ + rL− + 2)
, s+ = rL

+ + 3rL
−

2
. (109)

The wavelength is here given by the formula

L = 2π√
[λ1(z) − rL−][λ1(z) − rL+]

. (110)

Now, as in the case of cnoidal DSWs, we have to determine
how these solutions of the Whitham equations are mapped onto
the envelop parameters wi . For example, if we take f1 > 0
given by Eq. (32a), then in the limit m → 0 these parameters
are presented by the formulas (96) and w oscillates in the
interval w1 � w � w2 leading to the trigonometric modulated
wave (45). This situation is depicted in Fig. 12(a). Obviously,
it corresponds to the transition A1 → B1 in the (v,w) plane.
At the soliton edge with λ4 = λ2 we obtain for the parameters
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FIG. 12. Contact dispersive shock waves (blue) and associated
envelope functions wi (red) describing the solution of the Whitham
equations which is represented by the diagram shown in Fig. 11(a)
with rL

− = rR
− = −0.7, rL

+ = rR
+ = 0.1. The four shocks correspond

to the four possible choices for the parameter f1 in Eqs. (32).

wi the following expressions:

w1 = −
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(+)
1,2 − 2λ2λ

′
2E

(−)
1,2

]
, (111a)

w2 = −
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(+)
1,2 + 2λ2λ

′
2E

(−)
1,2

]
, (111b)

and at the small amplitude edge (where λ4 = 1) the expression

w1 = w2 = −
√

1
2 (1 + λ1λ2 + λ′

1λ
′
2), (112)

with the same formula (96c) for w3 and w4 at both edges.
If instead we consider the case where f1 > 0 is given

Eq. (32b), we obtain the CDSW shown in Fig. 12(b) which
corresponds to the opposite transition B1 → A1. At the soliton
edge (where λ4 = λ2) we obtain the expressions

w3 = −
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(−)
1,2 + 2λ2λ

′
2E

(+)
1,2

]
, (113a)

w4 =
√

1
2

[
1 + (

2λ2
2 − 1

)
S

(−)
1,2 − 2λ2λ

′
2E

(+)
1,2

]
, (113b)

and at the small amplitude edge (where λ4 = 1)

w3 = −w4 = −
√

1
2 (1 + λ1λ2 − λ′

1λ
′
2), (114)

with the same formula (98a) for w1 and w2 at both edges.
Considering the other cases, with f1 < 0 leads to CDSWs
represented in Figs. 12(c) and 12(d) and corresponding to the
transitions B2 → A2 and A2 → B2 respectively. In Fig. 13 we
compare the analytic solution with the exact numerical solution
of the Landau-Lifshitz equation for the boundary conditions
corresponding to Fig. 12(d). As we see, there is a very good
agreement of the envelope functions with the numerical results

In a similar way one can consider solutions schematically
depicted in Fig. 11(b). They correspond to transitions A1 ↔
A2 or B1 ↔ B2 which cross the antidiagonal w = −v of

w2

w1

wR

wL

0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

z

w

FIG. 13. Comparison of the Whitham analytic solution shown
in Fig. 12(d) with the exact numerical solution (red line) of the
Landau-Lifshitz equations after an evolution time t = 100 with the
same boundary conditions as in Fig. 12(d): (vL,wL) = (−0.33,0.91),
(vR,wR) = (0.91, − 0.33) which corresponds to rL

− = rR
− = −0.7,

rL
+ = rR

+ = 0.1.

Fig. 10. If we take f1 > 0 given by Eq. (32a), at the soliton
edge (λ2 = λ3) we obtain the expressions

w3 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(+)
3,4 − 2λ3λ

′
3E

(−)
3,4

]
, (115a)

w4 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(+)
3,4 − 2λ3λ

′
3E

(−)
3,4

]
, (115b)

and at the small amplitude edge (λ2 = −1)

w3 = w4 =
√

1
2 (1 + λ3λ4 + λ′

3λ
′
4), (116)

with the same formula (100a) for w1 and w2 at both edges.
If we take f1 < 0, then these expressions merely change sign
upon appropriate reordering. At last, for the case f1 > 0 given
by Eq. (32b) we obtain at the soliton edge (λ2 = λ3) the
expressions

w3 = −
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(−)
3,4 − 2λ3λ

′
3E

(+)
3,4

]
, (117a)

w4 =
√

1
2

[
1 + (

2λ2
3 − 1

)
S

(−)
3,4 − 2λ3λ

′
3E

(+)
3,4

]
, (117b)

and at the small amplitude edge (λ2 = −1)

w3 = −w4 = −
√

1
2 (1 + λ3λ4 − λ′

3λ
′
4), (118)

with the same formula (102a) for w1 and w2 at both edges.
Again, if we take f1 < 0, then these expressions will also
change signs upon appropriate reordering.

We now turn to the study of the generalizations of
CDSWs by considering the transitions depicted in Fig. 14:
in these cases the boundary points are also not in the same
monotonicity triangle of the (v,w) plane; still on the same
ellipse because the left and right boundary conditions have
a common value for one of the Riemann invariants (say,
rL
− = rR

− ), however the boundary values of the other Riemann
invariants are different (rL

+ �= rR
+ ). To be definite, we shall
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v
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FIG. 14. Paths in the (v,w) plane associated with two types of
combined shocks. The left and right boundary conditions correspond
to points L and R respectively; they lie on an ellipse along which the
dispersionless Riemann invariant r− (= rL

− = rR
− ) is constant. One

has rL
+ < rR

+ in case (a) and rL
+ > rR

+ in case (b).

consider two generalizations of the situation leading to the
CDSW represented in Figs. 12(d) and 13. The transition of
the type A2 → B2 of Fig. 10 can be generalized in two ways
represented in Fig. 14, where the points L and R symbolize
plateaus at the left and right boundaries, respectively. In this
case rL

− = rR
− because the transition occurs along the ellipse

where this Riemann invariant is constant. As we know, the
dispersionless invariant r+ decreases along such a curve when
going away from the diagonal w = v, hence we have rL

+ < rR
+

and rL
+ > rR

+ in case (a) and (b), respectively. This suggests the
generalizations of the diagram Fig. 11(a) depicted in Fig. 15.

In the case corresponding to Fig. 15(a), the CDSW is
attached at its soliton edge to a rarefaction wave which matches
at its left edge with the left boundary plateau. The velocities of
the characteristic points identified in Fig. 15(a) are expressed
in terms of the boundary Riemann invariants by the formulas

s
(1)
− = 1

2
(rL

− + 3rL
+), s

(2)
− = 1

2
(3rR

+ + rR
− ),

s+ = 2 + (rR
+ − rR

− )2

2(rR+ + rR− − 2)
.

(119)

The resulting composite wave structure is shown in Fig. 16
(blue line) where it is compared with the numerical solution
of the Landau-Lifshitz equation (red line).

In the case corresponding to Fig. 15(b) the trigonometric
CDSW is attached to a cnoidal DSW of the type Fig. 8(a)

z

rL
−

rL
+

r−

r+

λ1

λ2

λ3 = λ4

rR
−

rR
+

1

s
(1)
− s

(2)
−

s+

(a)

z

rL
−

rL
+

λ1

λ2

λ3

λ4

λ1

λ2

λ3 = λ4

rR
−

rR
+

1

s
(1)
− s

(2)
−

s+

(b)

FIG. 15. Sketches of the behavior of the Riemann invariants
corresponding to the transitions in the (v,w) plane shown in Fig. 14.
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FIG. 16. Comparison of the analytic solution corresponding to
the left and right boundary conditions depicted in Fig. 15(a) with the
exact numerical solution of the Landau-Lifshitz equations.

which degenerates at its right edge (at which w2 = w1) into a
trigonometric wave. At the left soliton edge the cnoidal wave
matches with the left boundary plateau. The velocities of the
characteristic points identified in Fig. 15(b) are given by

s
(1)
− = 1

2
(rL

− + 2rR
+ + rL

+),

s
(2)
− = 2rL

+ + (rR
+ − rR

− )2

2(rR+ + rR− − 2rL+)
,

s+ = 2 + (rR
+ − rR

− )2

2(rR+ + rR− − 2)
.

(120)

The resulting composite wave structure is shown in Fig. 17
(blue line) where it is compared with the numerical solution
of the Landau-Lifshitz equation (red line).

It is clear that any transition between points shown in Fig. 10
can be generalized in a similar way leading to composite shock

w2

w1

wR

wL

0 0.5 1 1.5 2

−0.5

0

0.5

z

w

FIG. 17. Comparison of the analytic solution corresponding to
the left and right boundary conditions depicted in Fig. 15(b) with
the exact numerical solution of the Landau-Lifshitz equations. The
(analytically determined) vertical dashed line separates the cnoidal
wave (at the left) from the trigonometric wave (at the right).
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FIG. 18. Plot of the upper monotonicity triangle of NLS type in
the (v,w) plane. The (red and blue) curves of constant dispersionless
Riemann invariants rL

± corresponding to the left boundary point L

divide this triangle into six domains denoted as A, B, . . ., F. The type
of flow depends on the domain in which lies the right boundary point
R of coordinates (vR,wR).

waves consisting of cnoidal, trigonometric, and rarefaction
waves. We shall not list here all these possible wave structures
since the general principles for their construction are simply
deduced from the examples just presented.

This ends the characterization of all the key elements which
may appear in a complex wave structure evolving from an
arbitrary initial discontinuity of type (72). We can now proceed
to the classification of all the possible composite structures.

V. CLASSIFICATION

As clear from the previous section, it is convenient to
distinguish the situations where both points representing the
left and right boundary conditions belong to the same triangle
of monotonicity from those where they belong to different such
triangles. It has been noticed in Sec. II 1 that in these triangles,
for some limiting values of the variables, the Landau-Lifshitz
equation reduces either to the NLS or to KB equation. We shall
thus refer to such triangles as being of “NLS type” or of “KB
type,” and consider them separately.

A. Nonlinear Schrödinger type sector

Since the theory for the upper and lower NLS type triangles
is essentially the same, we shall confine ourselves to the upper
triangle which is shown in Fig. 18.

We thus consider the case where both left and right initial
conditions correspond to points located inside this triangle
of the (v,w) plane. For definiteness, we denote the point of
coordinates (vL,wL) referring to the left boundary by L and
plot the two ellipses of constant Riemann invariants rL

+ and
rL
−. These divide the triangle into six subdomains. It is easy

to see that, when the point R referring to the right boundary
is located in one of these domains (labeled by the symbols A,
B,..., F), one of the following inequalities is fulfilled:

(A) rL
− < rL

+ < rR
− < rR

+ , (B) rL
− < rR

− < rL
+ < rR

+ ,

(C) rR
− < rL

− < rL
+ < rR

+ , (D) rL
− < rR

− < rR
+ < rL

+,

(E) rR
− < rL

− < rR
+ < rL

+, (F) rR
− < rR

+ < rL
− < rL

+.

(121)
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FIG. 19. Sketches of the behavior of the Riemann invariants and
of the corresponding wave structures corresponding to the location of
the point R referring to the right boundary in one of the six domains
shown in Fig. 18.

The corresponding diagrams of the Riemann invariants sym-
bolizing the self-similar solutions of the Whitham equations
and sketches of wave structures are shown in Fig. 19. In case
(A) the structure consists of two rarefaction waves expanding
into “vacuum” and in case (B) these two rarefaction waves
are connected by a plateau whose parameters are determined
by the dispersionless Riemann invariants rP

± equal to rP
− = rR

−
and rP

+ = rL
+. In cases (C) and (D) the structure consists of

one DSW and one rarefaction wave connected by a plateau
characterized by the same parameters. In case (E) there are
two DSWs connected by a plateau and, at last, in case (F) the
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previous plateau is replaced by a nonlinear wave which—with
high enough accuracy—can be presented as a nonmodulated
cnoidal wave. Not surprisingly, this classification coincides
qualitatively with the one obtained in Ref. [23] for the NLS
equation. It is clear that it is determined by the geometry
of the curves of constant Riemann invariants: the arcs of
ellipses shown in Fig. 18 become, in the NLS equation, arcs
of parabolas with the same subdivision of the monotonicity
region which, in the NLS case, extends to the whole half plane
of all possible values of the physical parameters. In the present
Landau-Lifshitz case, a typical example of such a structure has
been studied in some details in Ref. [13].

It is important to notice that the domains A and F cannot be
reached from point L in Fig. 18 via paths consisting of arcs of
constant dispersionless Riemann invariants without bypassing
the points labeled as rL

− and rL
+, at which the meaning of

the Riemann invariants changes (see Fig. 2 and the related
discussion in the text). Therefore, in these two cases, the edge
wave structures are separated either by vacuum (i.e., w = 0) in
case (A), or by a cnoidal wave in case (F). In the other situations
(B, C, D, E) we can draw two arcs of constant invariant ellipses
whose crossing point defines the plateau connecting the edge
wave structures (rarefaction waves or DSWs). It is easy to see
that these two arcs can be drawn in two ways and that the
physically relevant one is distinguished by the condition that
the speeds of the matching points increase from left to right (see
a similar argumentation in the theory of standard viscous shock
waves in Ref. [17]). Consequently, the left edge wave always
corresponds to a diagram of Riemann invariants with rL

+ =
const continued through the whole left wave, whereas in the
right edge wave we have rR

− = const also continued through
the whole right structure. Diagrams (B)–(E) in Fig. 19 illustrate
this simple principle. This remark removes any ambiguity in
the determination of the wave structure arising from initial
conditions referring to the NLS type sectors.

B. Kaup-Boussinesq type sector

We shall now consider initial conditions for which both
left and right boundary points are located in a KB sector
of the (v,w) plane which consists of one of the triangles
delimited by the diagonal, the antidiagonal, and the vertical
curve v = ±1. For definiteness we consider the right KB
triangle. This situation bares many similarities with the
preceding NLS type case. Indeed, from Fig. 20 we see that,
again, the monotonicity triangle is divided into six domains
corresponding to the inequalities listed in Eq. (121)—these
domains are symmetrical with respect to the diagonal w = v

to those shown in Fig. 18. It is clear that the diagrams of
Riemann invariants and the corresponding wave structures
are qualitatively the same as the ones depicted in Fig. 19.
A detailed discussion of the Riemann problem for the KB
equation (15) has been recently given in Ref. [25] and in the
KB sector of Landau-Lifshitz equation theory the resulting
wave patterns are qualitatively the same—they consist of
DSWs and/or rarefaction waves connected with each other
by plateaus.

As in the NLS type sectors, if the point R referring to the
right boundary lies in one of the domains B, C, D, or E, it can
be connected with L by two arcs of constant Riemann invariant

v

w

L

rL
+

rL
−

A

B

C D

E

F

FIG. 20. Plot of the right monotonicity triangle of KB type in
the (v,w) plane. The (red and blue) curves of constant dispersionless
Riemann invariants rL

± corresponding to the left boundary point L

divide this triangle into six domains denoted as A, B, . . ., F. The type
of flow depends on the domain in which lies the right boundary point
R of coordinates (vR,wR).

ellipses in two possible ways; the physically acceptable one
is identified by the condition that the speeds of the matching
points increase from left to right. The crossing point of these
two arcs defines the parameter of the plateau which connects
the two edge wave structures. In cases (A) and (F) the plateau
does not exist and is replaced either by a vacuum region or
by a nonmodulated cnoidal wave. We thus arrive at the same
wave structures that the ones illustrated in Fig. 19.

C. Wave structures with transitions between
monotonicity sectors

The above formulated principles of construction of dia-
grams for the Riemann invariants make it possible to predict
which wave structure will evolve from a given boundary
condition (72), even in cases where the left and right boundary
points belong to different triangles of monotonicity. Since the
total number of possible wave structures is very large, we shall
not list all of them here but rather illustrate the principles of
construction by an application to a typical particular case.

Let us take vL = vR = 0, wL < 0, wR > 0, and |wL| < wR .
We see at once from Fig. 21(a) that the dispersionless ellipses
relating L to R must cross both diagonals of the hyperbolicity
square, hence the wave structure must consist of two contact
and/or combined waves. Substitution of the above parameters
into Eq. (75) yields the values of the dispersionless Riemann
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FIG. 21. (a) Plot in the (v,w) plane of ellipses along which the
dispersionless Riemann invariants are constant. They are represented
by red (blue) dashed lines for the left (right) boundary conditions.
The path connecting the left L and the right R points are shown
by solid lines. They intersect at point P representing the plateau
located between the left and right waves. (b) Sketch of the behavior
of the Riemann invariants corresponding to solutions of the Whitham
equations for the same boundary conditions. The left wave consists
of a trigonometric shock (for sL

1 < z < sL
2 ) attached to a rarefaction

wave (for sL
2 < z < sL

3 ). The right wave is a combined cnoidal (sR
1 <

z < sR
2 ) and trigonometric (sR

2 < z < sR
3 ) shock.

invariants which are ordered according to rL
− < rR

− < rR
+ < rL

+.
Taking into account that the left wave corresponds to the con-
tinuation of rL

+ = const and the right wave to the continuation
of rR

− = const, we arrive at the diagram shown in Fig. 21(b).
At the left edge we have the combination of a trigonometric
shock (sL

1 � z � sL
2 ) with a rarefaction wave (sL

2 � z � sL
3 )

and, at the right edge, one has merged cnoidal (sR
1 � z � sR

2 )
and trigonometric (sR

2 � z � sR
3 ) shocks. These left and right

edge waves are connected one with the other by a plateau
characterized by the Riemann invariants rP

− = rR
− and rP

+ =
rL
+. This plateau is represented by the single point P in

Fig. 21(a).
The formulas connecting the zeros wi of the resolvent

with the Riemann invariants λi (obtained as solutions of the
Whitham equations) are of the type discussed in Sec. IV C.
They make it possible to explicitly construct the Whitham wave
structure (shown in Fig. 22 by a blue line) which compares
very well with the numerical solution of the Landau-Lifshitz
equation (red line). This example clearly illustrates how the
wave structure can be constructed for any choice of parameters
of the initial discontinuous profile (72).

VI. DISCUSSION AND CONCLUSION

In this paper we have solved the Riemann problem and char-
acterized the space-time evolution of an initial discontinuity for
the Landau-Lifshitz equation. This equation describes magne-
tization excitations in a dissipationless easy-plane ferromagnet
and, in the appropriate regime corresponding to the conditions
(2), polarization waves in a two-component BEC. It is natural
to suppose that the method developed in the present work is
general enough and should apply to many other models. We
shall thus formulate the most important points of our approach.

(i) The first obvious feature is the statement that the
method in its present form applies to modulationally stable
situations only, so the region of hyperbolicity of the long wave

w2

w1

w4

w3

wR

wL

−2 −1 0 1 2

−0.5

0

0.5

1

z

w

FIG. 22. Comparison of analytic (blue line) and numerical (red
line) solutions for the initial profile (72) with vL = vR = 0, wL =
−0.5, wR = 0.7. The left and right boundary points are represented
in Fig. 21(a) and the behavior of the Riemann invariants is sketched
in Fig. 21(b).

(dispersionless) approximation should be determined and the
boundary conditions at both sides of the discontinuity must lie
within this region.

(ii) The hyperbolicity region should be subdivided into
domains where the dispersionless approximation is genuinely
nonlinear (see, e.g., Ref. [30]), i.e., where the characteristic
velocities depend on the field variables with nonvanishing
gradients. In our case—with two field variables with known
Riemann invariants—we have denoted such domains as
monotonicity sectors. For systems described by a single field
variable, this condition reduces to imposing a fixed convexity
to the dependence of the dispersionless velocity on the
amplitude of the wave; an example of such a situation was
considered in Ref. [27].

(iii) If both boundary conditions belong to the same mono-
tonicity sector, then the classification of the wave structures
follows closely well-known examples such as KdV (one field
variable [18]) or NLS (two field variables [23]) theories. These
wave structures consist of rarefaction waves and standard
dispersive shock waves of Gurevich-Pitaevskii type connected
with each other by a plateau, a “vacuum” or a two-phase (i.e.,
nonmodulated “cnoidal”) wave region.

(iv) If the boundary conditions belong to different mono-
tonicity sectors, then they are connected by profiles consisting
of new wave structures—contact (trigonometric) dispersive
shocks or kinks. In situations with a single field variables
these were identified, respectively, in Refs. [26] and [29]; both
structures appeared also in the theory of the Gardner equation
[27]. In the case considered here of the Landau-Lifshitz
equation we have dealt with contact dispersive shock waves
and their combinations with other structures.

(v) When the evolution equations are completely integrable,
the Whitham system can be transformed into a diagonal
Riemann form and in this case the mapping of the Riemann
invariants to the physical parameters is not single valued.
Instead, it is realized by sets of relationships between the
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zeros of two polynomials: the polynomial whose roots are
the Riemann invariants (noted P in the main text) and
its algebraic resolvent (R). These relationships appear in a
natural way in the finite-gap integration method (see, e.g.,
Ref. [54]) complemented by resolving the problem of “reality
conditions” [48] (see also Ref. [51]). For the Landau-Lifshitz
equation the corresponding resolvent was found in Ref. [44]
in which, however, the consequences of the multiplicity of
relationships between the Riemann invariants and the zeros
of the resolvent were not completely elucidated. The theory
developed in the present work clarifies this important point.

We thus believe that the solution of the Riemann problem
for the case of nonlinear waves whose evolution is governed
by the Landau-Lifshitz equations provides a general scheme
which applies to other systems which share the similar

characteristic property of not being genuinely nonlinear, cf.
the case of the modified NLS equation considered in Ref. [55].
Besides, the different situations considered in the present
work can find applications for describing nonlinear waves
in concrete physical situations such as ferromagnets and
two-component Bose-Einstein condensates.
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