
Comment on “Linear Wave Dynamics Explains
Observations Attributed to Dark Solitons
in a Polariton Quantum Fluid”

In this Comment we challenge the main conclusions of
Cilibrizzi and co-workers [1] stating that previous exper-
imental reports on dark solitons in a polariton system [2–6]
should be revised as the interpretation in terms of solitons
was not sufficiently supported. We show that their analysis
on those works is incomplete, as they neglect key evidence
of nonlinear behavior. We provide additional analysis of
published data, unambiguously confirming the solitonic
nature of the observations in Refs. [2–6].
The nonlinear Schrödinger equation [or Gross-Pitaevskii

equation, (GPE)] allows for nonlinear localized stable
solutions known as dark solitons with the following
properties: (i) Solitons appear as oblique dark intensity
lines located in the wake of an obstacle. (ii) There is an
abrupt jump in the phase of the field across the soliton line.
(iii) Analytical expressions relating the phase jump, the
width, and depth of the soliton to the fluid velocity and
density can be derived from the GPE. (iv) Stable oblique
solitons can only appear below a velocity-dependent
critical value of the density [7]. (v) Above the critical
density, solitons become unstable and are replaced by other
behaviors, such as a time-dependent emission of vortices
and, at even larger densities, a superfluid behavior.
Even though solitons are intrinsically nonlinear entities,

nothing forbids some of their features to present some
similarities with observations under suitable conditions
in strictly linear systems [8]. An example is reported in
Ref. [1], where experiments and simulations with non-
interacting polaritons show features that resemble oblique
dark solitons, in particular, properties (i) and (ii) listed
above. From this, the authors conclude that “Therefore, the
previous reports of the observation of dark solitons [2–5]
and half-dark solitons [6] which were based on these
features have to be reconsidered.”

To fairly assess this issue, it is however essential to
remind that the claims for the observation of solitons
in Refs. [2–6] are not based on the density and phase
patterns only, but are further supported by a complete
study of the physics as a function of the fluid density [9].
For instance, the observation of a time-dependent regime
with a (almost) periodic nucleation of vortex-antivortex
pairs, reported in Refs. [3,10,11], is peculiar to nonlinear
regimes [12,13].
Furthermore, the solitonic features observed in the

nonlinear regime are qualitatively different from the inter-
ference patterns reported in the linear regime in Ref. [1], as
can be seen in Fig. 1: the interference minima in the linear
regime appear in a fanlike shape, and their width rapidly
grows after the obstacle [Fig. 1(b)]. On the opposite, the
dark solitons in Fig. 1(a) appear as a single pair, they
remain tightly focused and their width is related to the fluid
density by the characteristic solitonic equations. As the
authors of Ref. [1] recognize, this latter criterion is a valid
route to unambiguously identify a dark soliton: Fig. 1(d)
displays a further analysis of the data shown in Fig. 1(a) [2],
clearly confirming that, in contrast to the case of linear
interference patterns [Fig. 1(c)], the width of the observed
dark intensity lines follows the characteristic behavior of
solitons. Equivalent results are obtained when changing the
excitation power.
By showing that the observation of dark traces

accompanied by sudden phase jumps is not an exclu-
sive feature of soliton physics, Cilibrizzi and co-
workers [1] point out the importance of a thorough
comparison of linear and nonlinear regimes when
analyzing soliton experiments. This is the case of the
results published in Refs. [2–6], which indeed satisfy
all the above stated criteria for dark soliton physics. On
the contrary, criteria (iii)–(v) are not satisfied in experi-
ments performed in the absence of nonlinearities such
as the ones of Ref. [1].
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FIG. 1 (color online). (a) Experimentally reported solitons [2] and, (b) interference patterns [1]. (c) Measured full width at half
maximum (FWHM) of the density dips in (b), and expected width w from the soliton equations, obtained from the measured local
density n using the relation w ¼ Cn−1=2 (with C a fitting parameter); data analysis is in Ref. [1]. (d) Same as (c) for the soliton case
reported in (a), following the same criteria to extract the FWHM.
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