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We describe theoretically the quasi-one-dimensional transverse spreading of a light beam propagating in a
nonlinear optical material in the presence of a uniform background light intensity. For short propagation distances
the pulse can be described within a nondispersive (geometric optics) approximation by means of Riemann’s
approach. For larger distances, wave breaking occurs, leading to the formation of dispersive shocks at both edges
of the beam. We describe this phenomenon within Whitham modulation theory, which yields excellent agreement
with numerical simulations. Our analytic approach makes it possible to extract the leading asymptotic behavior
of the parameters of the shock, setting up the basis for a theory of nondissipative weak shocks.
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I. INTRODUCTION

It has long been known that light propagating in a nonlinear
medium is amenable to a hydrodynamic treatment (see, e.g.,
Refs. [1–3]). In the case of a defocusing nonlinearity, this
rich analogy has not only triggered experimental research,
but also made it possible to get an intuitive understanding
of observations of, e.g., the formation of rings in the far
field beyond a nonlinear slab [4,5], dark solitons [6–8], vor-
tices [9–11], wave breaking [12,13], dispersive shock waves
[14–19], spontaneously self-accelerated Airy beams [20], an
optical event horizon [21], ergo regions [22], stimulated
Hawking radiation [23], soniclike dispersion relations [24,25],
and superfluid motion [26]. Very similar phenomena have also
been observed in the neighboring fields of cavity polaritons
and Bose-Einstein condensation of atomic vapors. They all
result from the interplay between nonlinearity and dispersion,
whose effects become prominent near a gradient catastrophe
region.

In this work we present a theoretical treatment of a model
configuration which has been realized experimentally in a
one-dimensional situation in Refs. [15,18]: the nonlinear
spreading of a region of increased light intensity in the
presence of a uniform constant background. In the absence
of background and for a smooth initial intensity pattern, the
spreading is mainly driven by the nonlinear defocusing and
can be treated analytically in some simple cases [1]. The
situation is more interesting in the presence of a constant
background: The pulse splits in two parts, each eventually
experiencing nonlinear wave breaking, leading to the for-
mation of a dispersive shock wave (DSW) which cannot be
described within the framework of perturbation theory, even
if the region of increased intensity corresponds to a weak
perturbation of the flat pedestal. This scenario indeed fits with
the hydrodynamic approach of nonlinear light propagation
and is nicely confirmed by the experimental observations
of Refs. [15,18]. Although the numerical treatment of the
problem is relatively simple [27–29], a theoretical approach to
both the initial splitting of the pulse and the subsequent shock

formation requires a careful analysis. The goal of this article is
to present such an analysis. A most significant outcome of our
detailed treatment is a simple asymptotic description of some
important shock parameters. This provides a nondissipative
counterpart of the usual weak viscous shock theory (see, e.g.,
Ref. [30]) and paves the way for a quantitative experimental
test of our predictions.

The paper is organized as follows. In Sec. II we present the
model and the setup we study. After a brief discussion of the
shortcomings of the linearized approach, the spreading and
splitting stage of evolution is accounted for in Sec. III within
a dispersionless approximation which holds when the pulse
region initially presents no large intensity gradient. It is well
known that in such a situation the light flow can be described
by hydrodynamiclike equations which can be cast into a diag-
onal form for two new position and time-dependent variables:
the so-called Riemann invariants. The difficulty here lies in
the fact that the splitting involves simultaneous variations of
both of them: One does not have an initial simple wave within
which one of the Riemann invariants remains constant, as
occurs, for instance, in a similar unidirectional propagation
case modeled by the Korteweg–de Vries equation (see, e.g.,
Ref. [31]). We treat the problem in Secs. III A and III B using
an extension of the Riemann method due to Ludford [32] (also
used in Ref. [33]) and compare the results with numerical
simulations in Sec. III C. During the spreading of the pulse,
nonlinear effects induce wave steepening, which results in
a gradient catastrophe and wave breaking. After the wave
breaking time, dispersive effects can no longer be omitted
and a shock is formed; in this case we resort to Whitham
modulation theory [30] to describe the time evolution of the
pulse. Such a treatment was initiated long ago by Gurevich
and Pitaevskii [34], and since that time it has developed into
a powerful method with numerous applications (see, e.g., the
review article in [35]). Here there is an additional complexity
which lies, as for the initial nondispersive stage of evolution,
in the fact that two of the (now four) Riemann invariants
which describe the modulated nonlinear oscillations vary in
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the shock region. Such a wave has been termed quasisim-
ple in Ref. [36], and a thorough treatment within Whitham
theory has been achieved in the Korteweg–de Vries case in
Refs. [37–40]. In Sec. IV we generalize this approach to the
nonlinear Schrödinger equation (NLS), which describes light
propagation in the nonlinear Kerr medium (see also Ref. [41]).
An interesting outcome of our theoretical treatment is the
asymptotic determination of experimentally relevant param-
eters of the dispersive shock (Sec. V). In Sec. VI we present
the full Whitham treatment of the after-shock evolution and
compare the theoretical results with numerical simulations.
We present in Sec. VII a panorama of the different regimes we
have identified and discuss how our approach can be used to
get a simple estimate of the contrast of the fringes of the DSW.
This should be helpful in determining the best experimental
configuration for studying the wave breaking phenomenon
and the subsequent dispersive shock. Our conclusions and a
summary of our results are presented in Sec. VIII.

II. MODEL AND LINEAR APPROXIMATION

In the paraxial approximation, the stationary propagation
of the complex amplitude A(�r ) of the electric field of a
monochromatic beam is described by the equation (see, e.g.,
Ref. [42])

i∂zA = − 1

2n0k0
∇2

⊥A − k0δnA. (1)

In this equation, n0 is the linear refractive index, k0 = 2π/λ0

is the carrier wave vector, z is the coordinate along the
beam, ∇2

⊥ is the transverse Laplacian, and δn is a nonlinear
contribution to the index. In a nonabsorbing defocusing Kerr
nonlinear medium we can write δn = −n2|A|2, with n2 > 0.

We define dimensionless units by choosing a refer-
ence intensity Iref and introducing the nonlinear length
zNL = (k0n2Iref )−1 and the transverse healing length ξ⊥ =
(zNL/n0k0)1/2. We consider a geometry where the transverse
profile is translationally invariant and depends on a single
Cartesian coordinate. We thus write ∇2

⊥ = ξ−2
⊥ ∂2

x , where x
is the dimensionless transverse coordinate and we define an
effective time t = z/zNL. The quantity ψ (x, t ) = A/

√
Iref is

then a solution of the dimensionless NLS equation

iψt = − 1
2ψxx + |ψ |2ψ. (2)

In the following we consider a system with a uniform back-
ground light intensity, on top of which an initial pulse is added
at the entrance of the nonlinear cell. The initial ψ (x, t = 0)
is real (i.e., no transverse velocity or, in an optical context,
no focusing of the light beam at the input plane), with a
dimensionless intensity ρ(x, t ) = |ψ |2 which departs from the
constant background value (which we denote by ρ0) only
in the region near the origin where it forms a bump. To be
specific, we consider the typical case where

ρ(x, 0) =
{
ρ0 + ρ1

(
1 − x2/x2

0

)
if |x| < x0

ρ0 if |x| � x0.
(3)

The maximal density of the initial profile is defined as ρm =
ρ0 + ρ1. It would be natural to choose the reference light
intensity Iref to be equal to the background one; in this case

(a)

(b)

FIG. 1. Density profiles ρ(x, t ) for an initial condition u(x, 0) =
0 and ρ(x, 0) given by (3) with ρ0 = 1, ρ1 = 0.15, and x0 = 20.
Results are shown for (a) the numerical solution of Eq. (2) and (b) the
linearized version (4). The profiles are plotted from time t = 0 to
t = 360 with a time step equal to 40.

we would have ρ0 = 1. However, we prefer to be more general
and to allow for values of ρ0 different from unity.

We stress here the paramount importance of nonlinear
effects for large time, i.e., for large propagation distance in
the nonlinear medium. Even for a bump which weakly departs
from the background density, a perturbative approach fails
after the wave breaking time. This is illustrated in Fig. 1,
which compares numerical simulations of the full Eq. (2) with
its linearized version. The linearized treatment is obtained by
writing ψ (x, t ) = exp(−iρ0t )[

√
ρ0 + δψ (x, t )] and assuming

that |δψ |2 � ρ0, which yields the evolution equation

i∂tδψ = − 1
2∂2

x δψ + ρ0(δψ + δψ∗) (4)

and then ρ(x, t ) � ρ0 + √
ρ0(δψ + δψ∗). In the case illus-

trated in Fig. 1, the initial profile has, at its maximum, a
weak 15% density increase with respect to the background.
The initial splitting of the bump is correctly described by
the linearized approach, but after the wave breaking time
the linearized evolution goes on predicting a roughly global
displacement of the two humps at constant velocity (with
additional small dispersive corrections) and clearly fails to
reproduce both the formation of DSWs and the stretching
of the dispersionless part of the profile (which reaches a
quasitriangular shape).
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III. DISPERSIONLESS STAGE OF EVOLUTION

In view of the shortcomings of the linearized approxima-
tion illustrated in Fig. 1, we include nonlinear effects at all
stages of the dynamical study of the model. By means of the
Madelung substitution

ψ (x, t ) =
√

ρ(x, t ) exp

(
i
∫ x

u(x′, t )dx′
)

, (5)

the NLS equation (2) can be cast into a hydrodynamiclike
form for the density ρ(x, t ) and the flow velocity u(x, t ):

ρt + (ρu)x = 0,

ut + uux + ρx +
(

ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0.
(6)

These equations are to be solved with the initial conditions (3)
and u(x, 0) = 0.

The last term on the left-hand side of the second of Eqs. (6)
accounts for the dispersive character of the fluid of light. In the
first stage of spreading of the bump, if the density gradients of
the initial density are weak, i.e., if x0 
 max{ρ−1/2

0 , ρ
−1/2
1 },

the effects of dispersion can be neglected and the system (6)
then simplifies to

ρt + (ρu)x = 0, ut + uux + ρx = 0. (7)

These equations can be written in a more symmetric form by
introducing the Riemann invariants

λ±(x, t ) = u(x, t )

2
±

√
ρ(x, t ), (8)

which evolve according to the system [equivalent to (7)]

∂tλ
± + v±(λ−, λ+)∂xλ

± = 0, (9)

with

v±(λ−, λ+) = 1
2 (3λ± + λ∓) = u ± √

ρ. (10)

The Riemann velocities (10) have a simple physical inter-
pretation for a smooth velocity and density distribution: v+
(v−) corresponds to a signal which propagates downstream
(upstream) at the local velocity of sound c = √

ρ and which
is dragged by the background flow u.

The system (9) can be linearized by means of the hodo-
graph transform (see, e.g., Ref. [43]), which consists in con-
sidering x and t as functions of λ+ and λ−. We readily obtain

∂±x − v∓∂±t = 0, (11)

where ∂± ≡ ∂/∂λ±. We introduce two auxiliary (yet un-
known) functions W±(λ+, λ−) such that

x − v±(λ−, λ+)t = W±(λ−, λ+). (12)

Inserting the above expressions in (11) shows that the W ± are
solutions of Tsarev equations [44]

∂−W+
W+ − W−

= ∂−v+
v+ − v−

,
∂+W−

W+ − W−
= ∂+v−

v+ − v−
. (13)

From Eqs. (10) and (13) we can verify that ∂−W+ = ∂+W−,
which shows that W+ and W− can be sought in the form

W± = ∂±χ, (14)

where χ (λ−, λ+) plays the role of a potential. Substituting
expressions (14) in one of the Tsarev equations shows that χ

is a solution of the Euler-Poisson equation

∂2χ

∂λ+∂λ− − 1

2(λ+ − λ−)

(
∂χ

∂λ+ − ∂χ

∂λ−

)
= 0, (15)

which can be written under the standard form

∂2χ

∂λ+∂λ− + a(λ−, λ+)
∂χ

∂λ+ + b(λ−, λ+)
∂χ

∂λ− = 0, (16)

with

a(λ−, λ+) = −b(λ−, λ+) = − 1

2(λ+ − λ−)
. (17)

A. Solution of the Euler-Poisson equation

We can use Riemann’s method to solve Eq. (16) in the
(λ+, λ−) plane, which we refer to below as the characteristic
plane. We follow here the procedure given in Refs. [32,33],
which applies to nonmonotonic initial distributions, such as
the one corresponding to Eq. (3).

We first schematically depict in Fig. 2 the initial spatial
distributions λ±(x, 0) of the Riemann invariants [Fig. 2(a)]
and their later typical time evolution [Figs. 2(b) and 2(c)].
We introduce notation for several special initial values of the
Riemann invariants: λ±(−x0, 0) = λ±(x0, 0) = ±√

ρ0 = ±c0

and λ±(0, 0) = ±√
ρm = ±cm. We also define as part A (B)

the branch of the distribution of the λ± which is at the right
(left) of the extremum. All the notation is summarized in
Fig. 2(a).

At a given time, the x axis can be considered as divided into
five domains, each requiring a specific treatment. Each region
is characterized by the behavior of the Riemann invariant and
is identified in Figs. 2(b) and 2(c). The domains in which
both Riemann invariants depend on position are labeled by
arabic numbers and the ones in which only one Riemann
invariant depends on x are labeled by roman numbers. For
instance, in region III, λ+ is a decreasing function of x while
λ− = −c0 is a constant; in region 3, λ+ is decreasing while
λ− is increasing; in region 2 both are increasing; etc.

The values of the Riemann invariants at time corresponding
to Fig. 2(b) are represented in the characteristic plane in
Fig. 3(a). In this plot the straight solid lines correspond to
the simple-wave regions (I and III) while the curvy lines
corresponds to regions where both Riemann invariants de-
pend on position: domains 1, 2, and 3. In each of these
three domains the solution χ of the Euler-Poisson equation
has a different expression. In order to describe these three
branches, following Ludford [32], we introduce several sheets
in the characteristic plane by unfolding the domain [c0, cm] ×
[−cm,−c0] into a four times larger region as illustrated in
Fig. 3(b). The potential χ (λ−, λ+) can now take a different
form in each of the regions labeled 1, 2, and 3 in Fig. 3(b) and
still be considered as single valued.

We consider a flow where initially u(x, 0) = 0, which
implies that λ+(x, 0) = −λ−(x, 0). This condition defines the
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FIG. 2. Sketch of the distributions λ±(x, t ) at several times. In
each panel the top solid curve represent λ+ (always larger than c0)
and the bottom one λ− (always lower than −c0), both plotted as
functions of x. (a) Initial distribution, in which part B corresponds
to region 1 and part A to region 3 (see the text). Two subsequent
relevant stages of evolution are represented in (b) and (c). They
correspond to times t1 < tSW(cm ) < t2, where tSW(cm ) is defined in
Sec. III B (see also Fig. 4). For t > 0, λ+ (λ−) moves to the right (to
the left) and part B of λ+ starts to overlap with part A of λ−. This
behavior initially leads to the configuration represented in (b), where
a new region (labeled region 2) has appeared. For later convenience,
we spot in this panel the value λ+

1|2(t1) of the Riemann invariant
λ+ at the boundary between regions 1 and 2 (see the discussion in
Sec. III C). For longer time [in (c)], region 2 remains while regions
1 and 3 vanish and new simple-wave regions IIl and IIr appear.
At even larger times (not represented), region 2 also vanishes and
only simple-wave regions remain: The initial pulse has split into two
simple-wave pulses propagating in opposite directions.

curve of initial conditions of our problem in the characteristic
plane. It is represented by a red solid curve labeled C0 in
Fig. 3. We remark here that the whole region above C0 [shaded
in Fig. 3(b)] is unreachable for the initial distribution we
consider: For instance, the upper shaded triangle in region 1
would correspond to a configuration in which λ+

region1(x, t ) >

|λ−
region1(x, t )|, which does not occur in our case [see

Fig. 2(b)].
Before establishing that the expression for χ is the three

relevant regions of Fig. 3, it is convenient to define the inverse

FIG. 3. (a) Behavior of the Riemann invariants in the character-
istic plane at a given time t . (b) Same curve on the four-sheeted un-
folded surface. The red curve C0 corresponds to the initial condition
[λ−(x, 0) = −λ+(x, 0)]. At later time, the relation between λ+(x, t )
and λ−(x, t ) is given by the black solid curve, which is denoted by
Ct in the text. A generic point P of Ct has coordinates (λ+, λ−) and
points C1, A1, B2, C3, and A3 lie on the initial curve C0. Points A2

and C2 lie on a boundary between two regions. The arrows indicate
the direction of integration in Eqs. (21) and (28). In our problem, the
whole gray shaded domain above C0 is unreachable.

functions of the initial λ profiles in both parts A and B of
Fig. 2(a). The symmetry of the initial conditions makes it
possible to use the same functions for λ+ ∈ [c0, cm] and λ− ∈
[−cm,−c0]:

x =

⎧⎪⎨
⎪⎩

wA(λ±) = x0

√
1 − (λ± )2−ρ0

ρm−ρ0
if x > 0

wB(λ±) = −x0

√
1 − (λ± )2−ρ0

ρm−ρ0
if x < 0.

(18)
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For t = 0, using Eqs. (12) and (14), the boundary conditions
read

∂χ

∂λ±

∣∣∣∣
λ±(x,t=0)

= x = wA(B)(λ±), (19)

where the superscript B holds in region 1 (when x < 0) and
A holds in region 3 (x > 0). Formula (19) requires some
explanation: Its left-hand side is a function of two variables
λ+ and λ− which is evaluated for λ− = −λ+; its right-hand
side is expressed by the same function in terms of λ+ or λ−
since the functions wA and wB depend only on the square of
their argument. The boundary conditions (19) correspond to a
potential χ which takes the form along C0,

χ (n)(λ− = −λ+, λ+)

=
∫ λ+

c0

wA(B)(r)dr +
∫ λ−

−c0

wA(B)(r)dr, (20)

where n = 1 or 3 and, on the right-hand side, the superscript
A (B) holds when n = 3 (n = 1). For the specific initial con-
dition we consider [u(x, 0) ≡ 0 and ρ(x, 0) an even function
of x], wA and wB are even functions and thus our choice of
integration constants yields χ = 0 along C0.

Let us now consider a point P, lying in either region 1 or
3 (the case of region 2 is considered later), with coordinates
(λ+, λ−) in the characteristic plane. We introduce points A1,
A3, C1, and C3 which are located on the curve C0, with geo-
metrical definitions obvious from Fig. 3(b). Note the different
subscripts for C and A: Subscript 1 (3) is to be used if P is in
region 1 (3). We can obtain the value of χ at the point P from
Riemann’s method (see, e.g., Ref. [45]); the general solution
reads

χ (n)(P) = 1

2
χ (Cn)R(Cn) + 1

2
χ (An)R(An)

−
∫ Cn

An

V dr + U ds, (21)

with

U (s, r) = 1

2

(
R

∂χ

∂s
− χ

∂R

∂s

)
+ aRχ,

V (s, r) = 1

2

(
χ

∂R

∂r
− R

∂χ

∂r

)
− bRχ,

(22)

where

R(s, r) = 2

π

√
r − s

λ+ − λ− K[m(s, r)], (23)

with K the complete elliptic integral of the first kind and

m(s, r) = (λ+ − r)(λ− − s)

(r − s)(λ+ − λ−)
(24)

the associated parameter (we follow here the convention of
Ref. [46]). In our case, the symmetries of the initial profile
lead to many simplifications in formulas (21) and (22). Along
the curve C0 we have χ = 0. This implies that χ (n)(An) =
χ (n)(Cn) = 0, and along the integration path going from An

to Cn we have

U = 1
2wA(B)(r)R(s = −r, r) = −V, (25)

where the superscript A (B) holds when P is in region 3
(region 1). Explicit evaluation of expression (21) then yields

χ (n)(P) = 2
√

2

π
√

λ+ − λ−

∫ λ+

−λ−

√
rK[m(r)]wA(B)(r)dr, (26)

where

m(r) ≡ m(−r, r) = (λ+ − r)(λ− + r)

2r(λ+ − λ−)
. (27)

To calculate χ (P) in region 2 we define three points: A2,
B2, and C2 [see Fig. 3(b)]. Point B2 is on the curve C0, at
the junction between regions 1, 2, and 3. Point A2 lies on
the characteristic curve λ+ = cm, on the boundary between
regions 2 and 3, whereas point C2 lies on the characteristic
λ− = −cm, on the boundary between regions 1 and 2. Then,
from Eqs. (21)–(24), we can easily find that in region 2,

χ (2)(P) = χ (B2)R(B2) +
∫ C2

B2

(
∂χ

∂r
+ bχ

)
R1(r)dr

−
∫ B2

A2

(
∂χ

∂s
+ aχ

)
R2(s)ds, (28)

where

R1(r) ≡ 2

π

√
r + cm

λ+ − λ− K[m1(r)],

m1(r) = (r − λ+)(cm + λ−)

(r − λ−)(λ+ + cm)
(29)

and

R2(s) = 2

π

√
cm − s

λ+ − λ− K[m2(s)],

m2(s) = (cm − λ+)(λ− − s)

(cm − λ−)(λ+ − s)
. (30)

Note that in formula (28) we have χ (B2) = 0 and the value of
χ along the integration lines B2C2 and A2B2 is known from the
previous result (26). After some computation we eventually
get the expression for χ (P) in region 2,

χ (2)(P) = 2
√

2

π
√

λ+ − λ−

[ ∫ λ+

cm

√
rK[m0(r; λ+)]wB(r)dr

+
∫ cm

−λ−

√
rK[m0(r; −λ−)]wA(r)dr

]

+ 4
√

2

π2
√

λ+ − λ−

[ ∫ λ+

cm

√
rwB(r) f1(r)dr

+
∫ cm

−λ−

√
rwA(r) f2(r)dr

]
, (31)

where we have introduced the notation

f1(r) =
∫ r

λ+
K[m0(r; u)]

∂K[m1(u)]

∂u
du,

f2(r) =
∫ r

−λ−
K[m0(r; u)]

∂K[m2(−u)]

∂u
du,

(32)

with

m0(r; u) = (r − u)(cm − r)

2r(u + cm)
. (33)
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In many instances we can actually simplify the expressions
(26) and (31): for reasonable values of cm (chosen to be of
same order as c0 in our simulations) the elliptic integral K(m)
turns out to be approximately equal to π/2 for all points P
in the three regions. In this case, the exact expressions (26)
and (31) can be replaced by a simple approximation χ (P) �
χapp(P) which reads, when P is in region n = 1 or 3,

χ (n)
app(λ−, λ+) =

√
2√

λ+ − λ−

∫ λ+

−λ−

√
rwA(B)(r)dr, (34)

where the superscript A (B) holds when n = 3 (n = 1). When
P is in region 2 we get

χ (2)
app(λ−, λ+) =

√
2√

λ+ − λ−

∫ λ+

cm

√
rwB(r)dr

+
√

2√
λ+ − λ−

∫ cm

−λ−

√
rwA(r)dr. (35)

This approximation greatly simplifies the numerical determi-
nation of the integrals involved in the solution of the problem.
We have checked that it is very accurate in all the configura-
tions we study in the present work. The reason for its validity
is easy to understand in regions 1 and 3: The argument of the
elliptic integral K in Eq. (26) is zero at the two boundaries of
the integration domain (r = −λ− and r = λ+) and reaches a
maximum when r = √−λ−λ+, taking the value

0 � mmax = 1

2

(
1 − 2

√−λ−λ+

λ+ − λ−

)
� 1

2
. (36)

As time varies, the largest value of mmax is reached at the point
where region 3 disappears, when λ+ = cm and λ− = −c0.
For cm/c0 ∼ 1 this value is typically much lower than the
upper bound 1

2 of Eq. (36). For instance, in the numerical
simulations below, we take ρ0 = 0.5 and ρm = 2 and we get
accordingly c0 = √

0.5 and cm = √
2 and the corresponding

largest value of mmax is �2.9 × 10−2.

B. Simple-wave regions

Once χ has been computed in the domains 1, 2, and 3
where two Riemann invariants depend on position, it remains
to determine the values of λ+ and λ− in the simple-wave
regions. Let us focus on, for instance, region III, in which
λ− = −c0 and λ+ depends on x and t . The behavior of the
characteristics in the (x, t ) plane is sketched in Fig. 4. We
see in this figure that the characteristic of a given value of
λ+ enters the simple-wave region III at a given time, which
we denote by tSW(λ+), and a given position xSW(λ+). Beyond
this point the characteristic becomes a straight line and the
general solution of Eq. (9) for λ+ is known to be of the form

x − v+(−c0, λ
+)t = h(λ+), (37)

where the unknown function h is determined by boundary
conditions. From Eq. (12) we see that just at the boundary
between regions 3 and III we have

xSW(λ+) − v+(−c0, λ
+)tSW(λ+) = W (3)

+ (−c0, λ
+), (38)

where W (3)
+ = ∂+χ (3). This shows that in Eq. (37) the

unknown function h(λ+) is equal to W (3)
+ (−c0, λ

+). The

const

FIG. 4. Sketch of the characteristics in the (x, t ) plane. The black
(red) solid lines are specific characteristics for λ+ (λ−) stemming
from the edges of the hump and from its maximum. The thick dashed
line is a generic characteristic of λ+. In the hatched regions both
Riemann invariants are constant [λ±(x, t ) = ±c0] and the profile
is flat. In the colored regions both Riemann invariants depend on
position (the color code is the same as in Fig. 3: region 1 is pink,
region 2 is yellow, and region 3 is cyan). In the white regions only
one Riemann invariant depends on position: We have a simple wave.
The notation is explained in the text.

equation of the characteristic in region III thus reads

x − v+(−c0, λ
+)t = W (3)

+ (−c0, λ
+). (39)

Similar reasoning shows that in region I we have

x − v−(λ−, c0)t = W (1)
− (λ−, c0). (40)

For time larger than tSW(cm), regions 1 and 3 disappear and
two new simple-wave regions appear, which we denote by IIl

and IIr [see Fig. 4 and also Fig. 2(c)]. The same reasoning
as above shows that in these regions the characteristics are
determined by

x − v+(−c0, λ
+)t = W (2)

+ (−c0, λ
+) in IIr (41)

and

x − v−(λ−, c0)t = W (2)
− (λ−, c0) in IIl . (42)

C. Solution of the dispersionless problem and comparison
with numerical simulations

The problem is now solved: Having determined χ in
regions 1, 2, and 3 (see Sec. III A), we obtain W± in these
regions from Eqs. (14).

(i) It is then particularly easy to find the values of λ+ and
λ− in the simple-wave regions. For instance, in region III, we
have λ− = −c0, and for given x and t , λ+ is obtained from
Eq. (39). The same procedure is to be employed in the simple-
wave regions I, IIr , and IIl , where the relevant equations are
then Eqs. (40), (41), and (42), respectively.

(ii) To determine the values of λ+ and λ− as functions of
x and t in regions 1, 2, and 3 we follow a different procedure
which is detailed below, but which essentially consists in the
following: For a given time t and a given region n (n = 1, 2,
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FIG. 5. Theoretical curves Ct representing λ− as a function of
λ+ at a given time in the characteristic plane. The curves are plotted
for t = 0 (C0, in red), t = 2 (blue), t = 5 (orange), and t = 20 >

tSW(cm ) (green). The corresponding initial distribution λ±(x, 0) is
schematically represented in Fig. 2(a). We take here c0 = 1/

√
2 and

cm = √
2.

or 3) we pick one of the possible values of λ+. From Eqs. (12)
λ− is then solution of

W (n)
+ (λ−, λ+) − W (n)

− (λ−, λ+)

v+(λ−, λ+) − v−(λ−, λ+)
+ t = 0 (43)

and x is determined by either one of Eqs. (12). So, for given
t and λ+ in region n, we have determined the values of λ−
and x. In practice, this makes it possible to associate a couple
(λ−, λ+) in region n to each (x, t ).

The procedure for determining the profile in regions 1, 2,
and 3 which has just been explained has to be implemented
with care, because the relevant regions to be considered and
their boundaries change with time; for instance, regions 1 and
3 disappear when t > tSW(cm). It would be tedious to list here
all the possible cases so instead we explain the specifics of the
procedure by means of an example: the determination of λ+
and λ− in region 1 when t < tSW(cm).

We start by determining the value of λ+ along the char-
acteristic λ− = −cm at time t (see Fig. 4). This value of
λ+ defines the boundary between regions 1 and 2 and we
accordingly denote it by λ+

1|2(t ); it is represented in Fig. 2(b).
From Eqs. (12) it is a solution of

W (1)
+ (−cm, λ+

1|2) − W (1)
− (−cm, λ+

1|2)

v+(−cm, λ+
1|2) − v−(−cm, λ+

1|2)
+ t = 0. (44)

We then know that, in region 1, at time t , λ+ takes all possible
values between c0 and λ+

1|2(t ). Having determined the precise
range of variation of λ+ we can now, for each possible λ+,
determine λ− from Eq. (43) (with n = 1) and follow the
above-explained procedure.

(iii) The approach described in the present section makes it
possible to determine the curve Ct representing, at time t , the
profile in the unfolded characteristic plane. A sketch of Ct was
given in Fig. 3(b); it is now precisely represented in Fig. 5 for
several values of t , along with the initial curve C0.

Once λ+ and λ− have been determined as functions of x
and t , the density and velocity profiles are obtained through
Eqs. (8). We obtain an excellent description of the initial
dispersionless stage of evolution of the pulse, as demonstrated

−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0

ρ
(x

,t
=

5)

FIG. 6. Comparison between theory and simulations for t = 5.
The red dashed curve is extracted from the exact solution of the
dispersionless system (9) (see the text), while the blue curve displays
the numerical solution of Eq. (2) with the initial conditions u(x, 0) =
0 and ρ(x, 0) given by Eq. (3) taking ρ0 = 0.5, ρ1 = 1.5 (i.e., ρm =
2), and x0 = 20. The corresponding initial distributions λ±(x, 0) are
drawn schematically in Fig. 2(a), here with c0 = √

ρ0 = √
0.5 and

cm = √
ρm = √

2.

by the very good agreement between theory and numerical
simulations illustrated in Figs. 6 and 7. These figures, together
with Fig. 8, compare at different times the theoretical density
profile ρ(x, t ) with the one obtained by numerical integration
of Eq. (2), taking the initial condition u(x, 0) = 0 and ρ(x, 0)
given by (3) with ρ0 = 0.5, ρm = 2, and x0 = 20. Similar
agreement is obtained for the velocity profile u(x, t ). Note
that for time t = 5, some small diffractive contributions at
the left and right boundaries of the pulse are not accounted
for by our dispersionless treatment (see Fig. 6). At larger
time, the density profile at both ends of the pulse steepens
and the amplitude of these oscillations accordingly increases.
There exists a certain time, the wave breaking time tWB, at
which nonlinear spreading leads to a gradient catastrophe;
the dispersionless approximation subsequently predicts a non-
physical multivalued profile, as can be seen in Fig. 7 and more
clearly in Fig. 8. The time tWB can be easily computed if the
wave breaking occurs at the simple-wave edges of the pulse
(see, e.g., [47]) as it happens in our case, when the simple

−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0

ρ
(x

,t
=

10
)

FIG. 7. Same as Fig. 6 but with t = 10. Notice that the disper-
sionless treatment leads to small regions of multivalued profile at
both edges of the pulse.
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−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0
ρ
(x

,t
=

15
)

FIG. 8. Same as Figs. 6 and 7 but with t = 15. The multivalued-
ness of the theoretical profile is obvious here. It is associated with
the formation of dispersive shocks at both edges of the pulse.

waves I and III break. These edges propagate with the sound
velocity c0 over a flat background and, at the wave breaking
moment, the profile of λ+ in region III (or λ− in region I)
has a vertical tangent line in the limit λ+ → c0 (λ− → −c0),
that is, ∂x/∂λ± → 0 as λ± → ±c0. Then differentiation of the
simple-wave solution (39) or (40) gives at once

tWB = 2

3

∣∣∣∣∣dW (3)
+ (−c0, λ

+)

dλ+

∣∣∣∣∣
λ+=c0

(45)

(for definiteness we consider the simple wave in the region
III). Substitution of the expression for W (3)

+ (−c0, λ
+) in the

relation (45) yields, after simple calculations [48],

tWB = 2

3

∣∣∣∣dwA

dλ+

∣∣∣∣
λ+=c0

. (46)

The numerical value of tWB is �6.3 for our choice of initial
condition, in excellent agreement with the onset of double
valuedness of the solution of the Euler-Poisson equation. In
dispersive nonlinear systems the wave breaking is regularized
by formation of regions with large oscillations of density and
flow velocity, whose extent increases with time. This situation
is typical for the formation of dispersive shock waves and
requires a nonlinear treatment able to account for dispersive
effects. Such an approach is introduced in the next section, but
before turning to this aspect, we now compute an important
characteristics time: the time tsplit at which the initial bump has
exactly split into two separated parts. For t > tsplit a plateau
of constant density ρ0 develops between the two separated
humps, as illustrated, for instance, in Fig. 1. We can see from
Fig. 4 that tsplit = tSW(c0) and can thus be computed from
Eqs. (12) as

tsplit = W (2)
− (−c0, c0) − W (2)

+ (−c0, c0)

v+(−c0, c0) − v−(−c0, c0)
. (47)

On the right-hand side of this equation we have W (2)
± =

∂±χ (2), where it is legitimate to use the expression (35) since
we are in the limiting case where λ+ = −λ−. This yields at
once

tsplit = x0

c0
+ 1

4c5/2
0

∫ cm

c0

√
r[wA(r) − wB(r)]dr. (48)

In the limit of a very small initial bump, cm is very close to
c0 and the second term on the right-hand side of Eq. (48) is
negligible. In this case a linear approach is valid: The two
subparts of the bump move, one to the right, the other to the
left, at velocities ±c0 and a time tsplit � x0/c0 is needed for
their complete separation. The second term on the right-hand
side of Eq. (48) describes the nonlinear correction to this
result. For the initial profile (3) the expressions of wA and wB

are given in Eq. (18) and we directly obtain, from Eq. (48),

tsplit = x0

c0
[1 + G(ρ1/ρ0)], (49)

where

G(X ) = X

4

∫ 1

0

√
1 − u

(1 + Xu)1/4
du. (50)

In the simulations, we took x0 = 20, c0 = √
0.5, and ρ1/ρ0 =

3 and formula (49) then yields tsplit � 40.1. Note that in this
case the simple linear estimate would be x0/c0 � 28.3. The
accuracy of the result (49) can be checked against numerical
simulations by plotting the numerically determined central
density of the hump ρ(x = 0, t ) as a function of time and
checking that it just reaches the background value at t = tsplit .
This is indeed the case: For the case we consider here ρ(x =
0, t = 40.1) departs from ρ0 by only 3%.

For a small bump with ρ1 � ρ0, the weak nonlinear correc-
tion to the linear result is obtained by evaluating the small-X
behavior of the function G in (50). This yields

tsplit � x0

c0

[
1 + 1

6

ρ1

ρ0
− 1

60

(
ρ1

ρ0

)2

+ · · ·
]
. (51)

For the numerical values for which we performed the simula-
tions, stopping expansion (51) at first order in ρ1/ρ0 yields
tsplit � 42.4. At the next order we get tsplit � 38.2. These
values are reasonable upper and lower bounds for the exact
result. Of course, the expansion is more efficient for lower
values of ρ1/ρ0: Even for the relatively large value ρ1/ρ0 = 1,
expansion (51) gives an estimate which is off the exact result
(49) by only 0.3%.

IV. WHITHAM THEORY AND GENERALIZED
HODOGRAPH METHOD

In this section we first give a general presentation of
Whitham modulational theory (Sec. IV A) and then discuss
specific features of its implementation for the case in which
we are interested (Sec. IV B).

A. Periodic solutions and their modulations

The NLS equation (2) is equivalent to the system (6) which
admits nonlinear periodic solutions that can be written in
terms of four parameters λ1 � λ2 � λ3 � λ4 in the form (see,
e.g., Ref. [43])

ρ(x, t ) = 1

4
(λ4 − λ3 − λ2 + λ1)2 + (λ4 − λ3)(λ2 − λ1)

× sn2(
√

(λ4 − λ2)(λ3 − λ1)(x − V t ), m),

u(x, t ) = V − C

ρ(x, t )
, (52)
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where sn is the Jacobi elliptic sine function (see, e.g.,
Ref. [46]),

V = 1
2

4∑
i=1

λi, m = (λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
, (53)

and

C = 1
8 (−λ1 − λ2 + λ3 + λ4)(−λ1 + λ2 − λ3 + λ4)

× (λ1 − λ2 − λ3 + λ4). (54)

For constant λi, expressions (52)–(54) correspond to an exact
(single-phase) solution of the NLS equation, periodic in time
and space, where oscillations have the amplitude

a = (λ2 − λ1)(λ4 − λ3) (55)

and the spatial wavelength

L = 2K(m)√
(λ4 − λ2)(λ3 − λ1)

. (56)

In the limit m → 0 (λ1 = λ2 or λ3 = λ4), sn(x, m) → sin(x)
and Eq. (52) describes a small-amplitude sinusoidal wave
oscillating around a constant background. In the other lim-
iting case m → 1 (λ2 = λ3), sn(x, m) → tanh(x) and Eq. (52)
describes a dark soliton (for which L → ∞).

The great insight of Gurevich and Pitaevskii [34] was
to describe a dispersive shock wave as a slowly modulated
nonlinear wave, of type (52), for which the λi are functions
of x and t which vary weakly over one wavelength and one
period. Their slow evolution is governed by the Whitham
equations [30,43]

∂tλi + vi(λ1, λ2, λ3, λ4)∂xλi = 0, i = 1, 2, 3, 4. (57)

Comparing with Eqs. (9), we see that the λi are the Rie-
mann invariants of the Whitham equations first found in
Refs. [49,50]. The vi are the associated characteristic ve-
locities; their explicit expressions can be obtained from the
relation [38,43]

vi = V − 1

2

L

∂iL
, i = 1, 2, 3, 4, (58)

where ∂i = ∂/∂λi. This yields

v1 = V − (λ4 − λ1)(λ2 − λ1)K(m)

(λ4 − λ1)K(m) − (λ4 − λ2)E(m)
,

v2 = V + (λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m) − (λ3 − λ1)E(m)
,

v3 = V − (λ4 − λ3)(λ3 − λ2)K(m)

(λ3 − λ2)K(m) − (λ4 − λ2)E(m)
,

v4 = V + (λ4 − λ3)(λ4 − λ1)K(m)

(λ4 − λ1)K(m) − (λ3 − λ1)E(m)
,

(59)

where m is given by Eq. (53) and E(m) is the complete elliptic
integrals of the second kind.

In the soliton limit m → 1, i.e., λ3 → λ2, the Whitham
velocities reduce to

v1 = 1
2 (3λ1 + λ4), v2 = v3 = 1

2 (λ1 + 2λ2 + λ4),

v4 = 1
2 (λ1 + 3λ4).

(60)

In a similar way, in the small-amplitude limit m → 0, i.e.,
λ2 → λ1, we obtain

v1 = v2 = 2λ1 + (λ4 − λ3)2

2(λ3 + λ4 − 2λ1)
,

v3 = 1

2
(3λ3 + λ4), v4 = 1

2
(λ3 + 3λ4),

(61)

and in another small-amplitude limit (m → 0 when λ3 → λ4),
we have

v1 = 1

2
(3λ1 + λ2), v2 = 1

2
(λ1 + 3λ2),

v3 = v4 = 2λ4 + (λ2 − λ1)2

2(λ1 + λ2 − 2λ4)
. (62)

B. Generalized hodograph method

In Sec. III we have provided a nondispersive description of
the spreading and splitting of the initial pulse in two parts (one
propagating to the left and the other to the right). During this
nonlinear process the leading wavefront steepens and leads to
wave breaking. This occurs at a certain time tWB after which
the approach of Sec. III predicts a nonphysical multivalued
profile (see, e.g., Fig. 8), since it does not take into account
dispersive effects. The process of dispersive regularization of
the gradient catastrophe leads to the formation of a dispersive
shock wave, as first predicted by Sagdeev in the context of
collisionless plasma physics (see, e.g., Ref. [51]).

For the specific case we are interested in, the Gurevich-
Pitaevskii approach, which consists in using Whitham theory
for describing the DSW as a slowly modulated nonlinear
wave, holds, but it is complicated by the fact that two of the
four Riemann invariants vary in the shock region. As already
explained in the Introduction, we adapt here the method
developed in Refs. [37–40] for treating a similar situation for
the Korteweg–de Vries equation. The general case of NLS
dispersive shock with all four Riemann invariants varying was
considered in Ref. [52].

In all the following we concentrate our attention on the
shock formed at the right edge of the pulse propagating to
the right. Due to the symmetry of the problem, the same
treatment can be employed for the left pulse. The prediction of
multivalued λ+ resulting from the dispersionless approach of
Sec. III suggests that after wave breaking of the simple-wave
solution, the correct Whitham-Riemann invariant should be
sought in a configuration such that λ1 = λ− = −c0, λ2 =
λ+(x → ∞) = c0, and λ3 and λ4 both depend on x and t . In
this case the Whitham equations (57) with i = 1, 2 are trivially
satisfied, and to solve them for i = 3 and 4, we introduce two
functions Wi(λ3, λ4) (i = 3 or 4), exactly as we did in Sec. III
with W±(λ−, λ+):

x − vi(λ3, λ4)t = Wi(λ3, λ4), i = 3, 4. (63)

For the sake of brevity we have defined in this equation
vi(λ3, λ4) = vi(λ1 = −c0, λ2 = c0, λ3, λ4) for i ∈ {3, 4}; we
will keep this notation henceforth.

Then we can derive Tsarev equations for Wi(λ3, λ4) [re-
placing the subscripts + and − by 4 and 3 in (13)] and we can
show (see, e.g., Refs. [38,52–54]) that these are solved for Wi
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of the form

Wi =
(

1 − L

∂iL
∂i

)
W = W + 2(vi − V )∂iW , (64)

where W (λ3, λ4) is solution of the Euler-Poisson equation

∂34W = ∂3W − ∂4W

2(λ3 − λ4)
. (65)

As was first understood in Ref. [36], after the wave breaking
time, the development of the dispersive shock wave occurs
in two steps. Initially (when t is close to tWB), the DSW is
connected at its left edge to the smooth profile coming from
the time evolution of the right part of the initial profile of
λ+ (part A), which is gradually absorbed in the DSW. This
process of absorption is complete at a time we denote by
tA|B. Then, for t > tA|B, the DSW is connected to the smooth
profile coming from the time evolution of part B of λ+ [this is
case B, region B of the (x, t ) plane]. During the initial step
(for t < tA|B), for a given time t , the highest value of the
largest Riemann invariant is reached within the smooth part
of the profile and keeps the constant value cm. Then, in the
subsequent time evolution, this highest value is reached within
the DSW (or at its right boundary) where there exists a point
where λ4 takes its maximal value (cm). We illustrate these two
steps of development of the DSW in Fig. 9. We refer to the
region of the DSW where λ4 is a decreasing function of x as
region A and the part where it increases as region B.

In region A of the (x, t ) plane, we denote by W A(λ3, λ4)
the solution of the Euler-Poisson equation and in region B we
denote it instead by W B(λ3, λ4). These two forms are joined
by the line λ4 = cm, where

W A(λ3, cm) = W B(λ3, cm). (66)

We denote the position where this matching condition is
realized by xm(t ) [see Fig. 9(b)]. The corresponding boundary
in the (x, t ) plane is represented as a green solid curve in
Fig. 10.

Since the general solution of the Euler-Poisson equation
with the appropriate boundary conditions and the construction
of the resulting nonlinear pattern are quite involved, we will
first consider some particular but useful results which follow
from general principles of the Whitham theory.

V. MOTION OF THE SOLITON EDGE OF THE SHOCK

During the first stage of evolution of the DSW, its left
(solitonic) edge is connected to the smooth dispersionless
solution whose dynamics is described by formula (39), that
is, we have here

xS − v+(−c0, λS)t = W (3)
+ (−c0, λS), (67)

where xS(t ) is the position of the left edge of the DSW and
λS(t ) ≡ λ+(xS(t ), t ). We recall that in all the following we
focus on the DSW formed in the right part of the pulse. Hence
Eq. (67) concerns the right part of the nondispersive part of
the profile. According to the terminology of Sec. III, this
corresponds to region III.

On the other hand, in vicinity of this boundary, the
Whitham equations (57) with the limiting expressions (60)

FIG. 9. Schematic plots of the position dependence of the Rie-
mann invariants inside (blue solid curves) and outside (yellow solid
curves) the DSW (colored region). (a) For t < tA|B, the DSW is
connected to the smooth profile coming from the time evolution of
part A of the initial pulse. At t = tA|B, part A is completely absorbed
by the DSW. Thus, for this time, the shock wave connects to the
smooth profile exactly at λ+(xS(t ), t ) = cm. (b) For t > tA|B, the
DSW is connected at its left edge at a point belonging to part B of the
dispersionless profile. In this case the shock wave is divided into two
regions A and B, separated by the green vertical line in the plot. The
continuity along the separation line between the two regions, i.e., at
x = xm(t ), is ensured by Eq. (66).

(where λ2 = λ3 = c0) for the velocities vi are given by

∂tλ3 + 1
2 (λ4 + c0)∂xλ3 = 0,

∂tλ4 + 1
2 (3λ4 − c0)∂xλ4 = 0. (68)

To solve these equations we can perform a classical hodo-
graph transform, that is, we assume that x and t are functions
of the independent variables λ3 and λ4: t = t (λ3, λ4) and
x = x(λ3, λ4). We find from Eqs. (68) that these functions
must satisfy the linear system

∂x

∂λ3
− 1

2
(3λ4 − c0)

∂t

∂λ3
= 0,

∂x

∂λ4
− 1

2
(λ4 + c0)

∂t

∂λ4
= 0.

At the left edge of the DSW, the second equation reads

∂xS

∂λS
− 1

2
(λS + c0)

∂t

∂λS
= 0, (69)
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FIG. 10. Black solid curves show the time evolution of xS(t )
and xH(t ) calculated from Eqs. (96) and (99), respectively. The
green solid curve shows the time evolution of xm(t ), for which
λ4(xm(t ), t ) = cm, which marks the separation between regions A
and B. The red dashed curve shows the asymptotic behavior of
xS(t ), from Eq. (81). The green points indicate the positions xS(t )
extracted from simulations, for an initial condition (3) with ρ0 = 0.5,
ρm = 2, and x0 = 20. The red point marks the birth of the DSW
(at time tWB � 6.3), while the blue one initiates region B (at time
tA|B � 25.9).

which must be compatible with Eq. (67). Differentiation of
Eq. (67) with respect to λS and elimination of ∂xS/∂λS with
the use of Eq. (69) yields a differential equation for the
function t (λS) ≡ t (c0, λS):

(λS − c0)
dt

dλS
+ 3

2
t = −dW (3)

+ (−c0, λS)

dλS
. (70)

At the wave breaking time, λS = c0, which corresponds to the
definition tWB = t (c0), and Eq. (70) then yields

tWB = −2

3

dW (3)
+ (−c0, λS)

dλS

∣∣∣∣∣
λS=c0

, (71)

in agreement with Eq. (46), which should be expected since at
the wave breaking moment the DSW reduces to a point in the
Whitham approximation. For the concrete case of our initial
distribution we can get a simple explicit expression for tWB

which reads [see Eq. (46) and note [48]]

tWB = −2

3

dwA(λS)

dλS

∣∣∣∣
λS=c0

= 2c0x0

3ρ1
, (72)

where the right-hand side is the form of the central formula
corresponding to the initial profile (3). Taking ρ0 = 0.5, ρm =
2, and x0 = 20, we find tWB � 6.3, in excellent agreement
with the numerical simulations.

The solution of Eq. (70) reads

t (λS) = −1

(λS − c0)3/2

∫ λS

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

= 1

2(λS − c0)3/2

∫ λS

c0

W (3)
+ (−c0, r)√

r − c0
dr

− W (3)
+ (−c0, λS)

λS − c0
. (73)

Substituting this expression into (67), we obtain the function
xS(λS) ≡ x(c0, λS):

xS(λS) = 1
2 (3λS − c0)t (λS) + W (3)

+ (−c0, λS). (74)

The two formulas (73) and (74) define, in an implicit way, the
law of motion x = xS(t ) of the soliton edge of the DSW.

The above expressions are correct as long as the soliton
edge is located inside region A of the DSW, that is, up to
the moment tA|B = t (cm). From (73) we obtain the explicit
expression

tA|B = −1

(cm − c0)3/2

∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr. (75)

In the case we consider, this yields tA|B = 25.9. For time
larger than tA|B the soliton edge connects with region B of
the dispersionless profile, which corresponds to region IIr (see
Fig. 4). Concretely, for a time t > tA|B, instead of Eq. (70) we
have to solve the differential equation

(λS − c0)
dt

dλS
+ 3

2
t = −dW (2)

+ (−c0, λS)

dλS
, (76)

with the initial condition t (cm) = tA|B. The solution of
Eq. (76) reads

t (λS) = −1

(λS − c0)3/2

( ∫ λS

cm

√
r − c0

dW (2)
+ (−c0, r)

dr
dr

+
∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

)
(77)

and xS(λS) is determined by Eq. (41):

xS(λS) = 1
2 (3λS − c0)t (λS) + W (2)

+ (−c0, λS). (78)

At asymptotically large time t → ∞ we are in stage B of
evolution of the DSW with furthermore λS → c0. In this case
the upper limit of integration in the first integral of formula
(77) can be set equal to c0. Thus, we get in this limit

t (λS) � A
(λS − c0)3/2

, (79)

where the expression for the constant A is

A = −
( ∫ c0

cm

√
r − c0

dW (2)
+ (−c0, r)

dr
dr

+
∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

)
. (80)

Consequently, we obtain the asymptotic expressions

λS(t ) = c0 +
(A

t

)2/3

, xS(t ) = c0t + 3A2/3

2
t1/3. (81)

We denote the position of the rear point of the simple wave by
x∗(t ) (see Fig. 9). It is clear from Fig. 4 that x∗ = 0 at time
t = tSW(c0), i.e., just when region 2 disappears, whereafter
the dispersionless approach of Sec. III predicts a profile with
only simple waves and plateau regions. The rear edge of
the simple wave then propagates over a flat background at
constant velocity c0; we thus have

x∗(t ) = c0[t − tSW(c0)]. (82)
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Asymptotically, i.e., at time much larger than tSW(c0), we have
x∗(t ) � c0t and, in the simple-wave profile between x∗(t ) and
xS(t ), λ+ depends on the self-similar variable [x − x∗(t )]/t
while λ− is constant. Then Eqs. (9) readily yield

λ+ = c0 + 2

3

x − x∗(t )

t
, λ− = −c0 for x ∈ [x∗(t ), xS(t )].

(83)

Equation (8) then yields the explicit expression of ρ in this
region (which was roughly described at the end of Sec. II as
having a quasitriangular shape), and using (81) we obtain∫ xS(t )

x∗(t )
[
√

ρ(x, t ) − c0]1/2dx = 1√
2
A. (84)

The asymptotic situation at the rear of the DSW is reminiscent
of what occurs in the theory of weak dissipative shocks where
(i) a nonlinear pattern of triangular shape may also appear
at the rear edge of a (viscous) shock, (ii) the details of the
initial distribution are lost at large time (as in the present
case), and (iii) a conserved quantity of the type (84) also
exists. Hence the above results provide, for a conservative
system, the counterpart of the weak viscous shock theory
(presented, for instance, in Ref. [30]). Note, however, that the
boundary conditions at the large-amplitude edge of the shock
are different depending on whether we consider a dissipative
or a conservative system and that the corresponding velocity
and conserved quantity are accordingly also different. Note
also that equivalent relations for the behavior of a rarefaction
wave in the rear of a dispersive shock in the similar situation
for the Korteweg–de Vries equation have been obtained in
Ref. [31].

Formulas (81) and (84) are important because they provide
indirect evidence making it possible to assert if a given
experiment has indeed reached the point where a bona fide
dispersive shock wave should be expected.

In the next section we give an explicit theoretical descrip-
tion of the whole region of the dispersive shock.

VI. SOLUTION IN THE SHOCK REGION

In this section we turn to the general solution of the
Whitham equations given by the formulas of Sec. IV B. Our
task is to express the functions W3 and W4 in terms of the
initial distribution of the light pulse. As was indicated above,
we need to distinguish two regions, A and B, in which W
takes different values.

A. Solution in region A

In region A we can straightforwardly adapt the proce-
dure explained in Ref. [38]. We impose the matching of the
left edge of the DSW with the dispersionless solution (see
Sec. III B): Just at x = xS(t ), we have λ4 = λ+, λ3 = λ2 = c0,
and λ1 = −c0 (see Fig. 9) and Eq. (60) yields v4(λ3, λ4) =
(3λ4 − c0)/2 = v+(−c0, λ

+). Then, at this point, the condi-
tions (39) and (63) with i = 4 are simultaneously satisfied,
which implies

W A
4 (λ3 = c0, λ4 = λ+) = W (3)

+ (−c0, λ
+), (85)

where W (3)
+ is the form of W+ corresponding to region 3.

Note that here the first argument of the function W (3)
+ is

λ− = −c0 for all times. Indeed, the boundary condition (85)
corresponds to the matching in physical space at xS(t ). When
the DSW starts to form at time tWB, the edge xS(tWB) lies on
the characteristic issued from x0 [x0 defines the initial extent of
the pulse; see Eq. (3)]. The Riemann invariant λ− is constant
and equal to −c0 along this characteristic (cf. Fig. 4). Then,
because the characteristics of λ− in the dispersionless region
close to xS are oriented to the left whereas xS moves to the
right, it is clear that λ−(xS(t ), t ) = −c0 for t � tWB.

In terms of W the relation (85) corresponds to the equation

W A(c0, λ4) + 2(λ4 − c0)∂4W
A(c0, λ4) = W (3)

+ (−c0, λ4),
(86)

whose solution is

W A(c0, λ4) = 1

2
√

λ4 − c0

∫ λ4

c0

W (3)
+ (−c0, r)dr√

r − c0
. (87)

This will serve as a boundary condition for the Euler-Poisson
equation (65) whose general solution has been given by
Eisenhart [55] in the form

W A(λ3, λ4) =
∫ λ3

c0

ψA(μ)dμ√
λ3 − μ

√
λ4 − μ

+
∫ λ4

c0

ϕA(μ)dμ√|λ3 − μ|√λ4 − μ
, (88)

where ϕA(μ) and ψA(μ) are arbitrary functions to be deter-
mined from the appropriate boundary conditions. By taking
λ3 = c0 in this expression we see that ϕA(μ)/

√
μ − c0 is the

Abel transform of W A(c0, λ4). Using the inverse transforma-
tion [56] and expression (87) we can show that

ϕA(μ) = 1

2π
√

μ − c0

∫ μ

c0

W (3)
+ (−c0, r)dr√

μ − r
, (89)

where we recall that W (3)
+ = ∂+χ (3). In order to determine the

other unknown function ψA, we consider the right boundary
of the DSW where λ3 and λ4 are asymptotically close to
each other. We can show (see, e.g., equivalent reasoning in
Ref. [31]) that in order to avoid divergence of W A(λ3, λ4 =
λ3), we need to impose ψA(λ) = −ϕA(λ). The final form of
the Eisenhart solution in region A thus reads

W A(λ3, λ4) =
∫ λ4

λ3

ϕA(μ)dμ√
μ − λ3

√
λ4 − μ

, (90)

where ϕA is given by formula (89).

B. Solution in region B

We look for a solution of the Euler-Poisson equation in
region B in the form

W B(λ3, λ4) = W A(λ3, λ4) +
∫ cm

λ4

ϕB(μ)dμ√
μ − λ3

√
μ − λ4

,

(91)

where cm is the maximum value for λ4. This expression
ensures that W B, (i) being the sum of two solutions of the
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Euler-Poisson equation, is also a solution of this equation and
(ii) verifies the boundary condition (66) since the second term
on the right-hand side of (91) vanishes when λ4 = cm.

At the left boundary of the DSW, W B(c0, λ4) verifies an
equation similar to (86):

W B(c0, λ4) + 2(λ4 − c0)∂4W
B(c0, λ4) = W (2)

+ (−c0, λ4).
(92)

The solution with the appropriate integration constant reads

W B(r1, 0) = 1

2
√

λ4 − c0

∫ cm

λ4

W (2)
+ (−c0, r)√

r − c0
dr

+ 1

2
√

λ4 − c0

∫ cm

c0

W (3)
+ (−c0, r)√

r − c0
dr, (93)

where W (2)
+ is the form of W+ corresponding to region 2. The

same procedure as the one previously used for region A of the
DSW leads here to

ϕB(μ) = 1

2π
√

μ − c0

∫ cm

μ

W (3)
+ (−c0, r) − W (2)

+ (−c0, r)√
μ − r

dr.

(94)

Equations (91) and (94) give the solution of the Euler-Poisson
equation in region B.

C. Characteristics of the DSW at its edges

It is important to determine the boundaries xS(t ) and xH(t )
of the DSW, as well as the values of the Riemann invariants λ3

and λ4 at these points. The law of motion of the soliton edge
was already found in Sec. V and it is instructive to show how
this result can be obtained from the general solution.

At the soliton edge we have λ2 = λ3 = c0 and λ4 = λS(t ).
The corresponding Whitham velocities are v3 = (λS + c0)/2
and v4 = (3λS − c0)/2 [see Eqs. (60)], and Eqs. (63) read

xS − 1
2 (3λS − c0)t = W α

4 (c0, λS) = W (n)
+ (−c0, λS),

xS − 1
2 (λS + c0)t = W α

3 (c0, λS) = W α (c0, λS),
(95)

where, in order to have formulas applying to both stages of
evolution of the DSW, we have introduced dummy indices α

and n with α = A or B and n = 3 or 2, respectively. This gives
at once

t (λS) = 1

λS − c0
[W α (c0, λS) − W (n)

+ (−c0, λS)],

xS(λS) = c0t + 1

2
[3W α (c0, λS) − W (n)

+ (−c0, λS)]. (96)

Let us consider stage A, for instance. Equation (87) yields

W A(c0, λS) = 1

2
√

λS − c0

∫ λS

c0

W (3)
+ (−c0, r)dr√

r − c0
,

which inserted into Eqs. (96) gives immediately the results
(73) and (74).

Figure 10 shows the time evolution of xS(t ). The black
curve is calculated from Eqs. (96), while the red dashed
curve corresponds to the asymptotic behavior of xS, given
by Eq. (81). The green points are extracted from simulations
and exhibit very good agreement with the theory. The same
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FIG. 11. The black solid curve shows the time evolution of λS(t )
from Eq. (96), or equivalently from Eq. (73) and then (77). The
red dashed curve shows the asymptotic behavior from Eq. (81). The
green points are extracted from simulations for different times, for
the initial profile (3) with ρ0 = 0.5, ρm = 2, and x0 = 20. The blue
solid curve is an approximation obtained by schematically describing
the initial splitting by assuming λ− � const for all t during the
evolution of the right pulse (see the text).

excellent agreement is obtained for the time evolution of λS,
as shown in Fig. 11.

We demonstrated in Sec. III the accuracy of the Riemann
method for describing the spreading and splitting of the initial
pulse into two parts. The matching between the left edge of the
DSW and the dispersionless profile at the point of coordinates
(xS, λS) is given in Eq. (67). Since the splitting occurs rapidly,
a simpler approach would be to make the approximation
λ−(x, t ) = −c0 = const for the dispersionless right part of the
profile. In this case, the Riemann equation (9) for λ+ reduces
to

∂λ+

∂t
+

(
3

2
λ+ − 1

2
c0

)
∂λ+

∂x
= 0. (97)

This equation can be solved by the method of characteristics,
which yields the implicit solution for λ+(x, t ),

x − (
3
2λ+ − 1

2 c0
)
t = wA(B)(λ+), (98)

where wA(B) is the inverse function of the initial λ+(x) profile
in part A (B) [in our case the explicit expressions are given in
Eqs. (18)].

Within this approximation the DSW is described through
W by the same equations (89)–(91) and (94) as before,
replacing W (3/2)

+ (−c0, r) by wA(B)(r) everywhere. Further, λS

computed using this approximation is represented in Fig. 11
as a function of t (blue solid curve), where it is also compared
with the results obtained using the full Riemann method
(black solid curve) and the results extracted from numerical
simulations (green points). As we can see, an accurate descrip-
tion of the spreading and splitting stage is important since the
blue curve does not precisely agree with the results of the sim-
ulations, mainly at large times. However, this approximation
gives a correct description of the initial formation of the DSW:
This is discussed in Ref. [48], where it is argued that, close
to the wave breaking time, the approximation W (3)

+ (−c0, r) �
wA(r) is very accurate.

Let us now turn to the determination of the location xH(t )
of the small-amplitude harmonic boundary of the DSW and of
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the common value λH(t ) of λ3 and λ4 at this point (see Fig. 9).
In the typical situation the left boundary is located in region A.
In this case the equations (63) for i = 3 and 4 are equivalent
and read

xH − vHt = W A
i (λH, λH), i = 3 or 4, (99)

where vH = vi(λH, λH) = 2λH − c2
0/λH [cf. Eqs. (62)]. An

equation for λH alone is obtained by demanding that the
velocity dxH/dt of the left boundary is equal to the common
value vH of v3 and v4. The differentiation of Eq. (99) with
respect to time then yields

t = − 1

dvH/dλH

dW A
4 (λH, λH)

dλH
. (100)

Note that the relation dxH/dt = vH is a consequence of
the general statement that the small-amplitude edge of the
DSW propagates with the group velocity corresponding to
the wave number determined by the solution of the Whitham
equations. Indeed, the NLS group velocity of a linear wave
with wave vector k moving over a background ρ0 = c2

0 is the
group velocity of the so-called Bogoliubov waves

vg(k) = k2/2 + c2
0√

k2/4 + c2
0

, (101)

where k = 2π/L = 2
√

λ2
H − c2

0 [L is computed from

Eq. (56)]. This yields vg = 2λH − c2
0/λH = vH, as it should.

This property of the small-amplitude edge is especially
important in the theory of DSWs for nonintegrable equations
(see, e.g., Refs. [57,58]).

The value of W A
4 (λH, λH) in Eq. (99) is computed through

(63) and (90). We get

W A
4 (λH, λH) = πϕA(λH) + π

(
λH − c2

0

λH

)
dϕA

dμ
(λH) (102)

and

dW A
4 (λH, λH)

dλH
= π

(
2 + c2

0

λ2
H

)
dϕA

dμ
(λH)

+ π

(
λH − c2

0

λH

)
d2ϕA

dμ2
(λH), (103)

where ϕA is given by Eq. (89). Once expression (103) has been
used to obtain λH(t ) by solving Eq. (100), the position xH(t )
of the harmonic edge of the DSW is determined by (99). The
time evolution of xH(t ) is displayed in Fig. 10.

The position of the point xm(t ) where λ4 = cm (cf. Fig. 9)
can be obtained from Eqs. (63). First, for a given time t , we
need to find the corresponding value λ3, the solution of the
equation

t = W3(λ3, cm) − W4(λ3, cm)

v4(λ3, cm) − v3(λ3, cm)
. (104)

Note that in this equation we did not write the superscript A
or B, because this formula equally holds in both cases since it
is to be determined at the boundary between the two regions
A and B of the DSW [cf. Eq. (66) and Fig. 9]. Then xm(t ) is
determined using either of Eqs. (63). The result is shown in

Fig. 10, where the curve xm(t ) represents the position of the
boundary between the two regions A and B at time t .

D. Global picture

We now compare the results of the Whitham approach with
the numerical solution of the NLS equation (2) for the initial
profile (3). The DSW is described by Whitham method as
explained in Secs. IV A and IV B. For this purpose we need
to determine λ3 and λ4 as functions of x and t (whereas
λ1 = −c0 and λ2 = c0). This is performed as follows. First,
we pick up a given λ4 ∈ [c0, λS], where λS is the value of λ4

at the soliton edge, the point where the DSW is connected
to the rarefaction wave (it has been explained in Secs. V
and VI C how to compute it). Second, at fixed t and λ4, we
find the corresponding value λ3 as a solution of the difference
of Eqs. (63),

(v4 − v3)t = W3(λ3, λ4) − W4(λ3, λ4), (105)

where W3 and W4 are computed from Eq. (64), with a su-
perscript A or B, as appropriate. Finally, the corresponding
value of x is determined by x = W3 + v3t (or equivalently
x = W4 + v4t). This procedure gives, for each λ4 ∈ [c0, λS]
and t , the values of λ3 and x. In practice, it makes it possible
to associate with each (x, t ) a couple (λ3, λ4). The results
confirm the schematic behavior depicted in Fig. 9.

The knowledge of λ3(x, t ) and λ4(x, t ) completes our study
and enable us to determine, for each time t > tWB, ρ(x, t ) and
u(x, t ) as given by the Whitham approach, for all x ∈ R+.
Denoting by x∗(t ) the left boundary of the hump [recall that
we concentrate on the right part of the light intensity profile
(see Fig. 9)], we have the following.

(i) In the two regions x � xH(t ) and 0 � x � x∗(t ), we
have u(x, t ) = 0 and ρ(x, t ) = ρ0.

(ii) In the dispersionless region [x∗(t ), xS(t )], u(x, t ) and
ρ(x, t ) are computed from (7) in terms of λ+ and λ−, which
are computed as explained in Sec. III. The profile in this
region rapidly evolves to a rarefaction wave [with λ− = −c0

(see Fig. 9)] of triangular shape.
(iii) Inside the DSW, for x ∈ [xS(t ), xH(t )], the functions

ρ(x, t ) and u(x, t ) are given by the expression (52), with λ1 =
−c0 = −λ2 and λ3 and λ4 determined as functions of x and t
by the procedure just explained.

The corresponding density profiles are shown in Fig. 12 at
different values of time for the initial distribution (3) (with
ρ0 = 0.5, ρ1 = 1.5, and x0 = 20). The agreement with the
numerical simulation is excellent. The same level of accuracy
is reached for the velocity profile u(x, t ).

In Fig. 13 we also compare the wavelength of the nonlin-
ear oscillations within the DSW as determined by Whitham
approach [Eq. (56)] with the results of numerical simulations.
The agreement is again very good.

VII. DISCUSSION AND EXPERIMENTAL
CONSIDERATIONS

The different situations we have identified are summarized
in Fig. 14, which displays several typical density profiles
in a phase space with coordinates ρ1/ρ0 and t . The curves
tsplit (ρ1/ρ0) [as given by Eq. (49)] and tWB(ρ1/ρ0) [Eq. (72)]
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(a)

(b)

FIG. 12. Comparison between theory and numerical simulations
for the density profile ρ(x, t ) at (a) t = 50 and (b) t = 200. The
initial profile is the same as that used in all the previous figures.
The blue curves are the numerical results. The red solid curves are
the envelopes of the density (52) where the λi are calculated by
the procedure described in Sec. VI D. The dashed orange curves
correspond to the dispersionless part of the profile, determined using
the method given in Sec. III.

separate this plane into four regions, labeled as (a), (b), (c),
and (d) in the figure. These two curves cross at a point repre-
sented by an open circle whose coordinates we determined nu-
merically as being ρ1/ρ0 = 0.608 14 and c0t/x0 = 1.096 23.
These coordinates are universal in the sense that they have the
same value for any initial profile of inverted parabola type,
such as given by Eq. (3), with u(x, 0) = 0. Other types of
initial profile would yield different precise arrangements of
these curves in phase space, but we expect the qualitative
behavior illustrated by Fig. 14 to be generic, because the
different regimes depicted in this figure correspond to physical
intuition: A larger initial hump (larger ρ1/ρ0) experiences
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FIG. 13. Wavelength of the nonlinear oscillations within the
DSW for t = 200. The theoretical red curve is calculated from
Eq. (56). The blue points are extracted from simulations.

FIG. 14. Behavior of the light intensity profile in the plane
(ρ1/ρ0, t ). The plane is separated into four regions by the curves
t = tWB and t = tsplit . These curves cross at the point represented
by an open circle (of coordinates ρ1/ρ0 = 0.608 14 and c0 t/x0 =
1.096 23). Typical profiles are displayed in the insets (a)–(d), which
represent ρ(x, t ) plotted as a function of x for fixed t .

earlier wave breaking and needs a longer time to be separated
into two counterpropagating pulses. Also, the evolution of a
small initial pulse can initially be described by perturbation
theory and first splits into two humps which experience wave
breaking in a later stage (as illustrated in Fig. 1): This is
the reason why tsplit < tWB for small ρ1/ρ0. In the opposite
situation where tWB < t < tsplit , the wave breaking has already
occurred while the profile has not yet split into two separate
humps. This is the situation represented by inset (b) and which
has been considered in Refs. [15,18].

In Ref. [18], Xu et al. studied the formation of a DSW in a
nonlinear optic fiber1 varying the intensity of the background.
In particular, they quantitatively evaluated the visibility of the
oscillations near the solitonic edge of the DSW by measuring
the contrast

Cont = ρmax − ρmin

ρmax + ρmin
, (106)

where ρmax and ρmin are defined in the inset of Fig. 15. In
Ref. [18], the contrast was studied for a fiber of fixed length,
for an initial Gaussian bump, i.e., different from (3), keeping
the quantities analogous to ρ1 and x0 fixed and varying ρ0.
The experimental results agreed very well with numerical
simulations taking into account absorption in the fiber. Here
we do not consider exactly the same initial profile and do not
take damping into account, but we show that our approach
gives a very reasonable analytic account of the behavior of
Cont considered as a function of ρ0/ρ1.

From Eq. (52) in the limit m → 1 (which is the relevant
regime near the solitonic edge of the DSW) we get

ρmax = 1
4 (λS + c0)2, ρmin = 1

4 (λS − 3c0)2, (107)

1In this case the role of variable x in Eq. (2) is played by time,
but the phenomenology is very similar to the one we describe in the
present work (see, e.g., [59]).
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FIG. 15. Contrast Cont represented as a function of ρ0/ρ1. We
follow here the procedure of Ref. [18] and use the same dimension-
less parameters: The value of ρ0 varies while ρ1 = 5.9, x0 = 6.3,
and t = 9 are fixed. The green circles correspond to the numerically
determined value of the contrast, obtained from Eq. (106), where ρmin

and ρmax are defined as illustrated in the inset. The black solid curve
corresponds to expression (108), where λS is obtained from (77). The
red dashed curve is the approximate result obtained from the same
align (108), but evaluating λS from Eqs. (81), (110), and (112). The
triangle marks the point of contrast unity.

yielding

Cont = 4c0(λS − c0)

(λS − c0)2 + 4c2
0

. (108)

The results presented in Fig. 15 demonstrate that, as expected,
this expression (black solid curve in the figure) agrees very
well with the contrast determined from the numerical solution
of Eq. (2) (green points).

At this point, the computation of Cont through (108) relies
on the determination of λS by means of (77), a task which
requires a good grasp of the Riemann approach. However,
we can get an accurate, though approximate, analytic deter-
mination of Cont in a simpler way: by using the large-time
expression (81) for λS, together with the approximation

A � −
(∫ c0

cm

√
r − c0

dwB(r)

dr
dr +

∫ cm

c0

√
r − c0

dwA(r)

dr
dr

)

= 2
∫ x0

0

√
λ+(x, 0) − c0dx. (109)

In the above, we approximated in expression (80)
W (3/2)

+ (−c0, r) by wA(B)(r), used the symmetry of
these functions, and made the change of variable
x = wA(r) ⇔ r = λ+(x, 0), in which λ+(x, 0) = √

ρ(x, 0),
where ρ(x, 0) is the initial density profile (3). A new change
of variable yields

A � 2x0
√

c0F (ρ0/ρ1), (110)

where

F (α) =
∫ π/2

0
cos θ

(√
1 + cos2 θ

α
− 1

)1/2

dθ. (111)

A simple analytic expression of F (α) cannot be obtained, but
we checked that one can devise an accurate approximation
by expanding the term in parentheses in the above integrand

around θ = 0 up to second order in θ . This yields

F (α) � (
√

α + 1 − √
α)1/2

α1/4

−
1
4 (π2/4 − 2)

α1/4
√

1 + α(
√

α + 1 − √
α)1/2

. (112)

In the domain 10−3 � α � 50, F (α) varies over two orders of
magnitude (from 4.8 to 7.8 × 10−2) and the approximation
(112) gives an absolute error ranging from 5.8 × 10−2 to
1.8 × 10−3 and a relative one ranging from 1.1% to 2.4%.

Combining Eqs. (108), (81), (110), and (112) yields an
analytic expression for the contrast Cont. This expression is
represented as a dashed red curve in Fig. 15. As we can see,
it compares quite well with the value of Cont extracted from
the numerical simulations.2 The better agreement with the
numerical result is reached for small ρ0/ρ1; this was expected:
In this regime the wave breaking occurs rapidly and we easily
fulfill the condition t 
 tWB where the approximation (81)
holds. We note here that the behavior of the contrast illustrated
in Fig. 15 is very similar to the one obtained in Ref. [18].
In both cases there is a special value of ρ0/ρ1 for which the
contrast is unity, meaning that the quantity ρmin cancels. From
(107) and (81) this is obtained for 2c0 � (A/t )2/3, i.e., using
(110), for

c0t

x0
= 1√

2
F (ρ0/ρ1). (113)

A numerical solution of this equation gives, for the parameters
of Fig. 15, a contrast unity when ρ0/ρ1 = 7.9%, while the
exact Eq. (108) predicts a maximum contrast when ρ0/ρ1 =
8.3% instead (the exact result at ρ0/ρ1 = 7.9% is Cont =
0.999). These two values are marked with a single triangle
in Fig. 15 because they cannot be distinguished on the scale
of the figure. This shows that the solution of Eq. (113) gives a
simple way to determine the best configuration for visualizing
the fringes of the DSW; this should be useful for future
experimental studies.

Note that formula (108) demonstrates that the contrast de-
pends only on λS/c0 and using the approximate relations (81)
and (113) leads to the conclusion that Cont can be considered
as a function of the single variable

X = x0

t
√

ρ1

√
ρ1

ρ0
F (ρ0/ρ1). (114)

Hence, for a configuration different from the one considered in
Fig. 15 but for which the combination of parameters t

√
ρ1/x0

takes the same value (namely, 3.47), the curve Cont (ρ0/ρ1)
should superimpose on the one displayed in Fig. 15. We
checked that this is indeed the case by taking ρ1 = 2, x0 = 20,
and t = 49, but did not plot the corresponding contrast in
Fig. 15 for legibility.

Figure 15 and the discussion of this section illustrate the
versatility of our approach which not only gives an excellent

2Computing the contrast using expression (111) instead of the
approximation (112) yields a result which is barely distinguishable
from the dashed curve in Fig. 15.
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account of the numerical simulations at the prize of an elabo-
rate mathematical treatment, but also provides simple limiting
expressions, such as Eq. (81), which make it possible to obtain
an analytic and quantitative description of experimentally
relevant parameters such as the contrast of the fringes of the
DSW.

VIII. CONCLUSION

In this work we presented a detailed theoretical treatment
of the spreading of a light pulse propagating in a nonlinear
medium. A hydrodynamic approach to both the initial nondis-
persive spreading and the subsequent formation of an optical
dispersive shock compares extremely well with the results
of numerical simulations. Although in reality the transition
between these two regimes is gradual, it is sharp within the
Whitham approximation. An exact expression has been ob-
tained for the theoretical wave breaking time which separates
these two regimes [Eq. (72)], which may be used to evaluate
the experimental parameters necessary to observe a DSW in
a realistic setting (see Fig. 14). In addition, our theoretical
treatment provides valuable insight into simple features of the
shocks which are relevant to future experimental studies, such
as the coordinates of its trailing edge xS, the large-time nondis-
persive intensity profile which follows it (Sec. V), and the
best regime for visualizing the fringes of the DSW (Sec. VII).
We note also that our treatment reveals the existence of an
asymptotically conserved quantity, see Eq. (84).

A possible extension of the present work would be to
consider an initial configuration for which, at variance with
the situation we study here, the largest intensity gradient is not
reached exactly at the extremity of the initial hump. In this
case, wave breaking occurs within a simple wave (not at its
boundary) and the DSW has to be described by four position-
and time-dependent Riemann invariants [52]. In the vicinity
of the wave breaking moment, one of the Riemann invariants
can be considered as constant and a generic dispersionless
solution can be represented by a cubic parabola; a detailed
theory was developed in Ref. [60] for this simpler case. In
Refs. [61,62] the general situation was considered for the
Korteweg–de Vries equation.

We conclude by stressing that the present treatment fo-
cused on quasi-one-dimensional spreading; future develop-
ments should consider non-exactly-integrable systems, for
instance, light propagation in a photorefractive medium, in a
bidimensional situation with cylindrical symmetry.

ACKNOWLEDGMENTS

We thank T. Bienaimé, Q. Fontaine, and Q. Glorieux for
fruitful discussions. We also thank an anonymous referee
for suggestions that improved the manuscript. A.M.K. thanks
Laboratoire de Physique Théorique et Modèles Statistiques
(Université Paris–Saclay), where this work started, for kind
hospitality. This work was supported by the French ANR
under Grant No. ANR-15-CE30-0017 (Haralab project).

[1] V. I. Talanov, Radiophys. 9, 138 (1965).
[2] S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Zh.

Eksp. Teor. Fiz. 50, 1537 (1966) [Sov. Phys. JETP 23, 1025
(1966)].

[3] S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov,
Usp. Fiz. Nauk 93, 19 (1967) [Sov. Phys. Usp. 10, 609 (1968)].

[4] S. A. Akhmanov, D. P. Krindach, A. P. Sukhorukov, and R. V.
Khokhlov, Pis’ma Zh. Eksp. Teor. Fiz. 6, 509 (1967) [JETP
Lett. 6, 38 (1967)].

[5] R. G. Harrison, L. Dambly, D. Yu, and W. Lu, Opt. Commun.
139, 69 (1997).

[6] P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A.
Barthelemy, Opt. Commun. 62, 374 (1987).

[7] D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, Phys.
Rev. Lett. 60, 29 (1988).

[8] A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston,
E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev.
Lett. 61, 2445 (1988).

[9] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori,
Phys. Rev. Lett. 67, 3749 (1991).

[10] M. Vaupel, K. Staliunas, and C. O. Weiss, Phys. Rev. A 54, 880
(1996).

[11] D. Vocke, K. Wilson, F. Marino, I. Carusotto, E. M. Wright, T.
Roger, B. P. Anderson, P. Öhberg, and D. Faccio, Phys. Rev. A
94, 013849 (2016).

[12] J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531
(1989).

[13] N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev.
Lett. 99, 043903 (2007).

[14] G. Couton, H. Maillotte, and M. Chauvet, J. Opt. B 6, S223
(2004).

[15] W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46 (2007).
[16] C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, Opt. Lett. 32,

2930 (2007).
[17] J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, Phys.

Rev. X 4, 021022 (2014).
[18] G. Xu, A. Mussot, A. Kudlinski, S. Trillo, F. Copie, and M.

Conforti, Opt. Lett. 41, 2656 (2016).
[19] G. Xu, M. Conforti, A. Kudlinski, A. Mussot, and S. Trillo,

Phys. Rev. Lett. 118, 254101 (2017).
[20] M. Karpov, T. Congy, Y. Sivan, V. Fleurov, N. Pavloff, and S.

Bar-Ad, Optica 2, 1053 (2015).
[21] M. Elazar, V. Fleurov, and S. Bar-Ad, Phys. Rev. A 86, 063821

(2012).
[22] D. Vocke, C. Maitland, A. Prain, F. Biancalana, F. Marino, E. M.

Wright, and D. Faccio, Optica 5, 1099 (2018).
[23] J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U.

Leonhardt, Phys. Rev. Lett. 122, 010404 (2019).
[24] D. Vocke, T. Roger, F. Marino, E. M. Wright, I. Carusotto, M.

Clerici, and D. Faccio, Optica 2, 484 (2015).
[25] Q. Fontaine, T. Bienaimé, S. Pigeon, E. Giacobino, A. Bramati,

and Q. Glorieux, Phys. Rev. Lett. 121, 183604 (2018).
[26] C. Michel, O. Boughdad, M. Albert, P.-É. Larré, and M. Bellec,

Nat. Commun. 9, 2108 (2018).
[27] A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys. Rev.

A 69, 063605 (2004).
[28] G. A. El, A. Gammal, E. G. Khamis, R. A. Kraenkel, and A. M.

Kamchatnov, Phys. Rev. A 76, 053813 (2007).

053819-17

https://doi.org/10.3367/UFNr.0093.196709c.0019
https://doi.org/10.3367/UFNr.0093.196709c.0019
https://doi.org/10.3367/UFNr.0093.196709c.0019
https://doi.org/10.3367/UFNr.0093.196709c.0019
https://doi.org/10.1070/PU1968v010n05ABEH005849
https://doi.org/10.1070/PU1968v010n05ABEH005849
https://doi.org/10.1070/PU1968v010n05ABEH005849
https://doi.org/10.1070/PU1968v010n05ABEH005849
https://doi.org/10.1016/S0030-4018(96)00790-0
https://doi.org/10.1016/S0030-4018(96)00790-0
https://doi.org/10.1016/S0030-4018(96)00790-0
https://doi.org/10.1016/S0030-4018(96)00790-0
https://doi.org/10.1016/0030-4018(87)90003-4
https://doi.org/10.1016/0030-4018(87)90003-4
https://doi.org/10.1016/0030-4018(87)90003-4
https://doi.org/10.1016/0030-4018(87)90003-4
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1103/PhysRevLett.61.2445
https://doi.org/10.1103/PhysRevLett.61.2445
https://doi.org/10.1103/PhysRevLett.61.2445
https://doi.org/10.1103/PhysRevLett.61.2445
https://doi.org/10.1103/PhysRevLett.67.3749
https://doi.org/10.1103/PhysRevLett.67.3749
https://doi.org/10.1103/PhysRevLett.67.3749
https://doi.org/10.1103/PhysRevLett.67.3749
https://doi.org/10.1103/PhysRevA.54.880
https://doi.org/10.1103/PhysRevA.54.880
https://doi.org/10.1103/PhysRevA.54.880
https://doi.org/10.1103/PhysRevA.54.880
https://doi.org/10.1103/PhysRevA.94.013849
https://doi.org/10.1103/PhysRevA.94.013849
https://doi.org/10.1103/PhysRevA.94.013849
https://doi.org/10.1103/PhysRevA.94.013849
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1088/1464-4266/6/5/009
https://doi.org/10.1088/1464-4266/6/5/009
https://doi.org/10.1088/1464-4266/6/5/009
https://doi.org/10.1088/1464-4266/6/5/009
https://doi.org/10.1038/nphys486
https://doi.org/10.1038/nphys486
https://doi.org/10.1038/nphys486
https://doi.org/10.1038/nphys486
https://doi.org/10.1364/OL.32.002930
https://doi.org/10.1364/OL.32.002930
https://doi.org/10.1364/OL.32.002930
https://doi.org/10.1364/OL.32.002930
https://doi.org/10.1103/PhysRevX.4.021022
https://doi.org/10.1103/PhysRevX.4.021022
https://doi.org/10.1103/PhysRevX.4.021022
https://doi.org/10.1103/PhysRevX.4.021022
https://doi.org/10.1364/OL.41.002656
https://doi.org/10.1364/OL.41.002656
https://doi.org/10.1364/OL.41.002656
https://doi.org/10.1364/OL.41.002656
https://doi.org/10.1103/PhysRevLett.118.254101
https://doi.org/10.1103/PhysRevLett.118.254101
https://doi.org/10.1103/PhysRevLett.118.254101
https://doi.org/10.1103/PhysRevLett.118.254101
https://doi.org/10.1364/OPTICA.2.001053
https://doi.org/10.1364/OPTICA.2.001053
https://doi.org/10.1364/OPTICA.2.001053
https://doi.org/10.1364/OPTICA.2.001053
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1103/PhysRevA.86.063821
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1364/OPTICA.5.001099
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1103/PhysRevLett.121.183604
https://doi.org/10.1103/PhysRevLett.121.183604
https://doi.org/10.1103/PhysRevLett.121.183604
https://doi.org/10.1103/PhysRevLett.121.183604
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1103/PhysRevA.69.063605
https://doi.org/10.1103/PhysRevA.69.063605
https://doi.org/10.1103/PhysRevA.69.063605
https://doi.org/10.1103/PhysRevA.69.063605
https://doi.org/10.1103/PhysRevA.76.053813
https://doi.org/10.1103/PhysRevA.76.053813
https://doi.org/10.1103/PhysRevA.76.053813
https://doi.org/10.1103/PhysRevA.76.053813


ISOARD, KAMCHATNOV, AND PAVLOFF PHYSICAL REVIEW A 99, 053819 (2019)

[29] M. Conforti and S. Trillo, in Rogue and Shock Waves in
Nonlinear Dispersive Media, edited by M. Onorato, S. Residori,
and F. Baronio, Lecture Notes in Physics Vol. 926 (Springer
International, Cham, 2016).

[30] G. B. Whitham, Linear and Nonlinear Waves (Wiley Inter-
science, New York, 1974).

[31] M. Isoard, A. M. Kamchatnov, and N. Pavloff, Phys. Rev. E 99,
012210 (2019).

[32] G. S. S. Ludford, Proc. Cambridge Philos. Soc. 48, 499 (1952).
[33] M. G. Forest, C.-J. Rosenberg, and O. C. Wright III,

Nonlinearity 22, 2287 (2009).
[34] A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 65, 590

(1973) [Sov. Phys. JETP 38, 291 (1974)].
[35] G. A. El and M. A. Hoefer, Physica D 333, 11 (2016).
[36] A. V. Gurevich, A. L. Krylov, and N. G. Mazur, Zh. Eksp. Teor.

Fiz. 95, 1674 (1989) [Sov. Phys. JETP 68, 966 (1989)].
[37] A. V. Gurevich, A. L. Krylov, and G. A. El, Pis’ma Zh. Eksp.

Teor. Fiz. 54, 104 (1991) [JETP Lett. 54, 102 (1991)].
[38] A. V. Gurevich, A. L. Krylov, and G. A. El, Zh. Eksp. Teor. Fiz.

101, 1797 (1992) [Sov. Phys. JETP 74, 957 (1992)].
[39] A. L. Krylov, V. V. Khodorovskii, and G. A. El, Pis’ma Zh.

Eksp. Teor. Fiz. 56, 325 (1992) [JETP Lett. 56, 323 (1992)].
[40] G. A. El and V. V. Khodorovsky, Phys. Lett. A 182, 49 (1993).
[41] G. A. El, A. M. Kamchatnov, V. V. Khodorovskii, E. S.

Annibale, and A. Gammal, Phys. Rev. E 80, 046317 (2009).
[42] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrody-

namics of Continuous Media, Landau and Lifshitz Course of
Theoretical Physics Vol. 8 (Elsevier Butterworth-Heinemann,
Oxford, 2006).

[43] A. M. Kamchatnov, Nonlinear Periodic Waves and Their Mod-
ulations: An Introductory Course (World Scientific, Singapore,
2000).

[44] S. P. Tsarev, Math. USSR Izv. 37, 397 (1991).
[45] A. Sommerfeld, Partial Differential Equations in Physics, Lec-

tures on Theoretical Physics Vol. VI (Academic, New York,
1964).

[46] Handbook of Mathematical Functions: With Formulas, Graphs,
and Mathematical Tables, edited by M. Abramowitz and I. A.
Stegun (Dover, New York, 1970).

[47] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
Oxford, 1987).

[48] It should not be a surprise that, to determine the wave breaking
time, it is legitimate to replace W (3)

+ (−c0, λ
+) by wA(λ+) in

Eq. (45). Indeed, the wave breaking phenomenon occurs when
several characteristics issued from the right region of the edge
of the bump cross (in region III for the case considered). For all
these characteristics, we intuitively expect that we can neglect
the weak dependence of λ− on x. This is indeed the case: We
can rigorously show that W (3)

+ (−c0, λ
+) and wA(λ+) coincide

in the limit λ+ = c0, which is the relevant one for evaluating
(45).

[49] M. G. Forest and J. E. Lee, in Oscillation Theory, Computation,
and Methods of Compensated Compactness, edited by C. Dafer-
mos, J. L. Ericksen, D. Kinderlehrer, and M. Slemrod, IMA
Volumes on Mathematics and its Applications Vol. 2 (Springer,
New York, 1986), p. 35.

[50] M. V. Pavlov, Teor. Mat. Fiz. 71, 351 (1987) [Theor. Math.
Phys. 71, 584 (1987)].

[51] R. Z. Sagdeev, in Reviews of Plasma Physics, edited by M. A.
Leontovich (Consultants Bureau, New York, 1966), Vol. 4,
p. 23.

[52] G. A. El and A. L. Krylov, Phys. Lett. 203, 77 (1995).
[53] O. C. Wright, Commun. Pure Appl. Math. 46, 423

(1993).
[54] F. R. Tian, Commun. Pure Appl. Math. 46, 1093 (1993).
[55] L. P. Eisenhart, Ann. Math. 120, 262 (1918).
[56] G. Arfken and H. J. Weber, Mathematical Methods for Physi-

cists (Academic, Orlando, 2005).
[57] G. A. El, Chaos 15, 037103 (2005); 16, 029901 (2006).
[58] A. M. Kamchatnov, Phys. Rev. E 99, 012203 (2019).
[59] Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic,

San Diego, 2003).
[60] A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, Phys.

Rev. E 66, 036609 (2002).
[61] G. A. El, A. L. Krylov, and S. Venakides, Commun. Pure Appl.

Math. 54, 1243 (2001).
[62] T. Grava and C. Klein, Commun. Pure Appl. Math. 60, 1623

(2007).

053819-18

https://doi.org/10.1103/PhysRevE.99.012210
https://doi.org/10.1103/PhysRevE.99.012210
https://doi.org/10.1103/PhysRevE.99.012210
https://doi.org/10.1103/PhysRevE.99.012210
https://doi.org/10.1017/S0305004100027900
https://doi.org/10.1017/S0305004100027900
https://doi.org/10.1017/S0305004100027900
https://doi.org/10.1017/S0305004100027900
https://doi.org/10.1088/0951-7715/22/9/012
https://doi.org/10.1088/0951-7715/22/9/012
https://doi.org/10.1088/0951-7715/22/9/012
https://doi.org/10.1088/0951-7715/22/9/012
https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1016/0375-9601(93)90051-Z
https://doi.org/10.1016/0375-9601(93)90051-Z
https://doi.org/10.1016/0375-9601(93)90051-Z
https://doi.org/10.1016/0375-9601(93)90051-Z
https://doi.org/10.1103/PhysRevE.80.046317
https://doi.org/10.1103/PhysRevE.80.046317
https://doi.org/10.1103/PhysRevE.80.046317
https://doi.org/10.1103/PhysRevE.80.046317
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://doi.org/10.1007/BF01017090
https://doi.org/10.1007/BF01017090
https://doi.org/10.1007/BF01017090
https://doi.org/10.1007/BF01017090
https://doi.org/10.1016/0375-9601(95)00379-H
https://doi.org/10.1016/0375-9601(95)00379-H
https://doi.org/10.1016/0375-9601(95)00379-H
https://doi.org/10.1016/0375-9601(95)00379-H
https://doi.org/10.1002/cpa.3160460306
https://doi.org/10.1002/cpa.3160460306
https://doi.org/10.1002/cpa.3160460306
https://doi.org/10.1002/cpa.3160460306
https://doi.org/10.1002/cpa.3160460802
https://doi.org/10.1002/cpa.3160460802
https://doi.org/10.1002/cpa.3160460802
https://doi.org/10.1002/cpa.3160460802
https://doi.org/10.1063/1.1947120
https://doi.org/10.1063/1.1947120
https://doi.org/10.1063/1.1947120
https://doi.org/10.1063/1.1947120
https://doi.org/10.1063/1.2186766
https://doi.org/10.1063/1.2186766
https://doi.org/10.1063/1.2186766
https://doi.org/10.1103/PhysRevE.99.012203
https://doi.org/10.1103/PhysRevE.99.012203
https://doi.org/10.1103/PhysRevE.99.012203
https://doi.org/10.1103/PhysRevE.99.012203
https://doi.org/10.1103/PhysRevE.66.036609
https://doi.org/10.1103/PhysRevE.66.036609
https://doi.org/10.1103/PhysRevE.66.036609
https://doi.org/10.1103/PhysRevE.66.036609
https://doi.org/10.1002/cpa.10002
https://doi.org/10.1002/cpa.10002
https://doi.org/10.1002/cpa.10002
https://doi.org/10.1002/cpa.10002
https://doi.org/10.1002/cpa.20183
https://doi.org/10.1002/cpa.20183
https://doi.org/10.1002/cpa.20183
https://doi.org/10.1002/cpa.20183

