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We consider the long-time evolution of pulses in the Korteweg–de Vries equation theory for initial distribu-
tions which produce no soliton but instead lead to the formation of a dispersive shock wave and of a rarefaction
wave. An approach based on Whitham modulation theory makes it possible to obtain an analytic description of
the structure and to describe its self-similar behavior near the soliton edge of the shock. The results are compared
with numerical simulations.
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I. INTRODUCTION

It is well known that pulses propagating through a nonlin-
ear medium typically experience wave breaking. Their long-
time evolution depends on which effect—in addition to the
nonlinearity—dominates after the wave breaking moment:
viscosity or dispersion. If viscosity dominates, then the shock
corresponds to a region of localized extend in which the slow
variables display a sharp transition. A typical small-amplitude
viscous shock can be modeled by the Burgers’ equation

ut + uux = νuxx, (1)

for which a full analytic theory has been developed (see, e.g.,
Ref. [1]). For a positive initial profile u(x, t = 0) ≡ u0(x) >

0 which is well-enough localized [i.e., u0(x) → 0 fast enough
for |x| → ∞] the time-evolved pulse acquires a triangle-like
shape at its front edge [or at its rear edge if u0(x) < 01],
gradually spreading out with decreasing amplitude.

The situation changes drastically if dispersive effects dom-
inate rather than viscosity. In this case the typical evolution
can be described by the celebrated Korteweg–de Vries (KdV)
equation

ut + 6uux + uxxx = 0, (2)

which admits oscillating solutions ranging from linear waves
to bright solitons. A positive localized initial pulse u0(x) > 0,
after an intermediate stage of wave breaking and complicated
deformation, eventually evolves into a sequence of solitons
with some amount of linear dispersive waves. The character-
istics of the solitons are determined by the initial distribution
u0(x). If this initial pulse is intense enough—so that the
number of solitons is large—one may determine the param-
eters of these solitons by means of the asymptotic formula
of Karpman [2] which is obtained in the framework of the
inverse scattering transform method discovered by Gardner,

1A so-called N -wave appears if u0(x ) has both polarities; see, e.g.,
Ref. [1].

Green, Kruskal, and Miura [3]. However, if u0(x) < 0, since
Eq. (2) does not admit dark (i.e., “negative”) solitons, then
wave breaking does not result in the production of solitons,
but it rather leads to the formation of a dispersive shock wave
(DSW) connected to a triangle-like rarefaction wave which
is the remnant of the initial trough. The shape and the time
evolution of this oscillatory structure are highly nontrivial and
considerable efforts have been invested in their study.

In an early investigation of Berezin and Karpman [4] it was
shown that the KdV equation admits solutions of the form

u(x, t ) = 1

t2/3
f

( x

t1/3

)
, (3)

and numerical simulations of these authors demonstrated that
some region of the evolving wave structure is indeed de-
scribed by solutions of type (3). The existence of such a region
was confirmed by the inverse scattering transform method in
Refs. [5,6] and its “quasi-linear” part was studied in Ref. [7].
An extensive study of the asymptotic evolution of the pulse
in the absence of solitons was performed in Ref. [8] where
different characteristic parts of the wave structure were distin-
guished and their main parameters were calculated. However,
in this reference, Ablowitz and Segur—who first explicitly
point to the formation of a dispersive shock wave—confined
themselves to the analytic study of typical limiting cases and
explicit formulas for the whole dispersive shock wave region
were found much later [9] with the use of a quite involved
analysis of the associated Riemann-Hilbert problem. This
approach was developed further in Refs. [10–12] and other
papers.

Although the above-mentioned approaches are mathemati-
cally strict, the methods used are difficult and the theory devel-
oped has not found applications to concrete problems related
with other integrable evolution equations. Since the question
of evolution of pulses in the absence of solitons is related with
experiments in physics of water waves [13,14], Bose-Einstein
condensates [15,16], and nonlinear optics [17,18], the devel-
opment of a simpler and more transparent physically approach
is desirable. Such an approach, based on the Whitham theory
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of modulations of nonlinear waves [19], was suggested long
ago by Gurevich and Pitaevskii [20] and since that time it has
developed into a powerful method with numerous applications
(see, e.g., the review article [21]). Despite the facts that some
elements of the Whitham theory were used in Refs. [6,8] and
that the general solution of the solitonless initial value prob-
lem has been obtained in Ref. [22], no asymptotic analysis
has been performed within Whitham’s formalism, so that its
relationship with the previous results remained unclear.

The main goal of the present paper is to fill this gap and to
apply the Whitham theory to the description of the asymptotic
evolution of initial pulses in the small dispersion limit (or for
wide pulses) under the condition of absence of solitons. We
show that the combination of two ideas—self-similarity of
the solution and quasisimple character [23] of the dispersive
shock wave—permits an asymptotic analysis of the solution.
The relatively simple theory developed in the present work
should be useful in the analysis of experiments devoted to the
evolution of pulses of this type.

The paper is organized as follows. In Sec. II we present
the main aspects of Whitham theory and of the generalized
hodograph method applying to quasisimple waves (following
Refs. [22–28]). In Sec. III, the application of the ideas of
Ref. [23] to the soliton edge of the DSW makes it possible
to find the law of motion of this edge and suggests a self-
similar asymptotic behavior consistent with Eq. (3). In Sec. IV
we perform the large-time asymptotic analysis of the rear
(soliton) part of the dispersive shock wave by the Whitham
method within this self-similarity assumption. This yields a
surprisingly simple derivation of the solution first explicitly
obtained in Ref. [9]. The description of the DSW in its full
range by the method of El and Khodorovskii [22] is presented
in a self-contained manner in Sec. V. In this section we
consider the time evolution of several initial profiles illustrat-
ing the possible different behaviors in the shock region and
compare the theoretical results with numerical simulations.
We present our conclusions in Sec. VI.

II. WHITHAM THEORY AND THE GENERALIZED
HODOGRAPH METHOD

A. The smooth part of the profile

We consider an initial pulse with nonpositive profile
u(x, t = 0) = u0(x) defined on finite interval of x and having
a single minimum minx∈R{u0(x)} = −1 (this value can be
changed by an appropriate rescaling on u, x, and t). We
consider a initial profile of finite extend x0, and assume that
x0 � 1, so that in a first stage of evolution one can neglect
dispersive effects. This amounts to replace the KdV dynamics
by the Hopf equation,

rt + 6 r rx = 0. (4)

We changed notation here to mark the difference between
r (x, t ), solution of the approximate equation (4), and u(x, t ),
which is the exact solution of the KdV equation (2). The solu-
tion of the Hopf equation is well known (see, e.g., Ref. [29])
and it is given in implicit form in terms of functions inverse to
u0(x), as explained now.

In the case we consider, u0(x) has a single minimum and
its inverse function is two valued. We denote its two branches

FIG. 1. The solid black, solid pink, and dashed red lines repre-
sent r (x, t ) solution of (4) for times t = 0, t = tWB, and t = 2.5 tWB

for an initial condition r (x, 0) given by the parabolic profile u0(x )
defined in Eq. (6) with x0 = 40. The dots represent the position of
the minimum min x∈R{r (x, t )} which separates parts A (at the left)
and B (at the right) of the profile.

as wA(r ) and wB(r ), where the first function refers to the part
of the pulse to the left of its minimum and the second one to
its right. Then the solution of the Hopf equation is given by
the formulas

x − 6 r t = wA(r ), (5a)

x − 6 r t = wB(r ). (5b)

For example, in case of a parabolic initial pulse

u0(x) =
{

4 x(x + x0)/x2
0 for − x0 � x � 0,

0 elsewhere,
(6)

the inverse functions are equal to

wA(r ) = x0
2 (−1 − √

1 + r ),

wB(r ) = x0
2 (−1 + √

1 + r ),
where r ∈ [−1, 0]. (7)

Figure 1 represents the initial profile (6) and its time evolution
as computed from Eqs. (5), i.e., without taking dispersive
effects into account. Figure 2 represents the corresponding
functions wA(r ) and wB(r ). In the following we shall perform
the explicit computations using this initial profile. Other types

FIG. 2. The two branches wA(r ) and wB(r ) of the reciprocal
function of u0(x ). The figure is drawn for the initial parabolic
profile (6) [the corresponding expressions of wA(r ) and wB(r ) are
given in Eq. (7)] but the behavior is the generic one.
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of profiles, with less generic behaviors, will be presented and
discussed in Sec. V.

The wave-breaking time is the time tWB =
1/max(−6 du0/dx) at which the solution of (4) becomes
infinitely steep (see, e.g., Ref. [1]). In the present work
we consider initial profiles for which the largest slope
max(−du0/dx) is reached at x = −x0 for r = 0 and thus

tWB = −1

6

(
dwA

dr

)
r=0

. (8)

For the initial profile (6) we get tWB = x0/24. For t � tWB the
dispersionless approximation fails (the corresponding formal
solution of the Hopf equation is multivalued), and a DSW is
formed, initially around x = −x0, which then expands toward
the negative x direction. We now explain how it can be
described within Whitham modulational theory.

B. Periodic solutions and their modulations

The KdV equation (2) admits nonlinear periodic solutions
which can be written in terms of three parameters r1 � r2 �
r3 as (see, e.g., Ref. [29])

u(x, t ) = r3 + r2 − r1 − 2(r2 − r1)

× sn2(
√

r3 − r1(x − V t ),m), (9)

where

V = 2(r1 + r2 + r3) (10)

and

m = r2 − r1

r3 − r1
. (11)

The notation “sn” in formula (9) refers to the Jacobi sine
function (see, e.g., Ref. [30]). For constant parameters ri

expression (9) is an exact (single phase) solution of the KdV
equation, periodic in time and space with wavelength

L = 2K (m)√
r3 − r1

, (12)

where K (m) is the complete elliptic integral of the first kind.
According to the Gurevich-Pitaevskii scheme, a DSW may

be described as a modulated nonlinear periodic wave of
type (9) for which the ri’s slowly depend on time and position
and evolve according to the Whitham equations (see, e.g,
Refs. [21,29])

∂t ri + vi (r1, r2, r3)∂xri = 0, i = 1, 2, 3. (13)

The quantities vi in these equations are the Whitham veloc-
ities. Their explicit expressions have first been derived by
Whitham [19] and can also be obtained from the relation

vi =
(

1 − L

∂iL
∂i

)
V = V − 2

L

∂iL
, (14)

where L is the wavelength (12), V the phase velocity (10)
of the nonlinear periodic solution (9), and ∂i stands for ∂ri

.

One gets

v1 = 2(r1 + r2 + r3) + 4(r2 − r1)K (m)

E(m) − K (m)
,

v2 = 2(r1 + r2 + r3) − 4(r2 − r1)(1 − m)K (m)

E(m) − (1 − m)K (m)
,

v3 = 2(r1 + r2 + r3) + 4(r3 − r1)(1 − m)K (m)

E(m)
,

(15)

where E(m) is the complete elliptic integral of the second
kind.

Since Eqs. (13) have a diagonal form (that is, they include
derivatives of a single parameter ri in each equation), the
variables ri are called Riemann invariants of the Whitham
equations—Riemann was the first who introduced such vari-
ables in the theory of nonlinear waves.

The two edges of the DSW are denoted as xL(t ) and xR(t ).
The first one is the small-amplitude edge; it is at the left
of the DSW in the case we consider. Within the Whitham
approximation, it makes contact between the DSW and the
undisturbed profile: u(x, t ) = 0 for x � xL(t ). The small-
amplitude version of (9) corresponds to the limit m � 1 and
takes the form

u(x, t ) = r3 + (r2 − r1) cos[2
√

r3 − r1(x − V t )]. (16)

In this harmonic linear limit, r2 → r1 (m → 0) and the
Whitham velocities (15) reduce to

v1|r2=r1 = v2|r2=r1 = 12 r1 − 6 r3,

v3|r2=r1 = 6 r3. (17)

Around the left boundary of the DSW, the amplitude 2(r2 −
r1) of the oscillations is small and since this edge propagates
along a zero background, we arrive at the conclusion that r3 =
0 and r1 = r2 for x = xL(t ).

The other edge, at the right side of the DSW, is the
large-amplitude soliton edge, with m = 1. Therefore we must
have here r2 = r3 and in this limit the nonlinear pattern (9)
degenerates into a soliton solution of the form

u(x, t ) = r1 + 2(r2 − r1)

cosh2[
√

r2 − r1(x − V t )]
. (18)

This implies that the right of the DSW is bounded by a soliton
for which the Whitham velocities are given by

v1|r2=r3 = 6 r1,

v2|r2=r3 = v3|r2=r3 = 2 r1 + 4 r3. (19)

C. Generalized hodograph method

The dispersionless approach of Sec. II A leads, after the
wave-breaking time, to an nonphysical, multivalued solution.
The form, displayed in Fig. 1, of r (x, t � tWB) in the region
of multivaluedness suggests that the DSW accounting for
the post wave-breaking dynamics should be described by
Whitham-Riemann invariants arranged in a configuration such
that r3 = 0 (thus ensuring matching with the unperturbed
profile at the left), whereas r2 and r1 both depend on x and
t , with always r3 � r2 � r1.

The contact of the DSW with the smooth pro-
file which prevails for x � xR(t ) imposes the condition
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r1(xR(t ), t ) = r (xR(t ), t ), where r (x, t ) is a solution of the
Hopf equation (4) with initially r (x, 0) = u0(x). Therefore
the description of the DSW for x ∈ [xL(t ), xR(t )] imposes the
boundary conditions

r1(xR(t ), t ) = r (xR(t ), t ) ≡ rR(t ), r2(xR(t ), t ) = 0,

(20a)

r1(xL(t ), t ) = r2(xL(t ), t ) ≡ rL(t ). (20b)

Note that all the above functions are only defined after the
wave breaking time, i.e., for t � tWB.

This type of structure, in which two Riemann invariants (r1

and r2) change along the DSW, is not a simple wave solution;
it belongs to the class of “quasisimple waves” introduced in
Ref. [23]. In this case, Eq. (13) with i = 3 is trivially satisfied
and for solving the remaining two Whitham equations we use
the so-called generalized hodograph method of Tsarev [31].
To this end, one introduces two functions Wi (r1, r2) (i = 1
or 2), making it possible to write a vector generalization of
Eq. (5) for the Whitham system:

x − vi (r1, r2)t = Wi (r1, r2), i = 1, 2. (21)

For the sake of brevity we have noted in the above equation
vi (r1, r2) = vi (r1, r2, r3 = 0) for i ∈ {1, 2}; we will keep this
notation henceforth. The Wi’s must satisfy the compatibility
equation found by substituting (21) into (13). This leads to
the Tsarev equations:

∂jWi

Wi − Wj

= ∂jvi

vi − vj

, for i 	= j. (22)

One can show (see, e.g., Refs. [25,27,28]) that (22) is solved
for Wi’s of the form

Wi =
(

1 − L

∂iL
∂i

)
W = W +

(
1

2
vi − r1 − r2

)
∂iW , (23)

where W (r1, r2) is solution of the Euler-Poisson equation

∂12W = ∂1W − ∂2W

2(r1 − r2)
. (24)

There is, however, a subtle point here, which was first under-
stood in Ref. [23] (see also Ref. [22]). After the wave breaking
time, the development of the dispersive shock wave occurs in
two steps:

(A) Initially (when t is close to tWB), the DSW is con-
nected at its right edge to the smooth profile coming from the
time evolution of part A of the initial profile. In this case, for
a given time t , the lower value of u(x, t ) is reached within the
smooth part of the profile and keeps its initial values (−1).

(B) Then, after a while, the left part of the initial profile
(part A) has been “swallowed” by the DSW which is then
connected at its right to the smooth profile coming from the
time evolution of part B of u0(x). In this case, the minimum
minx∈R{u(x, t )} is reached inside the DSW (or at its bound-
ary), is negative and larger than −1 (i.e., less pronounced than
in the previous case A), and asymptotically tends to 0 for large
time.

We denote the region of the DSW [and of the (x, t ) plane]
in which r1 is a decreasing function of x as region A, the part
where it increases as region B. In region A of the (x, t ) plane,

we denote by W A(r1, r2) the solution of the Euler-Poisson
equation; in region B we denote it instead as W B(r1, r2). These
two forms are joined by the line r1 = −1 (cf. the upper plots
of Fig. 5) along which

W A(−1, r2) = W B(−1, r2). (25)

Since the general solution of the Euler-Poisson equation with
the appropriate boundary conditions, and the construction of
the resulting nonlinear pattern are quite involved, we shall first
consider some particular—but useful—results which follow
from general principles of the Whitham theory.

III. MOTION OF THE SOLITON EDGE OF THE SHOCK

During the first stage of evolution of the DSW, its right
(solitonic) edge is connected to the smooth dispersionless
solution described by formula (5a), that is we have here

xR − 6rRt = wA(rR ). (26)

On the side of the DSW, in vicinity of this boundary, the
Whitham equations (13) with the limiting expressions (19)
(where r3 = 0) for the velocities vi are given by

∂t r1 + 6r1∂xr1 = 0, ∂t r2 + 2r1∂xr2 = 0. (27)

For solving these equations one can perform a classical hodo-
graph transformation (see, e.g., Ref. [29]), that is, one assume
that x and t are functions of the independent variables r1 and
r2: t = t (r1, r2), x = x(r1, r2). We find from Eqs. (27) that
these functions must satisfy the linear system

∂x

∂r1
− 2r1

∂t

∂r1
= 0,

∂x

∂r2
− 6r1

∂t

∂r2
= 0.

At the boundary with the dispersionless solution [where r1 =
rR, see (20a)] the first equation reads

∂xR

∂rR

− 2 rR

∂t

∂rR

= 0, (28)

and this must be compatible with Eq. (26). Differentiation of
Eq. (26) with respect to rR and elimination of ∂xR/∂rR with the
use of Eq. (28) yield the differential equation for the function
t (rR ) ≡ t (rR, 0):

4 rR

dt

drR

+ 6 t = −dwA(rR )

drR

. (29)

At the wave-breaking time, rR = 0, and (29) gives the correct
definition (8) of the wave-breaking time: tWB = t (0). Elemen-
tary integration then yields

t (rR ) = 1

4(−rR )3/2

∫ rR

0

√−r
dwA(r )

dr
dr

= 1

8(−rR )3/2

∫ rR

0

wA(r )√−r
dr − wA(rR )

4 rR

. (30)

Substituting this into (26) we get the following expression for
the function xR(rR ) ≡ x(rR, 0):

xR(rR ) = − 3

2
√−rR

∫ rR

0

√−r
dwA(r )

dr
dr + wA(rR )

= − 3

4
√−rR

∫ rR

0

wA(r )√−r
dr − 1

2
wA(rR ). (31)
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The two formulas (30) and (31) define in an implicit way the
law of motion x = xR(t ) of the soliton edge of the DSW.

The above expressions are correct as long as the soliton
edge is located inside region A, that is up to the moment

tA/B = t (−1) = 1

4

∫ −1

0

√−r
dwA(r )

dr
dr, (32)

after which the soliton edge connects with part B of the
smooth profile. Concretely, for a time t > tA/B, we have to
solve the differential equation

4 rR

dt

drR

+ 6 t = −dwB(rR )

drR

with the initial condition t (−1) = tA/B. This yields

t (rR ) = 1

4(−rR )3/2

[ ∫ −1

0

√−r
dwA(r )

dr
dr

+
∫ rR

−1

√−r
dwB(r )

dr
dr

]
(33)

and

xR(rR ) = − 3

2(−rR )1/2

[ ∫ −1

0

√−r
dwA(r )

dr
dr

+
∫ rR

−1

√−r
dwB(r )

dr
dr

]
+ wB(rR ). (34)

At asymptotically large time t → ∞ one is at stage B of
evolution, with furthermore rR → 0. Hence the upper limit of
integration in the second integrals of formulas (33) and (34)
can be put equal to zero. Integration over r in the resulting
expressions can be replaced by integration over x with account
of the fact that wA,B(r ) represent two branches of the inverse
function of r = u0(x), so we get

t (rR ) 
 A
4(−rR )3/2

, where A =
∫
R

√
−u0(x) dx

is a measure of the amplitude of the initial trough. Conse-
quently, we obtain

rR(t ) = −
(A

4t

)2/3

, xR(t ) = −3A2/3

21/3
t1/3, (35)

where we have neglected a term of order x0 which is small
compared to the infinitely increasing time-dependent ones.

At large time, the dispersionless part of the profile be-
tween x = 0 and xR(t ) is stretched to a quasilinear behavior
u(x, t ) = x rR(t )/xR(t ), and one thus has∫ 0

xR (t )
dx

√
−u(x, t ) = −2

3
xR(t )

√
−rR(t ) = A, (36)

which means that the quantity A is conserved, at least at
the level of the present asymptotic analysis. This situation
is reminiscent of—but different from—the dissipative case
where nonlinear patterns of triangular shape may also appear
at the rear edge of a (viscous) shock. In the dissipative case
there also exists a conserved quantity. For Burgers’ equation,
for instance, with an initial condition of type (6), a single
viscous shock appears which is followed by an asymptotically
triangular wave. This means that the details of the initial

distribution are lost (as in the present case), but for Burgers’
equation the conserved quantity is not the quantity A defined
in Eq. (36), but the integral

∫
I (t )dx u(x, t ), where I (t ) is the

support of the triangular wave (equivalent to our segment
[xR(t ), 0]).

Formulas (35) suggest that in the vicinity of the soliton
edge, the behavior of the DSW must be self-similar, and
we now turn to the investigation of this possibility in the
framework of Whitham theory.

IV. SIMILARITY SOLUTION AT THE SOLITON EDGE OF
THE SHOCK

In this section we use the Whitham approach to obtain the
long-time asymptotic behavior of the shock close to xR(t ),
valid up to x ∼ −t1/3(ln t )3/2 (see Refs. [8,9]).

Equations (35) suggest that, close to the soliton edge of
the DSW, the Riemann invariants r1 and r2 have the following
scaling form:

ri = 1

t2/3
Ri

( x

t1/3

)
. (37)

Here x < 0 and since r1 < r2 < 0, we have R1 < R2 < 0.
The scaling (37) agrees with the scaling (3) of the full KdV
equation first noticed in Refs. [4–6]. Written in terms of the
rescaled Riemann parameters R1 and R2 and of the self-
similar variable z = x/t1/3, the Whitham equations (13) read

dRi

dz
= − 2Ri

z − 3R1Vi (m)
, i = 1, 2, (38)

where

m = 1 − R2/R1, (39)

and the velocities V1(m) and V2(m) are given by

V1(m) = 2(2 − m) − 4mK (m)

E(m) − K (m)
,

V2(m) = 2(2 − m) + 4m(1 − m)K (m)

E(m) − (1 − m)K (m)
.

(40)

The two equations (38) can be reduced to a single one if we
introduce the variable

ζ = z/R1 (41)

and look for the dependence of ζ on m. A simple calculation
yields the differential equation

dζ

dm
= [ζ − V1(m)][ζ − 3V2(m)]

2(1 − m)[V2(m) − V1(m)]
, (42)

whose basic properties can be studied in the phase plane
(m, ζ ). The phase portrait in this plane is displayed in Fig. 3.
It admits the singular points

(0, 12), (0, 36) for m = 0;
(1, 6), (1, 6) for m = 1.

(43)

As is clear from Fig. 3, the point (0,12) is a node and the point
(0,36) is a saddle. At m = 1 the two singular points merge into
one (1,6) of a mixed saddle-node type. Numerical solution of
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FIG. 3. Integral curves of Eq. (42). The separatices are depicted
as solid thick lines. The dots are the singular points (43).

Eq. (42) suggests that the separatrix joining the singular points
(0,12) and (1,6) is a straight line

ζ = 6(2 − m), (44)

which, after returning to the variables R1, R2, and z, leads
to the assumption that the system (38) admits the following
integral:

R1 + R2 = 1
6z. (45)

A direct check shows that indeed d(R1 + R2)/dz = 1/6 un-
der the condition (45), so that this assumption is proved. The
integral curves beginning in vicinity of this separatrix are
attracted to it when m decreases, so one can expect that just
this separatrix realizes the self-similar regime of the DSW
near its soliton edge.

To determine the dependence of m on z, we find, with the
use of Eqs. (38),

dm

dz
= 6ζ (m)(1 − m)(V2(m) − V1(m))

z[ζ (m) − 3V1(m)][ζ (m) − 3V2(m)]
. (46)

Substituting Eq. (44) and the expressions (40) in the above,
we get the following equation:

dm

dz
= − 2 − m

zmK (m)
F (m), (47)

where

F (m) = (2 − m)E(m) − 2(1 − m)K (m). (48)

The solution of this equation determines m = m(z) along the
separatrix.

The form of expression (48) suggests that it can be obtained
as a result of the calculation of some elliptic integral in which
the integration limits may play the role of more convenient
variables. Inspection of tables of such integrals shows that the
formula 3.155.9 in Ref. [30] (which we write down here with
notations slightly different from the original reference),

I = 3
∫ q1

q2

√(
q2

1 − y2
)(

y2 − q2
2

)
dy

= q1
[(

q2
1 + q2

2

)
E(m) − 2q2

2K (m)
]
, (49)

has the necessary structure. In Eq. (49) one has q1 > q2 > 0
and m = 1 − (q2/q1)2.

To establish the link between the two expressions (48)
and (49), it is enough to take

q2
1 + q2

2 = 1, (50)

so that 1 − m = q2
2/q2

1 , 2 − m = 1/q2
1 . Assuming that the

variables q1, q2 satisfy (50), we obtain

q2
1 = 1

2 − m
, q2

2 = 1 − m
2 − m

, (51)

and then, imposing m = m, we get F (m) = (2 − m)3/2I .
Since dq1/dm = q3

1/2, Eq. (47) can be cast under the form

dq1

d ln(−z)
= − q1

2mK (m)
F (m), (52)

which is more convenient for further calculations. On the
other hand, the integral (49) with account of Eqs. (51) sim-
plifies to

I = q1
[
E(m) − 2

(
1 − q2

1

)
K (m)

]
,

and its differentiation with respect to q1 gives

dI

dq1
= 3q2

1mK (m). (53)

With the help of the formulas obtained we transform
Eq. (52) to

dI

I
= −3

2
d ln(−z).

Then, integration of this equation with the boundary condition
z = z1 at m = 1 yields z as a function of m:

z = z1 I−2/3(m) = z1
2 − m

F 2/3(m)
, (54)

where

z1 = xR(t )

t1/3
= −6(A/4)2/3 (55)

is the value of z for m = 1 (at the soliton edge of the DSW,
see Sec. III).

From the formulas (39) and (51) we find the relationship
between the Ri’s and the qi’s:

R1 = q2
1

6
z, R2 = q2

2

6
z, (56)

so that for the dependence of the Riemann invariants on m we
obtain:

R1(m) = z1

6(2 − m)I 3/2
,

R2(m) = (1 − m)z1

6(2 − m)I 3/2
.

(57)

Formulas (54), (55), and (57), together with Eq. (37), com-
pletely determine the self-similar solution of the Whitham
equations: For fixed t we have x(m) = t1/3z(m), so that all
functions are defined parametrically, with m playing the role
of the parameter. Up to notations, this solution coincides with
the one obtained in Ref. [9] by means of an asymptotic study
of a Riemann-Hilbert problem in the framework of the inverse
scattering transform method.
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In the harmonic limit m � 1, the relation (54) reads

m = m1z
−3/4, where m1 = 211/4

√
3π

(−z1)3/4, (58)

which leads to the expressions

r1 = x

12t
− m1

24

(−x)1/4

t3/4
, r2 = x

12t
+ m1

24

(−x)1/4

t3/4
. (59)

It is important to notice that the difference r2 − r1, that is,
the amplitude of the oscillations in the “quasilinear” region of
Zakharov and Manakov [7], increases with growing distance
from the soliton edge [as (−x)1/4] but r2/r1 → 1 and m →
0 here. Hence, this limit is not a small-amplitude one and
therefore the self-similar regime cannot be realized along the
whole DSW; it takes place close enough to the soliton edge
only; see Figs. 6(e), 6(f), and 8. Consequently, we have to turn
to the general solution of the Whitham equations to obtain a
full description of the DSW.

V. GENERAL SOLUTION

In this section, following Ref. [22], we turn to the general
solution of the Whitham equations given by the formulas of
Sec. II C. Our task now is to express the functions Wi (r1, r2),
i = 1, 2, in terms of the initial form u0(x) of the pulse. As
was indicated above, at the first stage of evolution the DSW
is located inside the region A and after the moment tA/B [see
Eq. (32)] a second stage begins where it also reaches region
B. Correspondingly, the expressions for Wi and W are given
by different formulas and should be considered separately.

A. Solution in region A

In region A one can follow the procedure explained in
Ref. [25]. One imposes the matching of the right edge of the
DSW with the dispersionless solution (5): Just at x = xR(t ),
we have r1 = r (x, t ), where r (x, t ) is the solution of (4), and
v1(r1, 0) = 6 r1 [this follows from Eq. (19)]. Comparing in
this case Eqs. (5) and (21) one obtains

W A
1 (r1, 0) = wA(r1), (60)

which embodies the same information as Eq. (20a). In terms
of W this corresponds to the equation

W A(r1, 0) + 2 r1 ∂1W
A(r1, 0) = wA(r1), (61)

whose solution is

W A(r1, 0) = 1

2
√−r1

∫ 0

r1

wA(ρ) dρ√−ρ
. (62)

This will serve as a boundary condition for the Euler-Poisson
equation (24) whose general solution has been given by
Eisenhart [32] in the form

W A(r1, r2) =
∫ 0

r1

ϕA(μ) dμ√
(μ − r1)|r2 − μ|

+
∫ 0

r2

ψA(μ) dμ√
(μ − r1)(μ − r2)

, (63)

where the functions ϕA and ψA are arbitrary functions to
be determined from the appropriate boundary conditions. By

taking r2 = 0 in this expression one sees that ϕA(μ)/
√−μ

is the Abel transform of W A(r1, 0). The inverse transform
reads [33]

ϕA(μ)√−μ
= − 1

π

d

dμ

∫ 0

μ

W A(r, 0) dr√
r − μ

. (64)

Plugging expression (62) for W A(r, 0) in this formula and
changing the order of integration, one obtains

ϕA(μ) = 1

2 π
√−μ

∫ 0

μ

wA(ρ) dρ√
ρ − μ

. (65)

For the initial profile (6), wA is given in Eq. (7) and one gets
explicitly

ϕA(μ) = − x0

4π

(
3 + 1 + μ√−μ

tanh−1 √−μ

)
.

In order to determine the function ψA, one considers the left
boundary of the DSW where, according to (20b), r1 and r2

are asymptotically close to each other. Let us write r1 = r

and r2 = r + ε with r ∈ [−1, 0] and ε small and positive. One
gets from (63)

W A(r, r + ε) =
∫ 0

r+ε

dμ
ϕA(μ) + ψA(μ)√

(μ − r )(μ − r − ε)

+
∫ r+ε

r

ϕA(μ) dμ√
(μ − r )(r + ε − μ)

. (66)

In the right-hand side of the above equality, the second term
converges when ε tends to 0 [toward πϕA(r )], whereas the first
one diverges unless ϕA(r ) + ψA(r ) = 0, this being true for all
r ∈ [−1, 0]. This imposes that the functions ϕA and ψA should
be opposite one the other and the final form of the Eisenhart
solution in case A thus reads

W A(r1, r2) =
∫ r2

r1

ϕA(μ) dμ√
(μ − r1)(r2 − μ)

, (67)

where ϕA is given by formula (65).

B. Solution in region B

One looks for a solution of the Euler-Poisson equation in
region B of the form

W B(r1, r2) = W A(r1, r2) +
∫ r1

−1

ϕB(μ) dμ√
(r1 − μ)(r2 − μ)

. (68)

Indeed, this ensures that W B, (i) being the sum of two solu-
tions of the Euler-Poisson equation is also a solution of this
equation and (ii) verifies the boundary condition (25) since
the second term of the right-hand side of (68) vanishes when
r1 = −1.

At the right boundary of the DSW, W B(r1, 0) verifies
the same equation (61) as W A(r1, 0) does, where all the
superscripts A should be replaced by B. The solution with the
appropriate integration constant reads

W B(r1, 0) = 1

2
√−r1

∫ −1

r1

wB(ρ) dρ√−ρ

+ 1

2
√−r1

∫ 0

−1

wA(ρ) dρ√−ρ
. (69)
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The same procedure than the one previously used in part A of
the DSW leads here to

ϕB(μ) = 1

2 π
√−μ

∫ μ

−1
dρ

wA(ρ) − wB(ρ)√
μ − ρ

. (70)

For the initial profile (6) one gets explicitly

ϕB(μ) = −x0

4

1 + μ√−μ
.

In the generic case, Eqs. (68) and (70) give the solution of the
Euler-Poisson equation in region B.

C. Characteristics of the DSW at its edges

It is important to determine the boundaries xR(t ) and xL(t )
of the DSW, as well as the values of the Riemann invariants r1

and r2 at these points. The law of motion of the soliton edge
was already found in Sec. III and it is instructive to show how
this result can be obtained from the general solution.

At the soliton edge we have r2 = r3 = 0 and r1 = rR(t ).
The corresponding Whitham velocities are v1 = 6 rR and v2 =
2 rR [see Eqs. (19)], and the two equations (21) read

xR − 6rRt = W1(rR, 0) = w(rR ),

xR − 2rRt = W2(rR, 0) = W (rR, 0). (71)

These formulas apply to both stages of evolution and therefore
the superscripts A and B are dropped out. They give at once

t (rR ) = 1

4rR

[W (rR, 0) − w(rR )],

xR(rR ) = 1

2
[3W (rR, 0) − w(rR )]. (72)

Let us consider the stage A, for instance. Equation (62) yields

W A(rR, 0) = − 1

2
√

rR

∫ rR

0

wA(ρ)dρ√−ρ
,

which, inserted into Eqs. (72), gives immediately the re-
sults (30) and (31). For instance, for the initial profile (6),
when the right boundary is still in region A, one obtains
explicitly

t (rR ) = x0

16 rR

(√
1 + rR − arcsin

√−rR√−rR

)
. (73)

At the wave-breaking time, rR = 0 and this yields tWB =
t (rR = 0) = x0/24 as already obtained [cf. Eq. (8)]. Stage A
ends at time tA/B at which the minimum (−1) of the smooth
part of the profile enters the DSW. This corresponds to tA/B =
t (rR = −1) and yields, for the initial parabolic profile (6),
tA/B = π x0/32.

Let us now turn to the determination of the location xL(t )
of the left boundary of the DSW and of the common value
rL(t ) of r1 and r2 at this point. In the typical situation the left
boundary is located in region A. In this case the equations (21)
for i = 1 and 2 are equivalent and read

xL − 12 rLt = W A
1 (rL, rL ). (74)

An equation for rL alone is obtained by demanding that the
velocity dxL/dt of the left boundary is equal to the common

FIG. 4. Dispersionless evolution of the initial triangular pro-
file (77) with x0 = 40. The solid black, solid pink, and dashed red
lines represent r (x, t ) solution of (4) for times t = 0, t = tWB and
t = 2 tWB.

value 12 rL of v1 and v2 at this point [cf. Eqs. (17)]. The time
derivative of Eq. (74) then yields

t = − 1

12

dW A
1 (rL, rL )

drL

. (75)

Once rL(t ) has been determined by solving this equation, xL(t )
is given by Eq. (74).

Note that the relation dxL/dt = 12 rL is a consequence of
the general statement that the small-amplitude edge of the
DSW propagates with the group velocity corresponding to
the wave number determined by the solution of the Whitham
equations. Indeed, the KdV group velocity of a linear wave
with wave-vector k moving over a zero background is vg =
−3k2, and here k = 2π/L = 2

√−rL [cf. Eq. (12)], hence
vg = 12 rL = dxL/dt , as it should. This property of the small-
amplitude edge is especially important in the theory of DSWs
for nonintegrable equations (see Refs. [34,35]).

We also study below a case different from (6) for which
the left boundary of the DSW belongs to region B and
corresponds to r1 = r2 = −1 [in the so-called triangular case
corresponding to u0(x) given by Eq. (77)]. Then, at the small-
amplitude edge v1 = v2 = −12 and Eqs. (21) yield xL + 12 ·
t = Cst, the constant being the common value of W B

1 (−1,−1)
and W B

2 (−1,−1). It can be determined at t = tWB, leading in
this case to

xL = −x0 − 12(t − tWB). (76)

It is worth noticing that the velocity dxL/dt = −12 agrees
with the leading term in Eq. (59) for r1 = −1 in spite of
a nonvanishing amplitude of the self-similar solution in this
limit. For a more detailed study of the small-amplitude region
beyond the Whitham approximation, see, e.g., Ref. [12].

D. The global picture

We now compare the results of the Whitham approach with
the numerical solution of the KdV equation for the initial
profile (6) and also for a profile

u0(x) =
{

−1 +
∣∣∣2x
x0

+ 1
∣∣∣ for − x0 � x � 0,

0 elsewhere.
(77)
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FIG. 5. The upper plots (a) and (b) refer to the parabolic initial profile, and the lower ones (c) and (d) to the triangular initial profile. Left
column: Different regions in the (x, t ) plane. The DSW occurs in the colored regions. The characteristics of the dispersionless evolution are
represented as gray lines. In plot (a) the time tA/B is the time where part A of the initial profile has been completely absorbed by the DSW.
For the triangular profile in plot (c) one has tA/B = tWB. Right column: Plot of the two varying Riemann invariants r1(x, t ) and r2(x, t ) at fixed
t = 10 for xL(t ) � x � xR(t ). In plots (a) and (b) the green dashed line marks the separation between regions A and B.

This profile is represented in Fig. 4 at t = 0, at wave-breaking
time, which in the present case is equal to tWB = x0/12 and
also at t = 2 tWB (using the dispersionless approximation pre-
sented in Sec. II A).

We henceforth denote the initial profile (6) as “parabolic”
and the initial profile (77) as “triangular.” As was indicated
above, the triangular profile has the particularity of having a
DSW within the region B only. This is clear from Fig. 4: Part
A of the initial profile does not penetrate into the DSW region
before part B does. Or, phrasing this differently, according
to the dispersionless evolution, at t = tWB both parts A and
B penetrate into the region of multivaluedness at x � −x0.

The DSW is described by Whitham method as explained
in Secs. II B and II C. For this purpose one needs to determine
r1 and r2 as functions of x and t (r3 ≡ 0). This is performed
as follows:

(i) First, we pick up a given r1 ∈ [−1, rR], where rR is the
value of r1 at the soliton edge, the point where the DSW is
connected to the rarefaction wave (how to compute it has been
explained in Sec. V C).

(ii) Second, at fixed t and r1, we find the corresponding
value r2 as a solution of the difference equation obtained from
Eqs. (21),

(v1 − v2) · t = W2(r1, r2) − W1(r1, r2) , (78)

where W1 and W2 are computed from Eq. (23).
(iii) Last, the corresponding value of x is determined by

x = W1 + v1t (or, equivalently, x = W2 + v2t).
This procedure gives, for each r1 ∈ [−1, rR] and t , the

value of r2 and x. In practice, it makes it possible to associate

to each (x, t ) a couple (r1, r2). The result is shown in Figs. 5
for the two initial profiles (6) and (77).

Note that the characteristics of the DSW are different for
the initial profiles (6) and (77): For the parabolic profile, in
Fig. 5(a), the edge point of the DSW—at (x0, tWB)—pertains to
region A and corresponds to r1 = 0, while for the triangular
profile, in Fig. 5(b), the edge point of the DSW belongs to
region B, with r1 = −1. For the parabolic profile, the value
r1 = −1 defines a line which separates the regions A and B of
the plane (x, t ), see Fig. 5(a). This line reaches a boundary of
the DSW only at xR(tA/B), where tA/B is the time where part A of
the initial profile has just been completely absorbed within the
DSW. On the other hand, for the triangular profile, the whole
left boundary of the DSW corresponds to the line r1 = −1,
see Fig. 5(c).

The knowledge of r1(x, t ) and r2(x, t ) makes it possible
to determine, for each time t > tWB, u(x, t ) as given by the
Whitham approach, for all x ∈ R:

(i) In the regions x � 0 and x � xL(t ), we have
u(x, t ) = 0.

(ii) In the region [xR(t ), 0], one has u(x, t ) = r (x, t )
which is solution of the Hopf equation (obtained by the
method of characteristics, as explained in Sec. II A).

(iii) Inside the DSW, for x ∈ [xL(t ), xR(t )], the function
u(x, t ) is given by expression (9), with r3 = 0 and r1 and
r2 determined as functions of x and t by the procedure just
explained.

The corresponding profiles are shown in Fig. 6 for the
parabolic and triangular initial distributions. The agreement
with the numerical solution of Eq. (2) is excellent in both
cases. The numerical simulations are performed using a
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FIG. 6. u(x, t ) as a function of x for fixed t . The left column refers to the parabolic initial profile and the right one to the triangular initial
profile. The upper row [(a) and (b)] corresponds to the wave-breaking time tWB, the central row [(c) and (d)] to t = 10, and the lower one
[(e) and (f)] to t = 100. The blue solid line corresponds to the numerical solution of Eq. (2). The thick envelopes correspond to the results of
Whitham modulation theory. The dashed red lines represent the dispersionless profile r (x, t ) and also, in (c)–(f), the Whitham result for the
soliton at the large-amplitude boundary of the DSW. The green dashed envelopes in (e) and (f) are the asymptotic self-similar results obtained
in Sec. IV.

spatial mesh h = 0.1, evaluating the spatial derivatives ux and
uxxx by means of, respectively, two- and four-point formulas
(i.e., with an accuracy h2), and time propagated using a fourth-
order Runge-Kutta method with a time step �t = 10−3.

In Fig. 7 we also compare the wavelength of the nonlin-
ear oscillations within the DSW as determined by Whitham
approach [Eq. (12)] with the results of numerical simulations,
and the agreement is again very good.

E. The initial square profile

In this section we discuss another type of initial condition,
which we denote as a “square profile”:

u0(x) =
{−1 for − x0 � x � 0,

0 elsewhere. (79)

El and Grimshaw already theoretically studied the same ini-
tial condition by using the method just explained [36]. We
will here compare the theory with numerical simulations to
indicate some limitations of the one-phase Whitham method
which we use in the present work.

For this initial profile, wave breaking occurs instanta-
neously (i.e., tWB = 0), and until t = x0/4 a plateau (i.e., a
segment with constant u(x, t ) = −1) separates the DSW (at
the right) from a rarefaction wave (at the left). In this con-
figuration, the DSW corresponds to the standard Gurevich-
Pitaevskii scheme for a steplike initial profile with a single
varying Riemann invariant (r2 in this case). This DSW can be
described using the self-similar variable ζ = (x + x0)/t ; in
this case Eq. (13) for i = 2 reads ζ = v2(−1, r2). One also
obtains xL(t ) = −x0 − 2 t , xR(t ) = −6 t and the rarefaction
wave corresponds to r (x, t ) = x/6t for x ∈ [xR(t ), 0].

It is interesting to remark that the Gurevich-Pitaevskii
DSW can also be described within the approach exposed in
Secs. II C and V D by solving Eq. (21) for i = 2. Here W A

2
should be computed from

W A(r1, r2) = −x0 (80)

by means of Eq. (23). The form (80) of W A comes from (67)
with wA(r ) = −x0.

At t = x0/4 the plateau disappears, and one enters into
region B with now, as usual, two varying Riemann invariants.
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FIG. 7. Evolution of the wavelength of the nonlinear oscillations
within the DSW as a function of position x. The figure corresponds
to the time evolution of the parabolic initial profile represented in the
lower left plot of Fig. 6 (t = 100). The continuous line represents
the results of Whitham theory and the points are the value of the
wavelength extracted from the numerical simulations.

Formulas (68) and (70) lead here to

W B(r1, r2) = −x0 − x0

π

∫ r1

−1

√
μ + 1 dμ√−μ(r1 − μ)(r2 − μ)

,

= −x0 + 2 x0/π√−r1(1 + r2)

×
{
�

(
1 + r1

r1
,m

)
− K (m)

}
, (81)

where m = (1 + 1/r1)/(1 + 1/r2) and � is the complete
elliptic integral of the third kind.

The predictions of Whitham theory are compared in Fig. 8
with numerical simulations. Surprisingly enough, the agree-
ment between simulation and theory decreases at large time:
At t = 100 one can notice oscillations in the envelope of the
front part of the DSW (Gurevich-Pitaevskii part). Inspection
of the dynamics of formation of the nonlinear structure reveals
that, during the formation of the rear rarefaction wave, oscil-
lations appear due to dispersive effects associated with the
discontinuity of the initial condition (79): Their interference
with the oscillations of the DSW leads to the modulated
structure which can be observed in the lower plot of Fig. 8.
Such a behavior requires a two-phase approach for a correct
description. Note also that for numerical purposes the initial
condition is smoothed2 and that the beating phenomenon
increases for sharper initial condition (or for lower values
of x0).

The predictions of the self-similar solution of Sec. IV are
also displayed in Fig. 8. In this figure, the envelopes of the
DSW expected from Eqs. (37) and (57) are represented by
red dashed lines. In the vicinity of its soliton edge, the DSW
is accurately described by the similarity solution. However
this approach is not able to tackle the other, small-amplitude,

2In the numerical simulations presented in Fig. 8 we take u0(x ) =
1
4 [tanh(x/�) − 1] × {1 + tanh[(x + x0 )/�]} with � = 2. This pro-
file tends to (79) when � → 0.
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FIG. 8. Evolution of an initial square profile of type (79) with
x0 = 80 after a time t = 50 (a) and t = 100 (b). The blue solid lines
are the results of numerical simulations. The orange envelopes are
determined by Whitham method. The green dashed envelopes are
the asymptotic self-similar results obtained in Sec. IV. The dashed
red lines represent the Whitham result for the soliton at the large-
amplitude boundary of the DSW. Note the change of scale in the axis
of the two plots.

boundary of the shock. This is expected since—as discussed
above—in the small-amplitude region a scaling different from
the one of Eq. (3) holds, with the relevant self-similar param-
eter ζ = (x + x0)/t ; see Refs. [9,37] for a general discussion.

VI. CONCLUSION

In the present work we have studied asymptotic solutions
of the KdV equation for which no soliton is formed. We
used the Whitham modulation theory combined with the
generalized hodograph method for describing the DSW which
is formed after wave breaking. The results typically compare
very well with numerical simulations (see Sec. V D), except
in the case of a initial square distribution (Sec. V E) where we
argue that a two-phase approach would be needed for a correct
description of the shock region.

A simple similarity description has been also obtained near
the large-amplitude region of the shock, still within the frame-
work of Whitham’s approach. Our results confirm, simplify,
and extend in some respects the previous works on this subject
(see Sec. IV). We also showed in Sec. III that this theory
provides a practical tool for the description of the nonlinear
evolution of pulses and can be used for comparison with
experimental data, since it yields simple analytic formulas
for some characteristic features of DSWs. In particular our
work reveals the existence of a conserved quantity which has
remained unnoticed until now, see Eq. (36).

Extensions of the present approach to noncompletely inte-
grable equations [35] and to other systems of physical interest
are under study.
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