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Abstract. Fermat’s principle asserts that light takes the path of minimum (actually extremal)
time. Sailors often wish to find paths of minimum time. Thus by thinking of a sailboat as a
light ray, a sailor can use Fermat’s principle to describe the optimum sailing strategy. Huygens’
principle and Hamiltonian optics follow from Fermat’s principle, so a sailor can use Huygens’
principle to visualize least-time paths, and Hamilton’s optics provides a mathematical description
of these paths. In especially simple cases, the optics-based formalism can be used to describe
and quantify the basic tactics of sailboat racing.

1. Fermat’s principle

Perhaps Albert Einstein loved sailing [1–3] because of the tricky geometry associated with
sailing strategy. An expert on light like Einstein could have used Fermat’s minimum-time
principle to navigate most efficiently. Fermat’s guess that light takes the path of minimum
time was based on an assumption Einstein might have liked; ‘nature operates by the simplest
and most expeditious ways and means’ [4]. The updated version of Fermat’s principle only
specifies that light’s travel time is an ‘extremum’. But for applications to sailing strategy, the
primitive and historically accurate version of Fermat’s minimum-time principle is particularly
appropriate. Fermat derived Snell’s law of refraction by minimizing the time it takes light to
pass from a point in a less dense material to a point in a more dense material. He was one of a
handful of people who knew enough about the precursors of calculus to do this. Fermat died
in 1665; the famous plague year when Newton ‘discovered’ calculus and universal gravitation.

Fermat’s principle is more than an alternative form of Snell’s law [5]. It is the foundation
of geometrical optics from which Huygens’ principle and Hamilton’s optics follow. If a sailor
follows a light-like path, Fermat’s principle assures us that the travel time will be a minimum,
and translating Huygens’ principle and Hamiltonian optics into sailing language provides a
description of these least-time sailing paths.

2. Speed diagrams

Sailboats cannot sail directly against the wind. More generally, a sailboat’s speed varies widely
with the angleθ between the wind direction and the direction of a sailboat’s motion. A polar
plot of the angular dependence of a boat’s maximum speedV (θ) is called a ‘speed diagram’.
The apple-shaped curve of figure 1 is a typical speed diagram. It has been decorated with top
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Figure 1. A sailboat’s speed diagram is a polar plot
ofV (θ), which is its speed versus its direction. Also
shown are the wind directionW and four possible
boat velocities.

views of little sailboats which show the sail positions needed to travel most quickly in four
example directions. The ‘notch’ at the top of the speed diagram (opposite the wind direction
W ) reflects the sailboat’s inability to sail toward the wind. If the speed diagram is wrapped
with a string, ‘fast’ parts of the diagram touch the string, but ‘slow’ parts do not. The boat
in figure 1 which is sailing parallel toW (toward the bottom of the figure) is going in a slow
direction, and it would never win a sailboat race. Sailing ‘with the wind’ is slower for some
high-tech sailboats because the relative wind is decreased by the sailboat’s motion. The slow
parts of a speed diagram give rise to the ‘zigzag’ paths sailboats sometimes follow. In principle,
a speed diagram could be derived from the principles of hydrodynamics. In practice, speed
diagrams are determined experimentally by observing boat speeds in steady breezes.

The power for sailboats comes from wind moving over water. A stronger breeze (to within
limits) means faster sailing and an expanded speed diagram. Variations in the wind’s direction
change the orientation of the speed diagram, and currents translate the speed diagram. Wind is
turbulent, and this unavoidable complication of sailing produces a speed diagram whose shape
changes in space and time. Since the maximum speed must therefore be written asV (r, t, θ),
the sailor’s task of finding the quickest path is quite complex. Rather than sailing a straight
line, the quickest sailing path can meander to keep the boat in favourable winds.

The optical analogue of a speed diagram is light’s ‘indicatrix’, which is polar plotV (θ, φ)
of the speed of light in an anisotropic material. Light’s ellipsoidal indicatrix is simpler than a
speed diagram because it has no ‘slow’ parts. Thus there is no optical analogue for the zigzag
paths of sailing. The time-dependent fluctuations of a speed diagram is another complication
not commonly encountered in optics. Despite the geometrical and temporal differences
between a speed diagram and an indicatrix, Fermat’s principle remains as a fundamental
connection between sailing strategy and optics.

3. Huygens’ principle

In optics, Huygens’ principle is the geometric construction which describes both the paths of
light rays and the evolution of a wavefront. When applied to sailing, the light ray becomes the
minimum-time path of a sailboat, and the wavefront becomes the line describing an idealized
fleet of racing sailboats, which we call a ‘fleet curve’.

In real sailboat races, some are faster than others, so the boats become more or less
randomly distributed over the water. In an idealized sailboat race (where the optics analogy
applies) boats are identical and sailors are perfect. Thus no boat is ahead of any other boat and
all the boats lie on the fleet curve. The time evolution of a fleet curve (or a wavefront) may be
described by Hamilton’s time functionT (r), with the possible positions of all the boats at time
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t determined by the conditionT (r) = t . For example, if all the boats started atr = 0 when
t = 0, thenT (r) = |r|/v would describe a fleet moving out from the origin at a constant speed
v in every direction. Of course the time function is never this simple for sailboats because
the velocity depends on space, time and direction. The two curves labelledT (r) = t0 and
T (r) = t1 in figure 2 show fleet curves at two fixed timest0 andt1 which could be obtained
from a more complicated time function.

T(r) = t0

T(r) = t1

r0

r1

W

WW

Figure 2. Two curves showing the positions of a fleet of boats at timest0 andt1. The
evolution of this fleet curve is determined by Huygens’ principle and the speed diagrams.
The dotted curve shows the time-minimizing path for a sailboat which passes through
r0 at timet0.

Huygens’ principle and the speed diagrams determine the time evolution of the fleet curves.
Figure 2 illustrates how the fleet curve at the later timet1 is obtained from the fleet curve at the
earlier timet0. If t1 = t0+1t , and1t is sufficiently small, then all the possible boat positions
at timet1 are obtained from speed diagrams placed at all points on thet0 curve, multiplied by
1t to change the speeds into the appropriate distances. Huygens’ principle is the observation
that the envelope curve touching the outer edges of this speed diagram array is also the fleet
curveT (r) = t1. Each boat must sail as quickly as possible to this curve (Fermat’s principle)
so the sailing directions are given by the full arrows which are directed from theT (r) = t0
curve to theT (r) = t1 curve.

The example of figure 2 depicts a case where the wind is stronger on the left-hand side of
the figure. Thus the speed diagram on the left is larger, and this gradient in the wind twists
the fleet curve. The twisting is represented algebraically by the gradient term in equation (9),
which will be derived later.

4. A Hamiltonian view of sailing

Hamilton’s optics provides an algebraic description of the path of minimum time which results
from applying Huygens’ principle at every point along the path. Since time minimization is
the sailor’s goal, it should come as no surprise that Hamilton’s time functionT (r) plays a
fundamental role in the theory. For the sailboat analogy to optics,T (r) is defined (at any
positionr) as the minimum time needed for a boat to reachr. Of course, this definition
depends on the choice of an initial starting point and starting time. For simplicity, one can
assume that the boat starts at the origin whent = 0, soT (r) represents the minimum time
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interval needed to sail from the origin tor. Of course the choice of an origin is arbitrary and
does not affect the physics.

In addition to this time function, two vector fields characterize the minimum-time paths;

v(r) = dr(t)

dt
(1)

is the velocity of the minimum-time path which passes throughr, and

p(r) = ∇T (r) (2)

is the ‘vector of normal slowness’ [6], or simply ‘slowness’. Even thoughp(r) has the formal
properties of momentum, it has the units of an inverse velocity; if all velocities were halved,
the slowness would be doubled. This explains the name ‘slowness’, which was introduced by
Hamilton.

The slowness yields the evolution of the shortest-time path because: (i)p(r) determines
v(r) and (ii) the time dependence ofp(r) is given by a ‘Hamiltonian’ differential equation.
These complimentary aspects of the shortest-time path determination are described below.

4.1. Velocity determination

For any givenr andp(r), a sailor knows which way to steer becausev(r) is a velocity on
the speed diagram which satisfies the equationp(r) · v(r) = 1. To show this, consider the
minimum-time pathr(t), illustrated by the dotted curve in figure 2. For this pathr(t0) = r0
lies on the curveT (r) = t0, andr(t1) = r1 lies on the curveT (r) = t1. Sincet1− t0 = 1t ,

T (r1)− T (r0) = 1t. (3)

In the limit of small1t this time difference is also given by the first term in the Taylor series
expansion ofT (r) about the pointr0:

T (r1)− T (r0) = ∇T (r0) · (r1− r0). (4)

Also, for vanishing1t

r1− r0 = v(r0)1t. (5)

Combining equations (3)–(5), and using the definitionp(r) = ∇T (r) from equation (2), gives

p(r) · v(r) = 1. (6)

The subscript ‘0’ has been discarded from equation (6) because this relation is valid for any
point along any time-minimizing path, and thus for allr.

A geometrical illustration of this result is summarized in figure 3(a), which shows a speed
diagram, the linep(r) · v = 1, the direction ofp(r) (labelled ‘p’), andv(r) (labelled ‘v’).
The linep(r) · v = 1 is tangent to the speed diagram; the directionp is an arrow drawn
perpendicular to this tangent line, andv is the velocity on the speed diagram which touches
this tangent line. Figure 3(a) can be obtained from the right-hand speed diagram of figure 2
by a 1/(1t) magnification in the1t → 0 limit. In this limit, the infinitesimal segment of
the fleet curve att0+1t which touches the right-hand speed diagram in figure 2 becomes the
tangent linep(r) · v = 1 in figure 3(a).

Figure 3(b) is similar to figure 3(a) exceptp(r) is antiparallel to the wind velocity,W .
For this case, the sailor is ‘tacking to windward’ and there are two velocities, labelled ‘v1’ and
‘v2’ in figure 3(b), which both satisfy the conditionp(r) ·v(r) = 1. A sailor can choose either
velocity and make equal progress to windward (v1 corresponds to ‘starboard tack’ where the
wind blows from the right-hand side of the boat, andv2 corresponds to ‘port tack’).

Sailing to satisfy the conditionp(r) · v(r) = 1 is equivalent to steering to maximize the
velocity component in the direction ofp(r). However, even though the direction ofp(r) is
the most desirable direction to travel, the optimum velocityv(r) is generally not parallel to
p(r) because boats may slow down (or even stop) if they are steered to alignv with p. This
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Figure 3. Examples of howp and the speed diagram determine the velocity. For both
values ofp, the tangent line to the speed diagram is described byp(r) · v(r) = 1,
and the speed is determined by the point(s) of tangency. The geometry of this velocity
determination is equivalent to figure 2 (Huygens’ principle) in the limit of a vanishing
time interval.

is clearly the case in figure 3(b), wherep is directed toward the wind. Since a boat cannot sail
towardp, the best way to make rapid progress in thep-direction is to pickv to be along one
of the two directions which are about 45◦ away from windward.

4.2. Time dependence of p(r)

In order to continue sailing in the best direction, the sailor needs to know the variation of
p(r) along his minimum-time sailing path. Hamilton’s optics gives this variation; the time
derivative ofp(r) is determined by the analogue to one of Hamilton’s equations of classical
mechanics (see the appendix), which is

dp

dt
= −∇(p · v(r)). (7)

Here the time derivative means the time variation as experienced by a sailor moving along a
path of minimum time, and the gradient operates onv(r), but not onp. To express this result
in more practical terms, we writev(r) in terms of the polar representation of the speed diagram
as

v(r) = V (r, T (r), θ) (8)

whereθ is a direction which maximizes the component of speed in the direction ofp. Using
this to calculate the gradient ofv(r) yields dp/dt in terms of the space and time derivatives
of the speed diagram.

dp

dt
= −∇(p · V (r, t, θ))− p ∂

∂t
(p · V (r, t, θ)) (9)

where the firstp in the second term comes from the gradient oft = T (r) (see equation (2)).
A possible additional term in equation (9) (associated withθ differentiation) vanishes because
changes ofv caused by changes inθ are perpendicular top.
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5. Applications

In principle, equation (9) represents a formal solution to the least-time problem. In practice,
sailors cannot perform the differentiation of equation (9), and they do not know the initialp
needed to sail to the correct destination. However, it is still possible to gain insight into sailing
strategy by applying the formal relations to the four particularly simple examples described
below.

5.1. Example 1: a constant wind

This drastically oversimplified example serves as a first step in devising sailing strategy. If the
wind is constant, and if the direction from starting point A to destination B corresponds to a
‘fast’ direction on the speed diagram, then the quickest path is a straight line. Choosingv to
point from A to B also determines ap which is generally not directed from A to B. This is
illustrated in figure 3(a). Becausep is normal to the surfaces of constantT (constant time), a
small displacement alongp corresponds to having a ‘head start’. Thus if two nearby boats are
sailing toward B in a constant wind, the lead boat has made the most progress in thep-direction,
and this is not necessarily the boat closest to B.

When sailing toward the wind, the direction from A to B is a ‘slow’ direction on the speed
diagram. For this case, one must sail a ‘zigzag’ course to B, andp must be chosen so that
the tangent line touches the speed diagram at the two points shown in figure 3(b). To arrive at
B, one sails about 45◦ to the right of the wind for a while, and then changes direction (tacks)
and sail to the other side of the wind. Even when sailing this more complicated zigzag path,
displacement in thep-direction remains the true indicator of which boat is ahead.

5.2. Example 2: wind depends only on time

A purely time-dependent wind is a reasonable approximation for slow sailboats. When one
cannot sail to a more favourable wind before the wind moves on, the spatial dependence of the
wind is of no consequence. Ignoring spatial derivatives of the speed diagram in equation (9)
means the direction (but not the magnitude) ofp is conserved. The sailor must first determine
the fixed direction forp (this is the hard part), and then maximize speed in the fixedp-direction.
Maximizing speed alongp in a time-dependent wind leads to complicated sailing paths. This
is especially noticeable when sailing a zigzag path toward the average wind. As the wind
direction varies, the sailor must change from one lobe of the speed diagram to the other (tack).
This is illustrated in figure 4 by the broken-line path of a sailboat in a clockwise rotating wind.
At eachr along this path, the sailor determines his sailing direction usingp(r) and the speed
diagram corresponding to the wind at that point. Speed diagrams, tangent lines described by
p · v = 1, and the constructions used to find the correct sailing directions are superimposed
at three points along this path toward the top of figure 4. The sailor tacks at the middle speed
diagram because the wind direction becomes antiparallel top at this point. Note that the sailor
chooses to maximize speed ‘to windward’ (oppositeW ) only whenp points directly toward
the wind. At other points of the zigzag path, the sailor steers slightly less toward the wind to
minimize his travel time [7].

The geometry of figures 4–6 combine real-space sailing paths with velocity-space speed
diagrams. In order to place the speed diagrams in a real-space figure, we have multiplied each
speed diagram by a fixed time intervalτ . This scaling gives each speed diagram a non-zero
real-space size, butv(r) andp(r) for each speed diagram refer to these quantities evaluated at
the origin of the speed diagram. Thus each speed diagram determines the boat’s velocity only
at the point where the boat’s path touches the origin of the speed diagram. At this point, the
trajectory should be tangent to the vectorv(r).



Fermat’s principle and sailing strategy 21

W

W

W

p

p

p

Figure 4. If the wind depends on time only, the
direction ofp is fixed, but the direction ofv can
change with time. For sailing toward the wind, the
correct zigzag path (indicated by the broken line)
is determined by the orientation of the wind with
respect top. Speed diagram constructions similar
to those of figure 3 have been superposed at three
points along the path to show how the velocity at
each point is determined.

5.3. Example 3: time-independent wind varies on only one direction

Sometimes geography (such as a shoreline) produces a time-independent wind velocity which
varies in just one direction. We consider here the example where the wind increases with
the coordinatey (the vertical direction in figure 5) and is independent ofx (the horizontal
direction). For this simplification, translational invariance alongx yields a conservation law;
the x-component of the momentum-like slowness is constant. This follows directly from
equation (9). The conservedx-component ofp has a simple geometric interpretation for speed
diagrams. The tangent linep · v = 1 intersects thevx-axis at a fixed speedU = 1/px . An
example of how speed diagrams with this fixed point on the tangent line determine the quickest
sailboat course is illustrated in figure 5. For each of the three speed diagrams superposed on
the boat’s path in this figure, the displacement of the ‘dot’ from the centre of the speed diagram
is the same speed,U , in thex-direction.

In figure 5, the wind speed was chosen to be larger for largery, as is indicated by the larger
size for the speed diagram nearer the top of the figure. Conservation ofpx for this case means
a sailor follows the curved path indicated by the broken curve from left to right in the figure.
Since the least-time path passes through the region of largery where the wind is stronger, this
construction is a quantitative description of the sensible sailing adage ‘sail to the wind’. When
the direction ofp is not fixed, as in this example, the question of which boat is ahead cannot
be answered simply.
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Figure 5. When the wind depends only ony, the conservedpx means the tangent line
p(r) · v(r) = 1 crosses thevx-axis at a fixed point, which is indicated by the ‘dot’
adjacent to the three speed diagrams placed along the boat’s path. The different sized
speed diagrams reflect different wind speeds. Since the ‘dot’ position is fixed relative
to the centre of the speed diagram, the sailing direction must change when the wind
changes. The resulting trajectory, shown by the broken curve, takes the boat toward the
top of the figure (+y-direction) where the wind is greater.

5.4. Example 4: wind depends only on y + ut

By watching the surface of a lake or a field of grass, one can see that wind patterns often
drift with a velocity,u, which is comparable to the average wind velocity. For simplicity, we
overstate this observation (known as the Taylor hypothesis [8]) and consider the case where
the wind speed depends only ony + ut . This assumes the wind is independent ofx, and
fluctuations in the direction and magnitude of the wind are moving at a constant speedu in the
−y direction. Again,y is vertical andx is horizontal in figure 6.

W
p

W
W

p
p

Figure 6. If the wind speed depends ony + ut , the tangent lines to the speed diagram
pass through a fixed point (the dot) which is displaced by−u along thevy-axis. The
resulting curved path (broken curve) keeps the boat in larger winds. For this example
of a ‘dying’ wind, the quickest path is toward the bottom of the figure where the wind
has decreased less.

As with the other examples, this case has a simple graphical interpretation. Assuming the
Taylor hypothesis and ignoring thex dependence of the wind, the time derivatives of thex- and
y-components of the slowness are related. Using equation (9) to compare dpy/dt to dpx/dt ,
gives

d

dt
ln

(
1+ upy
upx

)
= 0. (10)
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Since the argument of the above logarithm must be a constant, the geometry of the lines tangent
to the speed diagram (described byp · v = 1) are restricted; all the tangent lines go through
the fixed point

(vx, vy) = (U,−u) (11)

where 1/U is the conservedx-component of the slowness in a coordinate system which moves
along they-axis with speed−u.

The significance of this fixed point on sailing strategy is most clearly illustrated when
sailing roughly perpendicular to the wind. As is shown in figure 6, a decreasing wind bends
the sailing direction toward the+y-direction. Thus a sailor who wishes to travel in thex-
direction must initially start his trip with a velocity component in the−y-direction. This
curved path is the quickest path because it allows a sailor to ‘stay with the wind’, steering to
follow the high wind and to cut across the lighter wind. The curvature of this path will be
large only when boat speeds are comparable tou. Thus when sailing crosswise to the wind,
fast boats should sail a more ‘wobbly’ course than slow boats.

6. Conclusion

We have shown how the formalism of classical geometric optics can be applied to sailing
strategy. Even though sailors must contend with an incomplete knowledge of the wind, some
of the applications cited above are useful and are not completely obvious. Furthermore, seeing
how formal optics can be extended to distant realms, like sailing strategy, gives one a renewed
appreciation of the work of Fermat, Huygens, Hamilton and others. While considering this
recreational application of classical optics, we were repeatedly impressed by the insights and
accomplishments of these great scientists from past centuries.

Appendix

The time derivative ofp(r) for a boat (or light ray) moving along its minimum-time path is
given by the chain rule. For thex-component ofp

d

dt
px = vx dpx

dx
+ vy dpx

dy
. (A1)

Sincep = ∇T , and the curl of a gradient is zero,ẑ · (∇× p) = 0 or

dpx
dy
= dpy

dx
. (A2)

Combining equations (A1) and (A2) gives

dpx
dt
= vx dpx

dx
+ vy dpy

dx
. (A3)

Sincep · v = 1 (see equation (6)), the derivative of this product must vanish and

d

dx
(p · v) = vx dpx

dx
+ px dvx

dx
+ vy dpy

dx
+ py dvy

dx
= 0. (A4)

Subtracting equation (A4) from (A3) gives

dpx
dt
= −px dvx

dx
− py dvy

dx
. (A5)

An analogous expression applies for dpy/dt , and combining them gives

dp

dt
= −∇(p · v(r)). (A6)

Here the gradient operator applies only to the spatial dependence of the velocity field.
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