Tutorial \# 2: Solitons in the NLS equation

On considers the NLS equation written in dimensionless form:

$$
\begin{equation*}
i \phi_{t}=-\frac{1}{2} \phi_{x x}+\sigma|\phi|^{2} \phi \tag{1}
\end{equation*}
$$

where $\sigma= \pm 1 . \sigma=-1$ is the focusing case, $\sigma=+1$ the defocusing one. One looks for traveling wave solutions of the form

$$
\begin{equation*}
\phi(x, t)=A(x-V t) \exp \{\mathrm{i} S(x-V t)+\mathrm{i} f(t)\} \tag{2}
\end{equation*}
$$

where A, S and f are real functions. The velocity V can be chosen positive. By plugging this ansatz into Eq. (1), show that $A(\zeta=x-V t)$ verifies $^{1}\left(A^{\prime}=\mathrm{d} A / \mathrm{d} \zeta\right)$

$$
\begin{equation*}
\frac{1}{2}\left(A^{\prime}\right)^{2}+W(A)=c_{2}, \quad \text { where } \quad W(A)=\frac{J^{2}}{2 A^{2}}+\left(\frac{V^{2}}{2}-c_{1}\right) A^{2}-\sigma \frac{A^{4}}{2} \tag{3}
\end{equation*}
$$

In this expression c_{1}, c_{2} and J are integration constants. Express the quantity J in terms of A, S^{\prime} and V and explain its physical content.

2.1 Bright soliton for the focusing NLS $(\sigma=-1)$

Explain why in this case one looks for solutions of (1) for which $A \rightarrow 0$ when $\zeta \rightarrow \pm \infty$. Give the value of J and S^{\prime} in this case, and explain why a soliton solution can be obtained only for $c_{2}=0$ and $V^{2}<2 c_{1}$.

Show that in this case the soliton solution reads $A(\zeta)=A_{\mathrm{M}} / \cosh \left(A_{\mathrm{M}} \zeta\right)$, where you will express A_{M} in terms of c_{1} and V. Express the number of "particles" in this "bright soliton" $\left(N=\int \mathrm{d} \zeta A^{2}\right)$ as a function of A_{M}.

2.2 Dark soliton for the defocusing NLS $(\sigma=+1)$

One notes here $A_{0}=\lim _{|\zeta| \rightarrow \infty} A$. Explain why in this case the current J needs not be zero. Show that one can obtain a soliton solution only if

$$
\begin{equation*}
V^{2}-2 c_{1}>3 J^{2 / 3} \tag{4}
\end{equation*}
$$

If (4) is verified, one denotes by A_{1} the minimum value of A in the soliton solution $\left[W\left(A_{1}\right)=\right.$ $\left.W\left(A_{0}\right)=c_{2}\right]$. Show that in this case the quantity $\rho(\zeta)=A_{0}^{2}-A^{2}(\zeta)$ obeys a differential equation of the form

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} \zeta}= \pm 2 \rho \sqrt{\rho_{\mathrm{M}}-\rho}
$$

where you will express ρ_{M} as a function of A_{0} and A_{1}. Solve this equation and show that the number of the "missing particles" in the soliton is $\Delta N=\int \mathrm{d} \zeta \rho=2 \sqrt{A_{0}^{2}-A_{1}^{2}}$.

[^0]
2.2.1 Determination of the integration constants

Show that $c_{1}=-A_{0}^{2}$ and that one must have $W^{\prime \prime}\left(A_{0}\right)<0$. Express this condition as a relation between A_{0} and V. In the following one will write $c_{0}=A_{0}^{2}$ and denote this quantity as the "speed of sound". Do you know why?

Show that a soliton can only exist at subsonic speed and that in this case (4) is automatically verified and $A_{1}^{2}=V^{2}$. Do you understand why a soliton of zero velocity is called a black soliton?

2.2.2 Phase of the dark soliton

One writes $V / c=\sin \theta$ where $\theta \in[0, \pi / 2]$. Show that the phase obeys the following differential equation

$$
\frac{1}{A_{0} \sin \theta} \frac{\mathrm{~d} S}{\mathrm{~d} \zeta}=\frac{-\cos ^{2} \theta}{\cosh ^{2}\left(\cos \theta A_{0} \zeta\right)-\cos ^{2} \theta}
$$

the solution of which is ${ }^{2} \tan (S)=-\tanh \left(\cos \theta A_{0} \zeta\right) / \tan \theta$. Plot S as a function of ζ for different velocities. Discuss the limit $V \rightarrow 0$.

2.3 Conserved quantities

Show that the quantities $\int|\phi|^{2} \mathrm{~d} x$ and $\frac{1}{2} \int\left(\left|\phi_{x}\right|^{2}+\sigma|\phi|^{4}\right) \mathrm{d} x$ are conserved quantities associated with the currents $\frac{1}{2}\left(\phi_{x}^{*} \phi-\phi^{*} \phi_{x}\right)$ and $-\frac{1}{2}\left(\phi_{t} \phi_{x}^{*}+\phi_{x} \phi_{t}^{*}\right)$.
Note: these conserved quantities are the number of particles and the energy of a field theory: consider the Lagrangian density

$$
\begin{equation*}
\mathscr{L}\left(\phi, \phi_{x}, \phi_{t}, \phi^{*}, \phi_{x}^{*}, \phi_{t}^{*}\right)=\frac{\mathrm{i}}{2}\left(\phi^{*} \phi_{t}-\phi_{t}^{*} \phi\right)-\frac{1}{2}\left|\phi_{x}\right|^{2}-\frac{\sigma}{2}|\phi|^{4} . \tag{5}
\end{equation*}
$$

Treating the fields ϕ and ϕ^{*} as independent variables (why is it allowed ?), show that the Euler-Lagrange equations of motion (you may wish to derive them by yourself)

$$
\partial_{t}\left(\frac{\partial \mathscr{L}}{\partial \phi_{t}^{*}}\right)+\partial_{x}\left(\frac{\partial \mathscr{L}}{\partial \phi_{x}^{*}}\right)=\frac{\partial \mathscr{L}}{\partial \phi *}
$$

yield the NLS equation (1). Then, one can get the conserved quantities from general considerations ${ }^{3}$.

Useful integrals

$$
\int \frac{\mathrm{d} x}{x \sqrt{1-x^{2}}}=-\operatorname{arcosh}\left(\frac{1}{x}\right), \quad \int_{\mathbb{R}} \frac{\mathrm{d} x}{\cosh ^{2}(x)}=2, \quad \int_{\mathbb{R}} \frac{\mathrm{d} x}{\cosh ^{4}(x)}=\frac{4}{3}
$$

[^1]is a solution of the defocusing version of (1), and that its phase and amplitude are indeed given by S and A.
${ }^{3}$ You may give a look at chapter II.3.1 of the following lecture notes on classical field theory: http://lptms.u-psud.fr/nicolas_pavloff/enseignement/electrodynamique-classique-et-quantique. Note however that the NLS equation is "exactly integrable" and has an infinity of conserved quantities, which cannot be obtained so easily from the Lagrangian (5).

[^0]: ${ }^{1}$ Hints: intermediate steps leading to (3) are: $\left[A^{2}\left(S^{\prime}-V\right)\right]^{\prime}=0$ and $A(\mathrm{~d} f / \mathrm{d} t)=\frac{1}{2} A^{\prime \prime}+\frac{1}{2} A V^{2}-\frac{1}{2} J^{2} / A^{3}-\sigma A^{3}$.

[^1]: ${ }^{2}$ You may prefer to verify directly that

 $$
 \phi(x, t)=A_{0} \mathrm{e}^{-\mathrm{i} A_{0}^{2} t}\left\{\sin \theta-\mathrm{i} \cos \theta \tanh \left[A_{0} \cos \theta(x-V t)\right]\right\}, \quad \text { where } \quad \sin \theta=V / A_{0}
 $$

