### Optical hydrodynamics for nonlinear light propagation

#### Nicolas Pavloff

#### LPTMS, Univ. Paris Sud, Université Paris-Saclay, CNRS

Cargèse mai 2018



### Optical hydrodynamics for nonlinear light propagation

#### Nicolas Pavloff

LPTMS, Univ. Paris Sud, Université Paris-Saclay, CNRS

Cargèse mai 2018



### NLS for paraxial nonlinear optics



• linear, homogeneous system: PW with  $\beta_0 = \frac{\omega_0}{c} (1 + \chi_{\omega_0}^{(1)})^{1/2} = k_0 n(\omega_0)$ 

nonlinear, non homogeneous system. paraxial approximation  $\partial_z A \ll \beta_0 A$ 

$$\chi^{(1)}(\vec{r}) = \chi^{(1)}_{\omega_0} + \Delta \chi^{(1)}(\vec{r}_{\perp}) \qquad \qquad i\partial_z A = -\frac{1}{2\beta_0} \vec{\nabla}_{\perp}^2 A - k_0 \Delta n(\vec{r}) A$$

 $\Delta n(\vec{r}\,) = \Delta n^{(1)}(\vec{r}_{\perp}\,) + \frac{n_2}{|A(\vec{r}_{\perp},z)|^2} \quad \text{with} \begin{cases} \Delta n^{(1)}(\vec{r}_{\perp}\,) = \frac{1}{2}\Delta \chi^{(1)}(\vec{r}_{\perp}\,) / n(\omega_0) \\ n_2 = \frac{3}{8}\chi^{(3)} / n(\omega_0) &< 0 \quad \text{in the following} \end{cases}$ 

$$\vec{r}_{\perp} = \xi_{\perp} \times \vec{r}_{\perp}$$

$$z = Z_{NL} \times z$$

$$A = \sqrt{I_0} \times A(\vec{r}_{\perp}, z)$$

$$i\partial_z A = -\frac{1}{2}\vec{\nabla}_{\perp}^2 A + |A|^2 A$$

dispersionless hydrodynamics  $A(\vec{r}_{\perp}, z) = \sqrt{\rho} \exp\{i S\}$   $\vec{\nabla}_{\perp} S = \vec{u}$   $\begin{cases} \partial_z \rho + \vec{\nabla}_{\perp} \cdot (\rho \vec{u}) = 0\\ \partial_z \vec{u} + (\vec{u} \cdot \vec{\nabla}_{\perp}) \vec{u} + \vec{\nabla}_{\perp} \rho = 0 \end{cases}$ 

for thin NL medium  $(z \ll L_{\perp})$ :  $\rho(\vec{r}_{\perp}, z) \simeq \rho(\vec{r}_{\perp}, 0)$  and if  $\vec{u}$  was initially small, it remains small  $\rightsquigarrow S(\vec{r}_{\perp}, z) = -z \times \rho(\vec{r}_{\perp}, 0)$ 



Durbin, Arakelian, Shen (1981)



$$\vec{r}_{\perp} = \xi_{\perp} \times \vec{r}_{\perp}$$

$$z = Z_{NL} \times z$$

$$A = \sqrt{I_0} \times A(\vec{r}_{\perp}, z)$$

$$i\partial_z A = -\frac{1}{2} \vec{\nabla}_{\perp}^2 A + |A|^2 A$$

dispersionless hydrodynamics  $\begin{aligned} \mathcal{A}(\vec{r}_{\perp}, z) &= \sqrt{\rho} \exp\{i S\} \\ \vec{\nabla}_{\perp} S &= \vec{u} \\ \\ \left\{ \partial_z \rho + \vec{\nabla}_{\perp} \cdot (\rho \vec{u}) = 0 \\ \partial_z \vec{u} + (\vec{u} \cdot \vec{\nabla}_{\perp}) \vec{u} + \vec{\nabla}_{\perp} \rho = 0 \end{aligned} \right.$ 

for thin NL medium  $(z \ll L_{\perp})$ :  $\rho(\vec{r}_{\perp}, z) \simeq \rho(\vec{r}_{\perp}, 0)$  and if  $\vec{u}$  was initially small, it remains small  $\rightsquigarrow S(\vec{r}_{\perp}, z) = -z \times \rho(\vec{r}_{\perp}, 0)$ 







$$A(\vec{R}) = \sum_{\alpha=1,2} \frac{\sqrt{2\pi}A(x_{\alpha},0)}{|\varphi''(x_{\alpha})|^{1/2}} e^{-i(\varphi(x_{\alpha}) + \sigma_{\alpha}\pi/4)}$$

#### very rough estimate

 $A^2(ec{R}) pprox C^{st} \left[1 + \sin(\Delta arphi)
ight]$ 

$$\begin{split} \Delta \varphi &= \varphi(x_1) - \varphi(x_2) \text{ varies from } \ell/Z_{NL} \text{ (for } X &= 0) \text{ to } 0 \text{ (when the stationary points merge, at } k_0 X w/D &= 2e^{-1/2} \ell/Z_{NL} \text{).} \end{split}$$



dimensionless units:

$$ho(ec{r}_{ot}, z = 0) = egin{cases} 
ho_M(1 - rac{x^2}{w^2}) ext{ if } |x| < w \ 0 ext{ otherwise} \end{cases}$$

self-similar profile: Talanov 1965

$$\begin{split} \rho(x,z) &= \frac{\rho_M}{f(z)} \left( 1 - \frac{x^2}{w^2 \cdot f^2(z)} \right) \\ u(x,z) &= x \cdot \phi(z) \end{split}$$

$$\phi = f'/f$$
$$\ln(\sqrt{f} + \sqrt{f-1}) + \sqrt{f(f-1)} = 2z\sqrt{\rho_M}/w$$



dimensionless units:

$$ho(ec{r}_{ot}, z = 0) = egin{cases} 
ho_M(1 - rac{x^2}{w^2}) ext{ if } |x| < w \ 0 ext{ otherwise} \end{cases}$$

self-similar profile: Talanov 1965

$$\begin{split} \rho(x,z) &= \frac{\rho_M}{f(z)} \left( 1 - \frac{x^2}{w^2 \cdot f^2(z)} \right) \\ u(x,z) &= x \cdot \phi(z) \end{split}$$

$$\phi = f'/f \\ \ln(\sqrt{f} + \sqrt{f-1}) + \sqrt{f(f-1)} = 2z\sqrt{\rho_M}/w$$





dispersive regularization of wave breaking



dimensionless units:

$$ho(ec{r}_{ot}, z = 0) = egin{cases} 
ho_M(1 - rac{x^2}{w^2}) ext{ if } |x| < w \ 0 ext{ otherwise} \end{cases}$$

self-similar profile: Talanov 1965

$$\rho(x, z) = \frac{\rho_M}{f(z)} \left( 1 - \frac{x^2}{w^2 \cdot f^2(z)} \right)$$
$$u(x, z) = x \cdot \phi(z)$$

$$\phi = f'/f \\ \ln(\sqrt{f} + \sqrt{f-1}) + \sqrt{f(f-1)} = 2z\sqrt{\rho_M}/w$$





dispersive regularization of wave breaking





 $0 \leq z \leq 60$ 



photo-refractive material: NL induced by a voltage bias across the crystal





 $\overline{L_{\perp} \ll L_{range \, NL}} \ll L_z$ : highly nonlocal paraxial approximation

Snyder & Mitchell 1997, Folli & Conti 2012

$$\begin{split} \Delta_{\textit{NL}} \textit{n}(\vec{r}_{\perp}, \textit{z}) &= \int \mathrm{d}^2 \textit{r}'_{\perp} \chi(\vec{r}'_{\perp}) \textit{A}^2(\vec{r}_{\perp} - \vec{r}'_{\perp}, \textit{z}) \simeq \chi(\vec{r}_{\perp}) \int \mathrm{d}^2 \textit{r}'_{\perp} \textit{A}^2(\vec{r}'_{\perp}, \textit{z}) \\ &= \chi(\vec{r}_{\perp}) \times \textit{C}^{st} \end{split}$$

$$-\mathrm{i}\partial_z \mathbf{A} = -\frac{1}{2}\vec{\nabla}_{\perp}^2 \mathbf{A} + \mathbf{V}(\mathbf{r}_{\perp})\mathbf{A}$$





One evolves a swarm of **test points** (r, p) in phase space with the Hamilton equations

The density conservation eq. gives :

$$|A^{2}[\mathbf{r}(\mathbf{r}_{0},t)]| d\mathbf{r} = |A_{0}^{2}[\mathbf{r}_{0}]| d\mathbf{r}_{0}$$
  

$$\Leftrightarrow |A(\mathbf{r},t)| = \left|\frac{\partial \mathbf{r}_{0}}{\partial \mathbf{r}}\right|_{\mathbf{r}_{0}(\mathbf{r},t)}^{1/2} |A_{0}[\mathbf{r}_{0}(\mathbf{r},t)]|$$











### Self-accelerated Airy beams

$$i\partial_t \Phi = -\frac{1}{2}\partial_x^2 \Phi \quad \rightsquigarrow \quad \Phi(x,t) = Ai\left(x - \frac{t^2}{4}\right)\exp\{i(xt/2 - t^3/6)\}$$



- initial swarm of particles  $x_0 = -p_0^2$
- free propagation

$$\begin{cases} x(t) = x_0 + p_0 t \\ p(t) = p_0 \end{cases}$$

$$x(t)=-\left(p(t)-\frac{t}{2}\right)^2+\frac{t^2}{4}$$

### Self-accelerated Airy beams

simple and cheap alternative to a spatial light modulator

### Self-accelerated Airy beams

$$i\partial_t \Phi = -\frac{1}{2}\partial_x^2 \Phi \quad \rightsquigarrow \quad \Phi(x,t) = Ai\left(x - \frac{t^2}{4}\right) \exp\{i(xt/2 - t^3/6)\}$$
  
5.0
  
(C)
  
(C)
  
(C)
  
(C)
  
(D)
  
(D)
  
(C)
  
(D)
  
(C)
  
(D)
  
(D)
  
(D)
  
(C)
  

simple and cheap alternative to a spatial light modulator



#### NLS in the presence of an obstacle

$$i\partial_z A = -\frac{1}{2}\partial_{xx}A + (U_{ext}(x) + |A|^2)A$$

model potential:  $U_{ext}(x) = \lambda \, \delta(x)$ 

"stationary" solutions  $A(x,z) = e^{i\mu z}a(x)e^{iS(x)}$ 

 $\rho(x) = a^2(x)$  and  $v(x) = \frac{dS}{dx}$  current conservation  $\sim \rho(x)v(x) = C^{st} \equiv J$ 

Stationary solutions of the NLS equation in the absence of U(x)

$$-rac{1}{2}a_{xx}+\left[
ho+rac{J^2}{2
ho}-\mu
ight]a=0\,,$$
 where  $J=
ho(x)v(x)$  and  $a(x)=\sqrt{
ho}$ 

first integral:

$$\frac{1}{2}a_x^2 + W(\rho) = E_{cl}$$
, where  $W(\rho) = -\frac{\rho^2}{2} + \mu\rho + \frac{J^2}{2\rho}$ .



Stationary solutions of the NLS equation in the absence of U(x)

$$-\frac{1}{2}a_{xx} + \left[\rho + \frac{J^2}{2\rho} - \mu\right]a = 0, \quad \text{where} \quad J = \rho(x)v(x) \quad \text{and} \quad a(x) = \sqrt{\rho}$$

first integral:

$$\frac{1}{2}a_x^2 + W(\rho) = E_{cl}$$
, where  $W(\rho) = -\frac{\rho^2}{2} + \mu\rho + \frac{J^2}{2\rho}$ .



### model 1D case : Flow past a point-like impurity

$$-rac{1}{2}\partial_{xx}A+(U_{\mathrm{ext}}(x)+|A|^2)A=\mathrm{i}\,\partial_tA$$
,

 $U_{\rm ext}(x) = \frac{\lambda}{\delta}\delta(x)$ .



$$F = \int_{\mathbb{R}} dx \, \rho(x) \, \frac{dU_{ext}}{dx}$$

# Perturbative treatment $v > c = \sqrt{\rho(-\infty)}$ • in 1D, $F \propto |\langle -\kappa | U_{ext} | \kappa \rangle|^2$ where $\kappa = |v^2 - c^2|^{1/2}$ • For a $\delta$ impurity : $\begin{cases} F \propto C^{st} & 1D \\ F \propto (v^2 - c^2)/v & 2D \\ F \propto v^2 (1 - c^2/v^2)^2 & 3D \end{cases}$

Hakim, PRE (1997)

Lebœuf & Pavloff, PRA (2001)

Pavloff, PRA (2002)

Astrakharchik & Pitaevskii, PRA (2004)

Landau criterion (1941)





• Energy and momentum conservation:  $\frac{M}{2}V^2 = \frac{M}{2}\left(\vec{V} - \frac{\vec{p}}{M}\right)^2 + \varepsilon(p).$ for  $M \gg m$  this reads  $\varepsilon(p) = \vec{V}.\vec{p}$ , hence  $V\cos\theta = \varepsilon(p)/p$ 

emission of excitations possible only if

$$V\cos\theta = \varepsilon(p)/p$$
$$V > v_{\rm L} = \min\left[\frac{\varepsilon(p)}{p}\right]$$



Landau criterion (1941)





• Energy and momentum conservation:  $\frac{M}{2}V^2 = \frac{M}{2}\left(\vec{V} - \frac{\vec{p}}{M}\right)^2 + \varepsilon(p)$ . for  $M \gg m$  this reads  $\varepsilon(p) = \vec{V}.\vec{p}$ , hence  $V\cos\theta = \varepsilon(p)/p$ 

emission of excitations possible only if

$$V \cos \theta = \varepsilon(p)/p$$
$$V > v_{\rm L} = \min \left[ \frac{\varepsilon(p)}{p} \right]$$



### Engels & Atherton, Phys. Rev. Lett. (2007)



#### Repulsive potential

 $U_{\rm max}/\mu \simeq$  0.24, c = 2.1 mm/s v = 0.4 - 0.8, 1, 1.3, 2, 3.3 mm/s





#### Attractive potential

v=1.25 mm/s, c= 2.1 mm/s  $|U_{
m min}|/\mu\sim$  0.17, 0.32



17

### Scenario in two dimensions



#### supersonic flow



convective instability of oblique dark solitons

El,Gammal,Kamchatnov PRL (2006)



LKB group, Science (2011)

### convectively stable 2D dark solitons





#### in 2D, snake instability:



V





Δ

 $-X_+(t)$ 

**U(x)** 

x

0

**DSW** 

 $-X_(t)$ 



### BEC analogue of a Laval nozzle



Nozzle of a V2 rocket

$$F = \dot{m} (v_{\rm out} - v_{\rm in})$$

### For a thick barrier

L

$$\sim \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}x} \left[ v^2 - c^2 \right] = \frac{\mathrm{d}U}{\mathrm{d}x} \quad \text{where } c^2(x) = \rho(x)$$
$$v(x) \leq c(x) \; \leftrightarrow \; \operatorname{sign}\left(\frac{\mathrm{d}\rho}{\mathrm{d}x}\right) = \mp \operatorname{sign}\left(\frac{\mathrm{d}U}{\mathrm{d}x}\right)$$







Nozzle of a V2 rocket

$$F=\dot{m}\left(v_{\rm out}-v_{\rm in}\right)$$

### For a **thick** barrier

U

(x) of width 
$$\gg \xi \sim \rho^{-1/2}$$
 :  

$$\begin{cases}
-\frac{(\rho^{1/2})_{xx}}{2\rho^{1/2}} + \frac{1}{2}v^2(x) + \rho(x) + U(x) = C^{st}, \\
\rho(x)v(x) = C^{st}.
\end{cases}$$

$$\rightsquigarrow \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}x} \left[ \mathbf{v}^2 - \mathbf{c}^2 \right] = \frac{\mathrm{d}U}{\mathrm{d}x} \quad \text{where } \mathbf{c}^2(\mathbf{x}) = \rho(\mathbf{x})$$

$$v(x) \leq c(x) \leftrightarrow \operatorname{sign}\left(\frac{\mathrm{d}\rho}{\mathrm{d}x}\right) = \mp \operatorname{sign}\left(\frac{\mathrm{d}U}{\mathrm{d}x}\right)$$





### Analogous Hawking radiation

### Unruh, Phys. Rev. Lett. (1981)





gravitational black hole



Hawking radiation 74'











subsonic region



supersonic region

### the position of the horizon is energy-dependent



### the position of the horizon is energy-dependent



### Numerical test, model configuration:

U(x) and g(x) step like with  $U(x) + g(x)n_0 = C^{\text{st}}$  such that  $\psi_0(x) = \sqrt{n_0} \exp\{ik_0 x\}$ , verifies  $\forall x$ 

$$-\frac{1}{2}\psi_0'' + \left[ U(x) + g(x)|\psi_0|^2 \right] \psi_0 = \mu \, \psi_0 \; ,$$

$$C^{\mathrm{st}} = \mu - rac{k_0^2}{2}$$







$$\omega = vk \pm \omega_B(k)$$

$$v_u < c_u \qquad v_d > c_d$$
upstream region
$$upstream region$$

$$dulout \qquad 0 downstream region$$

$$\omega = vk \pm \omega_B(k)$$

$$v_u < c_u \qquad v_d > c_d$$
upstream region
$$\int_{\Omega} \int_{\Omega} \int_{\Omega}$$

#### New theoretical and experimental interest:

study of density correlation on each side of the horizon

$$g^{(2)}(x,x') = rac{\langle :n(x)n(x'):
angle}{\langle n(x')
angle \langle n(x)
angle} - 1$$

#### ★ example of induced correlation:



$$egin{aligned} x &= (v_d + c_d)t & ext{correlates with} \ x' &= (v_u - c_u)t \end{aligned}$$

 $\star$  affects the density correlation pattern



### Steinhauer, Nature Physics 2016 :



density profile near the horizon  $\simeq$ waterfall  $n_u/n_d = 5.55 5.55$  $c_u/c_d = 2.4 2.36$  $V_u/c_u = 0.375 0.4245 V_d/c_d = 3.25 5.55$ 

$$T_{H} = 1.0 \text{ nK} \quad \left| \begin{array}{c} T_{H}/(gn_{u}) = 0.36 ? \\ T_{H}/(gn_{u}) \right|_{theo} \le 0.25 \end{array} \right|$$





### Violation of Cauchy-Schwarz inequality ( $T \neq 0$ )

C.-S. violation : 
$$g_2(p,q)\Big|_{u_{\text{out}}-d_{\text{out}}} > \sqrt{g_2(p,p)\Big|_{u_{\text{out}}} \times g_2(q,q)\Big|_{d_{\text{out}}}} \equiv 2$$



d2 out

### Violation of Cauchy-Schwarz inequality $(T \neq 0)$

C.-S. violation : 
$$g_2(p,q)\Big|_{u_{\text{out}}-d_{\text{out}}} > \sqrt{g_2(p,p)\Big|_{u_{\text{out}}} \times g_2(q,q)\Big|_{d_{\text{out}}}} \equiv 2$$

Boiron et al. PRL (2015)



### Two contrasting phenomena





Perfect transmission No drag, no dissipation

#### Anderson localization



### interaction $\iff$ disorder



What are the density profile, the transmission coefficient and the drag exerted on the obstacle when the velocity V of the beam with respect to the obstacle is finite ?

How do these properties scale with L?

#### In the frame where the beam is at rest :

$$-\frac{\hbar^2}{2 m}\partial_x^2\psi + \left[U(x-V t)+g |\psi|^2\right]\psi = i\hbar \partial_t\psi ,$$

#### model disordered potential

$$U(x) = \lambda \, \mu \, \xi \, \sum_n \delta(x - x_n) \, ,$$

 $x_n$ 's: uncorrelated random position of the impurities  $0 = x_1 \le x_2 \le x_3...,$ with mean density  $n_i$  One has  $\langle U(x) \rangle = \lambda \mu (\mathbf{n}_{i} \xi)$  and  $\langle U(x)U(x') \rangle - \langle U \rangle^{2} = \left(\frac{\hbar^{2}}{m}\right)^{2} \sigma \, \delta(x - x')$ with  $\sigma = \mathbf{n}_{i} \, \lambda^{2} / \xi^{2}$ .  $[\sigma] = \text{length}^{-3}$ .

• Other disordered potentials: Gaussian (white or correlated) noise, Speckle potential.



disordered delta peaks with  $\lambda = 0.5$  and  $n_{\rm i}\xi = 0.5$   $(\mu \gg \langle U \rangle)$ .

model disordered potential :  $U(x) = \lambda \mu \xi \sum_{n} \delta(x - x_n)$ ,  $x_n$ 's: uncorrelated random position of the impurities, with mean density  $n_i$ . One has  $\langle U(x) \rangle = \lambda \mu (n_i \xi)$ 

### Breakdown of superfluidity

• Similar to the non-disordered case.

V. Hakim, Phys. Rev. E 55, 2835 (1997)

- Linked to statistics of extremes of the random potential.
- One obtains analytical results in two limiting cases:





 $\frac{100}{T_{c}} = \frac{1}{0} \frac{\rho_{L=100} \rho_{L=10}}{\rho_{L=10} \rho_{L=10}} \frac{time}{\rho_{L=10}}$ 

 $F_L(V_{crit})$ : cumulative probability distribution of  $V_{crit}$ 

### Ballistic ( $\equiv$ perturbative) region

$$\delta n(\zeta) \simeq \frac{2mn_0}{\hbar^2 \kappa} \int_{-\infty}^{\zeta} dy \, U(y) \sin[2\kappa(\zeta - y)]$$
  
where  $\zeta = x - Vt$ . This yields  
 $\langle T \rangle \simeq 1 - L/L_{\rm loc}$  where  
 $L_{\rm res}(\kappa) = \frac{\kappa^2}{2}$  (1)

$$L_{
m loc}(\kappa) = rac{\kappa}{\sigma}$$
 . (1)

and 
$$\kappa = \frac{m}{\hbar} |V^2 - c^2|^{1/2}$$
. (2)

probability distribution of T:

$$P(T) = rac{L_{
m loc}}{L} \exp\left\{-(1-T)rac{L_{
m loc}}{L}
ight\} \; .$$



### $L > L_{\rm loc}$ : non perturbative

 $P(\lambda, t)$  ( $\lambda = T^{-1} - 1$ ,  $t = L/L_{loc}$ ) is solution of the **DMPK** (Fokker-Planck) equation:

 $\partial_t P = \partial_\lambda \left[ \lambda (\lambda + 1) \partial_\lambda P \right]$ 

This implies that

 $\langle \ln T \rangle = -L/L_{\rm loc}(\kappa) ,$ 

where  $L_{\rm loc}(\kappa)$  is given by Eqs. (1,2).

• and that the asymptotic probability distribution is log-normal

$$P(\ln T, t = \frac{L}{L_{\rm loc}}) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{1}{4t} (t + \ln T)^2}$$



#### First integral in regions where $U(x) \equiv 0$

(between  $x_n$  and  $x_{n+1}$  say)

$$\frac{\xi^2}{2} \left( \frac{\mathrm{d}A}{\mathrm{d}X} \right)^2 + W[A(X)] = E_{\mathrm{cl}}^{(n)} \; , \label{eq:eq:electron}$$

where  $A = |\psi|/\sqrt{n_0}$ ,  $E_{cl}^{(n)}$  is a constant and  $W(A) = \frac{1}{2}(A^2 - 1)(1 + v^2 - A^2 - v^2/A^2).$ 

From the final  $E_{cl}^{(N_i)}$  one computes the transmission

$$T = rac{1}{1 + (2\kappa^2 \, \xi^2)^{-1} E_{
m cl}^{(N_{
m i})}} \; .$$

previous slide : 
$$\lambda^{(n)} = rac{m}{2\hbar^2\kappa^2}\, {\cal E}_{
m cl}^{(n)}$$



Upper panel: W(A) (drawn for v=V/c=4).  $A_0(=1)$  and  $A_1$  are the zeros of dW (d.A. The fictitious particle is initially at rest with  $E_{c1}^{(0)}=0$ . The value of  $E_{c1}$  changes at each impurity. The lower panel displays the corresponding oscillations of A(X), with two impurities (vertical dashed lines) at  $x_1=0$  and  $x_2=4.7$  §.

#### Effect of nonlinearity: non stationary regime



One solves the DMPK equation with the boundary condition that there exists a  $\lambda_{\max}$  [corresponding to  $E_{c1}^{max} = W(A_1)$ ] at which  $P(\lambda_{\max}, t) = 0$ : i.e., this upper boundary is a "sink".



#### rich analogy between nonlinear optics and hydrodynamics

- modulational instability
- observation of dispersive shock waves
- analogy with superfluid motion
- in the presence of disorder : competition between SF and AL
- possible formation of "sonic" horizon

#### rich analogy between nonlinear optics and hydrodynamics

- modulational instability
- observation of dispersive shock waves
- analogy with superfluid motion
- in the presence of disorder : competition between SF and AL
- possible formation of "sonic" horizon

#### 1D integrable turbulence in a nonlinear fiber (focusing NLS)

- Whitham theory helpful in the initial stage of development of integrable turbulence (stationary PDF of Riemann invariants) Randoux, Gustave, Suret, EI, PRL 2017
- also helpful at much later stage: soliton gas



M. Albert Nice



S. Bar-Ad Tel-Aviv



I. Carusotto Trento







T. Congy Loughborough

V. Fleurov Tel Aviv

M. Isoard Orsay



A. Kamchatnov Troitsk



Cergy



A. Recati Trento



P. Schlagheck Liège



M. Albert Nice



S. Bar-Ad Tel-Aviv



I. Carusotto Trento







T. Congy Loughborough

V. Fleurov Tel Aviv

M. Isoard Orsay



Troitsk

P.-É. Larré

Cergy



P. Lebœuf Orsay

A. Recati Trento



P. Schlagheck Liège

## Thank you for your attention