
Fabry–Pérot interferometer
In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical
cavity made from two parallel reflecting surfaces (i.e: thin mirrors). Optical
waves can pass through the optical cavity only when they are in resonance
with it. It is named after Charles Fabry and Alfred Perot, who developed the
instrument in 1899.[1][2][3] Etalon is from the French étalon, meaning
"measuring gauge" or "standard".[4]

Etalons are widely used in telecommunications, lasers and spectroscopy to
control and measure the wavelengths of light. Recent advances in
fabrication technique allow the creation of very precise tunable Fabry–Pérot
interferometers. The device is called an interferometer when the distance
between the two surfaces (and with it the resonance length) can be changed,
and etalon when the distance is fixed (however, the two terms are often used
interchangeably).
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The heart of the Fabry–Pérot interferometer is a pair of partially reflective glass optical flats spaced micrometers to centimeters apart, with the
reflective surfaces facing each other. (Alternatively, a Fabry–Pérot etalon uses a single plate with two parallel reflecting surfaces.) The flats in an
interferometer are often made in a wedge shape to prevent the rear surfaces from producing interference fringes; the rear surfaces often also have an
anti-reflective coating.

In a typical system, illumination is provided by a diffuse source set at the focal plane of a collimating lens. A focusing lens after the pair of flats
would produce an inverted image of the source if the flats were not present; all light emitted from a point on the source is focused to a single point in
the system's image plane. In the accompanying illustration, only one ray emitted from point A on the source is traced. As the ray passes through the
paired flats, it is multiply reflected to produce multiple transmitted rays which are collected by the focusing lens and brought to point A' on the
screen. The complete interference pattern takes the appearance of a set of concentric rings. The sharpness of the rings depends on the reflectivity of

Interference fringes, showing fine structure, from a Fabry–
Pérot etalon. The source is a cooled deuterium lamp.
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the flats. If the reflectivity is high, resulting in a high Q factor,
monochromatic light produces a set of narrow bright rings against a dark
background. A Fabry–Pérot interferometer with high Q is said to have high
finesse.

Telecommunications networks employing wavelength division
multiplexing have add-drop multiplexers with banks of miniature
tuned fused silica or diamond etalons. These are small
iridescent cubes about 2 mm on a side, mounted in small high-
precision racks. The materials are chosen to maintain stable
mirror-to-mirror distances, and to keep stable frequencies even
when the temperature varies. Diamond is preferred because it
has greater heat conduction and still has a low coefficient of
expansion. In 2005, some telecommunications equipment
companies began using solid etalons that are themselves optical
fibers. This eliminates most mounting, alignment and cooling
difficulties.
Dichroic filters are made by depositing a series of etalonic layers
on an optical surface by vapor deposition. These optical filters
usually have more exact reflective and pass bands than
absorptive filters. When properly designed, they run cooler than
absorptive filters because they can reflect unwanted
wavelengths. Dichroic filters are widely used in optical
equipment such as light sources, cameras, astronomical
equipment, and laser systems.
Optical wavemeters and some optical spectrum analyzers use
Fabry–Pérot interferometers with different free spectral ranges
to determine the wavelength of light with great precision.
Laser resonators are often described as Fabry–Pérot
resonators, although for many types of laser the reflectivity of
one mirror is close to 100%, making it more similar to a Gires–
Tournois interferometer. Semiconductor diode lasers sometimes
use a true Fabry–Pérot geometry, due to the difficulty of coating
the end facets of the chip. Quantum cascade lasers often
employ Fabry-Pérot cavities to sustain lasing without the need
for any facet coatings, due to the high gain of the active
region.[5]

Etalons are often placed inside the laser resonator when
constructing single-mode lasers. Without an etalon, a laser will
generally produce light over a wavelength range corresponding
to a number of cavity modes, which are similar to Fabry–Pérot
modes. Inserting an etalon into the laser cavity, with well-chosen
finesse and free-spectral range, can suppress all cavity modes
except for one, thus changing the operation of the laser from
multi-mode to single-mode.
Fabry–Pérot etalons can be used to prolong the interaction
length in laser absorption spectrometry, particularly cavity ring-down, techniques.
A Fabry–Pérot etalon can be used to make a spectrometer capable of observing the Zeeman effect, where the spectral lines are far
too close together to distinguish with a normal spectrometer.
In astronomy an etalon is used to select a single atomic transition for imaging. The most common is the H-alpha line of the sun.
The Ca-K line from the sun is also commonly imaged using etalons.
In gravitational wave detection, a Fabry–Pérot cavity is used to store photons for almost a millisecond while they bounce up and
down between the mirrors. This increases the time a gravitational wave can interact with the light, which results in a better
sensitivity at low frequencies. This principle is used by detectors such as LIGO and Virgo, which consist of a Michelson
interferometer with a Fabry–Pérot cavity with a length of several kilometers in both arms. Smaller cavities, usually called mode
cleaners, are used for spatial filtering and frequency stabilization of the main laser.

The spectral response of a Fabry-Pérot resonator is based on interference between the light launched into it and the light circulating in the resonator.
Constructive interference occurs if the two beams are in phase, leading to resonant enhancement of light inside the resonator. If the two beams are out
of phase, only a small portion of the launched light is stored inside the resonator. The stored, transmitted, and reflected light is spectrally modified
compared to the incident light.

Fabry–Pérot interferometer, using a pair of partially
reflective, slightly wedged optical flats. The wedge angle is
highly exaggerated in this illustration; only a fraction of a
degree is actually necessary to avoid ghost fringes. Low-
finesse versus high-finesse images correspond to mirror
reflectivities of 4% (bare glass) and 95%.
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Assume a two-mirror Fabry-Pérot resonator of geometrical length , homogeneously filled with a medium of refractive index . Light is launched
into the resonator under normal incidence. The round-trip time  of light travelling in the resonator with speed , where  is the speed of
light in vacuum, and the free spectral range  are given by

The electric-field and intensity reflectivities  and , respectively, at mirror  are

If there are no other resonator losses, the decay of light intensity per round trip is quantified by the outcoupling decay-rate constant 

and the photon-decay time  of the resonator is then given by[6]

With  quantifying the single-pass phase shift that light exhibits when propagating from one mirror to the other, the round-trip phase shift at
frequency  accumulates to[6]

Resonances occur at frequencies at which light exhibits constructive interference after one round trip. Each resonator mode with its mode index ,
where  is an integer number in the interval [ , …, −1, 0, 1, …, ], is associated with a resonance frequency  and wavenumber ,

Two modes with opposite values  and  of modal index and wavenumber, respectively, physically representing opposite propagation directions,
occur at the same absolute value  of frequency.[7]

The decaying electric field at frequency  is represented by a damped harmonic oscillation with an initial amplitude of  and a decay-time

constant of . In phasor notation, it can be expressed as[6]

Fourier transformation of the electric field in time provides the electric field per unit frequency interval,

Each mode has a normalized spectral line shape per unit frequency interval given by

whose frequency integral is unity. Introducing the full-width-at-half-maximum (FWHM) linewidth  of the Lorentzian spectral line shape, we
obtain

expressed in terms of either the half-width-at-half-maximum (HWHM) linewidth  or the FWHM linewidth . Calibrated to a peak height
of unity, we obtain the Lorentzian lines:

https://en.wikipedia.org/wiki/Spectral_line_shape


When repeating the above Fourier transformation for all the modes with mode index  in the resonator, one obtains the full mode spectrum of the
resonator.

Since the linewidth  and the free spectral range  are independent of frequency, whereas in wavelength space the linewidth cannot be
properly defined and the free spectral range depends on wavelength, and since the resonance frequencies  scale proportional to frequency, the
spectral response of a Fabry-Pérot resonator is naturally analyzed and displayed in frequency space.

The response of the Fabry-Pérot resonator to an electric field incident upon
mirror 1 is described by several Airy distributions (named after the
mathematician and astronomer George Biddell Airy) that quantify the light
intensity in forward or backward propagation direction at different positions
inside or outside the resonator with respect to either the launched or
incident light intensity. The response of the Fabry-Pérot resonator is most
easily derived by use of the circulating-field approach.[8] This approach
assumes a steady state and relates the various electric fields to each other
(see figure "Electric fields in a Fabry-Pérot resonator").

The field  can be related to the field  that is launched into the
resonator by

The generic Airy distribution, which considers solely the physical processes exhibited by light inside the resonator, then derives as the intensity
circulating in the resonator relative to the intensity launched,[6]

 represents the spectrally dependent internal resonance enhancement which the resonator provides to the light launched into it (see figure
"Resonance enhancement in a Fabry-Pérot resonator"). At the resonance frequencies , where  equals zero, the internal resonance
enhancement factor is

Once the internal resonance enhancement, the generic Airy distribution, is established, all other Airy distributions can be deduced by simple scaling
factors.[6] Since the intensity launched into the resonator equals the transmitted fraction of the intensity incident upon mirror 1,

and the intensities transmitted through mirror 2, reflected at mirror 2, and transmitted through mirror 1 are the transmitted and reflected/transmitted
fractions of the intensity circulating inside the resonator,

Generic Airy distribution: The internal resonance enhancement factor

Electric fields in a Fabry-Pérot resonator.[6] The electric-field
mirror reflectivities are  and . Indicated are the
characteristic electric fields produced by an electric field 

 incident upon mirror 1:  initially reflected at mirror
1,  launched through mirror 1,  and 
circulating inside the resonator in forward and backward
propagation direction, respectively,  propagating inside
the resonator after one round trip,  transmitted
through mirror 2,  transmitted through mirror 1, and
the total field  propagating backward. Interference
occurs at the left- and right-hand sides of mirror 1 between 

 and , resulting in , and between  and 
, resulting in , respectively.

Other Airy distributions
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respectively, the other Airy distributions  with respect to launched
intensity  and  with respect to incident intensity  are[6]

The index "emit" denotes Airy distributions that consider the sum of intensities emitted on both sides of the resonator.

The back-transmitted intensity  cannot be measured, because also the initially back-reflected light adds to the backward-propagating signal. The
measurable case of the intensity resulting from the interference of both backward-propagating electric fields results in the Airy distribution[6]

It can be easily shown that in a Fabry-Pérot resonator, despite the occurrence of constructive and destructive interference, energy is conserved at all
frequencies:

The external resonance enhancement factor (see figure "Resonance enhancement in a Fabry-Pérot resonator") is[6]

Resonance enhancement in a Fabry-Pérot resonator.[6]

(top) Spectrally dependent internal resonance
enhancement, equaling the generic Airy distribution .
Light launched into the resonator is resonantly enhanced by
this factor. For the curve with , the peak
value is at , outside the scale of the
ordinate. (bottom) Spectrally dependent external resonance
enhancement, equaling the Airy distribution . Light
incident upon the resonator is resonantly enhanced by this
factor.
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At the resonance frequencies , where  equals zero, the external resonance enhancement factor is

Usually light is transmitted through a Fabry-Pérot resonator. Therefore, an
often applied Airy distribution is[6]

It describes the fraction  of the intensity  of a light source incident upon mirror 1 that is transmitted through mirror 2 (see figure "Airy
distribution "). Its peak value at the resonance frequencies  is

For  the peak value equals unity, i.e., all light incident upon the resonator is transmitted; consequently, no light is reflected, , as a
result of destructive interference between the fields  and .

 has been derived in the circulating-field approach[8] by considering an additional phase shift of  during each transmission through a
mirror,

resulting in

Airy distribution  (solid lines), corresponding to light
transmitted through a Fabry-Pérot resonator, calculated for
different values of the reflectivities , and
comparison with a single Lorentzian line (dashed lines)
calculated for the same .[6] At half maximum (black
line), with decreasing reflectivities the FWHM linewidth 

 of the Airy distribution broadens compared to the
FWHM linewidth  of its corresponding Lorentzian line: 

 results in 
, respectively.
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Alternatively,  can be obtained via the round-trip-decay approach[9] by tracing the infinite number of round trips that the incident electric field 
 exhibits after entering the resonator and accumulating the electric field  transmitted in all round trips. The field transmitted after the first

propagation and the smaller and smaller fields transmitted after each consecutive propagation through the resonator are

respectively. Exploiting

results in the same  as above, therefore the same Airy distribution  derives. However, this approach is physically misleading,
because it assumes that interference takes place between the outcoupled beams after mirror 2, outside the resonator, rather than the launched and
circulating beams after mirror 1, inside the resonator. Since it is interference that modifies the spectral contents, the spectral intensity distribution
inside the resonator would be the same as the incident spectral intensity distribution, and no resonance enhancement would occur inside the resonator.

Physically, the Airy distribution is the sum of mode profiles of the longitudinal resonator modes.[6] Starting from the electric field  circulating
inside the resonator, one considers the exponential decay in time of this field through both mirrors of the resonator, Fourier transforms it to frequency
space to obtain the normalized spectral line shapes , divides it by the round-trip time  to account for how the total circulating electric-field

intensity is longitudinally distributed in the resonator and coupled out per unit time, resulting in the emitted mode profiles,

and then sums over the emitted mode profiles of all longitudinal modes[6]

thus equaling the Airy distribution .

The same simple scaling factors that provide the relations between the individual Airy distributions also provide the relations among  and
the other mode profiles:[6]

The Taylor criterion of spectral resolution proposes that two spectral lines can be resolved if the individual lines cross at half intensity. When
launching light into the Fabry-Pérot resonator, by measuring the Airy distribution, one can derive the total loss of the Fabry-Pérot resonator via
recalculating the Lorentzian linewidth , displayed (blue line) relative to the free spectral range in the figure "Lorentzian linewidth and finesse
versus Airy linewidth and finesse of a Fabry-Pérot resonator".

Airy distribution as a sum of mode profiles

Characterizing the Fabry-Pérot resonator: Lorentzian linewidth and finesse



Lorentzian linewidth and finesse versus Airy linewidth and finesse of a Fabry-Pérot resonator.[6] (top) Relative Lorentzian linewidth 
 (blue curve), relative Airy linewidth  (green curve), and its approximation (red curve), and (bottom)

Lorentzian finesse  (blue curve), Airy finesse  (green curve), and its approximation (red curve) as a function of reflectivity value
. The exact solutions of the Airy linewidth and finesse (green lines) correctly break down at , equivalent to 

, whereas their approximations (red lines) incorrectly do not break down. Insets: Region .

The underlying Lorentzian lines can be resolved as long as the Taylor
criterion is obeyed (see figure "The physical meaning of the Lorentzian
finesse"). Consequently, one can define the Lorentzian finesse of a Fabry-
Pérot resonator:[6]

It is displayed as the blue line in the figure "The physical meaning of the
Lorentzian finesse". The Lorentzian finesse  has a fundamental physical
meaning: it describes how well the Lorentzian lines underlying the Airy
distribution can be resolved when measuring the Airy distribution. At the
point where

equivalent to , the Taylor criterion for the spectral resolution of a
single Airy distribution is reached. For equal mirror reflectivities, this point
occurs when . Therefore, the linewidth of the
Lorentzian lines underlying the Airy distribution of a Fabry-Pérot resonator
can be resolved by measuring the Airy distribution, hence its resonator
losses can be spectroscopically determined, until this point.

When the Fabry-Pérot resonator is used as a scanning interferometer, i.e., at varying resonator length (or angle of incidence), one can
spectroscopically distinguish spectral lines at different frequencies within one free spectral range. Several Airy distributions , each one
created by an individual spectral line, must be resolved. Therefore, the Airy distribution becomes the underlying fundamental function and the
measurement delivers a sum of Airy distributions. The parameters that properly quantify this situation are the Airy linewidth  and the Airy
finesse . The FWHM linewidth  of the Airy distribution  is[6]

The physical meaning of the Lorentzian finesse  of a
Fabry-Pérot resonator.[6] Displayed is the situation for 

, at which  and ,
i.e., two adjacent Lorentzian lines (dashed colored lines,
only 5 lines are shown for clarity) cross at half maximum
(solid black line) and the Taylor criterion for spectrally
resolving two peaks in the resulting Airy distribution (solid
purple line) is reached.

Scanning the Fabry-Pérot resonator: Airy linewidth and finesse
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The Airy linewidth  is displayed as the green curve in the figure
"Lorentzian linewidth and finesse versus Airy linewidth and finesse of a
Fabry-Pérot resonator".

The concept of defining the linewidth of the Airy peaks as FWHM breaks
down at  (solid red line in the figure "Airy distribution 

"), because at this point the Airy linewidth instantaneously jumps to
an infinite value. For lower reflectivity values , the FWHM linewidth
of the Airy peaks is undefined. The limiting case occurs at

The physical meaning of the Airy finesse  of a Fabry-
Pérot resonator.[6] When scanning the Fabry-Pérot length
(or the angle of incident light), Airy distributions (colored
solid lines) are created by signals at individual frequencies.
The experimental result of the measurement is the sum of
the individual Airy distributions (black dashed line). If the
signals occur at frequencies , where 
is an integer starting at , the Airy distributions at adjacent
frequencies are separated from each other by the linewidth 

, thereby fulfilling the Taylor criterion for the
spectroscopic resolution of two adjacent peaks. The
maximum number of signals that can be resolved is .
Since in this specific example the reflectivities 

 have been chosen such that 
 is an integer, the signal for  at the

frequency  coincides with
the signal for  at . In this example, a maximum of 

 peaks can be resolved when applying the Taylor
criterion.

Example of a Fabry-Pérot resonator with (top) frequency-
dependent mirror reflectivity and (bottom) the resulting
distorted mode profiles  of the modes with indices 

, the sum of 6 million mode profiles
(pink dots, displayed for a few frequencies only), and the
Airy distribution .[6] The vertical dashed lines denote
the maximum of the reflectivity curve (black) and the
resonance frequencies of the individual modes (colored).
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For equal mirror reflectivities, this point is reached when  (solid red line in the figure "Airy distribution ").

The finesse of the Airy distribution of a Fabry-Pérot resonator, which is displayed as the green curve in the figure "Lorentzian linewidth and finesse
versus Airy linewidth and finesse of a Fabry-Pérot resonator" in direct comparison with the Lorentzian finesse , is defined as[6]

When scanning the length of the Fabry-Pérot resonator (or the angle of incident light), the Airy finesse quantifies the maximum number of Airy
distributions created by light at individual frequencies  within the free spectral range of the Fabry-Pérot resonator, whose adjacent peaks can be
unambiguously distinguished spectroscopically, i.e., they do not overlap at their FWHM (see figure "The physical meaning of the Airy finesse"). This
definition of the Airy finesse is consistent with the Taylor criterion of the resolution of a spectrometer. Since the concept of the FWHM linewidth
breaks down at , consequently the Airy finesse is defined only until , see the figure "Lorentzian linewidth and finesse

versus Airy linewidth and finesse of a Fabry-Pérot resonator".

Often the unnecessary approximation  is made when deriving from  the Airy linewidth . In contrast to the exact solution
above, it leads to

This approximation of the Airy linewidth, displayed as the red curve in the figure "Lorentzian linewidth and finesse versus Airy linewidth and finesse
of a Fabry-Pérot resonator", deviates from the correct curve at low reflectivities and incorrectly does not break down when . This
approximation is then typically also used to calculate the Airy finesse.

The more general case of a Fabry-Pérot resonator with frequency-dependent mirror reflectivities can be treated with the same equations as above,
except that the photon decay time  and linewidth  now become local functions of frequency. Whereas the photon decay time is still a
well-defined quantity, the linewidth loses its meaning, because it resembles a spectral bandwidth, whose value now changes within that very
bandwidth. Also in this case each Airy distribution is the sum of all underlying mode profiles which can be strongly distorted.[6] An example of the
Airy distribution  and a few of the underlying mode profiles  is given in the figure "Example of a Fabry-Pérot resonator with

frequency-dependent mirror reflectivity".

Intrinsic propagation losses inside the resonator can be quantified by an intensity-loss coefficient  per unit length or, equivalently, by the intrinsic
round-trip loss  such that

The additional loss shortens the photon-decay time  of the resonator:

The generic Airy distribution or internal resonance enhancement factor  is then derived as above by including the propagation losses via the
amplitude-loss coefficient :

Frequency-dependent mirror reflectivities

Fabry-Pérot resonator with intrinsic optical losses



The other Airy distributions can then be derived as above by additionally taking into account the propagation losses. Particularly, the transfer function
with loss becomes

The varying transmission function of an etalon is caused by interference
between the multiple reflections of light between the two reflecting
surfaces. Constructive interference occurs if the transmitted beams are in
phase, and this corresponds to a high-transmission peak of the etalon. If the
transmitted beams are out-of-phase, destructive interference occurs and this
corresponds to a transmission minimum. Whether the multiply reflected
beams are in phase or not depends on the wavelength (λ) of the light (in
vacuum), the angle the light travels through the etalon (θ), the thickness of
the etalon (ℓ) and the refractive index of the material between the reflecting
surfaces (n).

The phase difference between each successive transmitted pair (i.e. T2 and
T1 in the diagram) is given by[10]

If both surfaces have a reflectance R, the transmittance function of the
etalon is given by

where

is the coefficient of finesse.

Maximum transmission ( ) occurs when the optical path length
difference ( ) between each transmitted beam is an integer multiple
of the wavelength. In the absence of absorption, the reflectance of the etalon
Re is the complement of the transmittance, such that . The
maximum reflectivity is given by

and this occurs when the path-length difference is equal to half an odd multiple of the wavelength.

The wavelength separation between adjacent transmission peaks is called the free spectral range (FSR) of the etalon, Δλ, and is given by:

Description of the Fabry-Perot resonator in wavelength space

A Fabry–Pérot etalon. Light enters the etalon and
undergoes multiple internal reflections.

The transmission of an etalon as a function of wavelength.
A high-finesse etalon (red line) shows sharper peaks and
lower transmission minima than a low-finesse etalon (blue).
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where λ0 is the central wavelength of the nearest transmission peak and 
is the group refractive index.[11] The FSR is related to the full-width half-
maximum, δλ, of any one transmission band by a quantity known as the
finesse:

This is commonly approximated (for R > 0.5) by

If the two mirrors are not equal, the finesse becomes

Etalons with high finesse show sharper transmission peaks with lower
minimum transmission coefficients. In the oblique incidence case, the
finesse will depend on the polarization state of the beam, since the value of
R, given by the Fresnel equations, is generally different for p and s
polarizations.

Two beams are shown in the diagram at the right, one of which (T0) is
transmitted through the etalon, and the other of which (T1) is reflected twice
before being transmitted. At each reflection, the amplitude is reduced by 

, while at each transmission through an interface the amplitude is
reduced by . Assuming no absorption, conservation of energy requires
T + R = 1. In the derivation below, n is the index of refraction inside the
etalon, and n0 is that outside the etalon. It is presumed that n > n0. The
incident amplitude at point a is taken to be one, and phasors are used to
represent the amplitude of the radiation. The transmitted amplitude at point
b will then be

where  is the wavenumber inside the etalon, and λ is the
vacuum wavelength. At point c the transmitted amplitude will be

The total amplitude of both beams will be the sum of the amplitudes of the
two beams measured along a line perpendicular to the direction of the beam.
The amplitude t0 at point b can therefore be added to t'1 retarded in phase
by an amount , where  is the wavenumber outside of the
etalon. Thus

where ℓ0 is

Finesse as a function of reflectivity. Very high finesse
factors require highly reflective mirrors.

Transient analysis of a silicon (n = 3.4) Fabry–Pérot etalon
at normal incidence. The upper animation is for etalon
thickness chosen to give maximum transmission while the
lower animation is for thickness chosen to give minimum
transmission.
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The phase difference between the two beams is

The relationship between θ and θ0 is given by Snell's law:

so that the phase difference may be written as

To within a constant multiplicative phase factor, the amplitude of the mth
transmitted beam can be written as

The total transmitted amplitude is the sum of all individual beams' amplitudes:

The series is a geometric series, whose sum can be expressed analytically. The amplitude can be rewritten as

The intensity of the beam will be just t times its complex conjugate. Since the incident beam was assumed to have an intensity of one, this will also
give the transmission function:

For an asymmetrical cavity, that is, one with two different mirrors, the general form of the transmission function is

A Fabry–Pérot interferometer differs from a Fabry–Pérot etalon in the fact that the distance ℓ between the plates can be tuned in order to change the
wavelengths at which transmission peaks occur in the interferometer. Due to the angle dependence of the transmission, the peaks can also be shifted
by rotating the etalon with respect to the beam.

Another expression for the transmission function was already derived in the description in frequency space as the infinite sum of all longitudinal

mode profiles. Defining  the above expression may be written as

The second term is proportional to a wrapped Lorentzian distribution so that the transmission function may be written as a series of Lorentzian
functions:

where

False color transient for a high refractive index, dielectric
slab in air. The thickness/frequencies have been selected
such that red (top) and blue (bottom) experience maximum
transmission, whereas the green (middle) experiences
minimum transmission.
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Lummer–Gehrcke interferometer
Gires–Tournois etalon
Atomic line filter
ARROW waveguide
Distributed Bragg reflector
Fiber Bragg grating
Optical microcavity
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