
Nonlinear Schrödinger equation for “waves of envelopes”
These notes explain how the nonlinear Schrödinger equation (NLS) can describe the propagation

of a quasi-monochromatic wave in a nonlinear medium.

1 Generic treatment of the modulation of a plane wave

One1 considers a field η(~r, t) which admits plane wave solutions of the type

exp{i(~k · ~r − ωt)} , (1)

where the angular frequency ω relates to the wave vector ~k through the isotropic dispersion relation
ω = ω(k), with k = |~k |.

An initial wave packet η(~r, 0) can always be decomposed into a sum of Fourier components:

η(~r, 0) =

∫
Rd

ddk

(2π)d
F (~k ) exp{i~k · ~r } , where F (~k ) =

∫
Rd

ddr η(~r, 0) exp{−i~k · ~r } (2)

is the spatial Fourier transform of η(~r, 0) (d is the dimension of space).
If the wave obeys a linear equation (which we assume for a while), each of its Fourier components

has a dynamics of the type (1) and the time evolved η(~r, t) reads

η(~r, t) =

∫
Rd

ddk

(2π)d
F (~k ) exp{i(~k · ~r − ω(k) t)} , (3)

Let’s assume that the initial condition is almost monochromatic. In this case F (~k ) will be peaked
around a certain wave vector ~k0. It is then appropriate to make a change of variable ~k = ~k0 + ~q in
(3), and to Taylor expand ω(|~k0 + ~q |) around ~k0: one first writes

|~k0 + ~q |2 = k20 + 2~k0 · ~q + ~q 2 and | ~k0 + ~q | = k0 + k̂0 · ~q +
q2⊥
2 k0

+ · · · (4)

where k0 = |~k0| , k̂0 = ~k0/k0 and q2⊥ = ~q 2 − (k̂0 · ~q )2. Then, introducing the notations

ω(k0) = ω0 ,
dω

dk

∣∣∣∣
k=k0

= ω′0 ,
d2ω

dk2

∣∣∣∣
k=k0

= ω′′0 , (5)

one obtains

ω(| ~k0 + ~q |) = ω0 + ω′0 k̂0 · ~q + q2⊥
ω′0
2k0

+ 1
2(k̂0 · ~q )2ω′′0 + · · · (6)

In the following, for simplicity, of considers a single spatial dimension z (i.e., d = 1). In this case
~k0 = k0 ẑ, ~q = q ẑ, q2⊥ = 0 (where ẑ is a unit vector of the z-axis). Then Eq. (6) simplifies to

ω(k0 + q) = ω0 + q ω′0 + 1
2q

2ω′′0 + · · · (7)

1This section is inspired by §24 of the book by Karpmann “Nonlinear waves in dispersive media” and by chapter 7.8
of the book by Debnath “Nonlinear water waves”.
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and Eq. (3) reads

η(z, t) ' A(z, t) ei[k0z−ω0t] , where A(z, t) =

∫
R

dq

2π
F (k0 + q)ei[qz−ω

′
0q t−

1
2
ω′′0 q

2t] . (8)

The term exp[i(k0z − ω0t)] in the expression of η(z, t) is denoted the “carrier wave”, and A(z, t) is
the “amplitude” or the “envelope” (it is a priori complex). Note that if the initial wave is exactly
monochromatic (with wave-vector k0 ẑ, and, say, amplitude unity), then, from (2), F (k) = 2πδ(k−k0)
and (8) yields A(z, t) = 1: η(z, t) remains exactly a plane wave for all time. In the generic case where
the initial wave η(z, 0) is not perfectly monochromatic, A(z, t) truly depends on z and t. From (8)
one can write A(z, t) =

∫
dq R(q, z, t) with

At = −i

∫
R
dq (ω′0q + 1

2ω
′′
0q

2)R , Az = i

∫
R
dq q R , Azz = −

∫
R
dq q2R .

One thus sees that A(z, t) is solution of 2

i(At + ω′0Az) = −1
2ω
′′
0 Azz ⇐⇒ iAτ = −1

2ω
′′
0 Axx where

{
x = z − ω′0 t ,
τ = t .

(9)

The equation at the right in (9) describes the dynamics of the amplitude in a frame moving at the
group velocity ω′0 of the carrier wave. If A(x, 0) is initially smooth enough, the right-hand side of this
equation is negligible (Axx ∼ 0) and the wave is stationary in the moving frame, or equivalently: it
propagates in the original (z, t) frame at constant velocity ω′0 without deformation. One can be more
quantitative: let’s denote as L the typical width over which A(x, 0) varies significantly (L ∼ |A/Ax|).
From an analysis of the orders of magnitude in the equation at the right of (9), one sees that the
shape of A starts changing at a time of order tdisp = L2/ω′′0 . This is called the dispersive time3. In
the absence of dispersion ω′′0 = 0 and tdisp =∞ as it should.

Note also that, from the form of η in the left of Eq. (8), we interpreted A as a position and
time-dependent amplitude. This is meaningful only if A depends more slowly on x and t than the
carrier wave does, that is if L� k−10 and tdisp � ω−10 .

The equation of the left-hand side of (9) can be simply obtained from the following recipe:

(a) Expand ω(k) around k0 according to (7): ω − ω0 ' (k − k0)ω′0 + 1
2(k − k0)2ω′′0 + · · ·

(b) Make the identification: ω − ω0 ≡ i∂t and k − k0 ≡ −i∂z .

(c) Apply the resulting identical operators i∂t and −iω′0∂z − 1
2ω
′′
0∂zz to A.

This suggests a phenomenological way to account for nonlinear effects the envelope of the carrier wave:
if nonlinearity is present, the group and phase velocities of a quasi-monochromatic wave will depend

2In dimension higher than 1, the term proportional to q2⊥ in (6) results in an additional transverse Laplacian − ω′
0

2 k0

~∇2
⊥

in the right-hand side of each of Eqs. (9).
3Its expression can also be obtained by considering the cases where one can make the approximation exp(− i

2
ω′′0 q

2t) ' 1
in the integrant of (8).
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on its amplitude. One may phenomenologically account for such an effect by adding an amplitude-
dependent term to the dispersion relation which should now read ω(k ; |A|2). The simplest modification
of Eq. (7) will be:

ω − ω0 ' (k − k0)ω′0 + 1
2(k − k0)2ω′′0 + α|A|2 + · · · where α =

∂ω

∂|A|2

∣∣∣∣
|A|2=0

. (10)

If one modifies the above (a,b,c) recipe in order to account for the modification (10) of the dispersion
relation (7), one obtains straightforwardly:

iAt = −iω′0Az − 1
2ω
′′
0Azz + α|A|2A ⇐⇒ iAt = −1

2ω
′′
0Axx + α|A|2A , (11)

where x = z−ω′0 t. For simplicity we did not make here the change of notation t→ τ which was done
in Eq. (9). Eq. (11) is called the “nonlinear Schrödinger equation” (NLS equation). The coefficient α
is real4, positive or negative; its precise value depends on the nonlinear wave equation satisfied by the
physical field η. Eq. (10) indicates that α should typically depend on k0. As an illustration, the next
section provides a multi-scale derivation of equation (11) where such a k0-dependence is observed.
Then section 3 provides a different derivation in the context of a beam propagating in a nonlinear
optical medium.

Comparing the NLS equation (11) with the linear equation (9), one sees that the nonlinear term
is an additional source of distortion of the wave packet. It becomes effective after a time tNL =
(|α| · |Atyp|2)−1. The relative values of tdisp and tNL determine which phenomenon, between dispersion
or nonlinearity, affects the wave packet first. Note that, however small is |α|, nonlinear effects cannot
be neglected for t > tNL.

2 NLS from a multi-scale analysis

In this section we illustrate how a multi-scale analysis of the dynamics of a nonlinear wave train leads
to a NLS equation for its slowly varying amplitude. We consider the (rather simple) case of a wave
train of the Korteweg de Vries (KdV) equation5. Namely, one looks for a solution of the KdV equation

ut + uuz + uzzz = 0 , (12)

under the form

u = u0 + ε u1(z, Z, t, T1, T2) + ε2u2(z, Z, t, T1, T2) + ε3u3(z, Z, t, T1, T2) + · · · (13)

with |ε| � 1, Z = εz and T2 = εT1 = ε2t. We choose here u0 ≡ 0 for simplicity (no background). We
consider a wave train which is a slowly modulated plane wave, hence we chose u1 of the form

u1 = A(Z, T1, T2) exp[iθ(z, t)] + c.c. , where θ(z, t) = k0z − ω0t . (14)

The trick is to consider the different scales as independent, and to perform the replacements

∂t → ∂t + ε∂T1 + ε2∂T2 , ∂z → ∂z + ε∂Z , and thus ∂3z → ∂3z + 3ε∂2z∂Z + 3ε2∂z∂
2
Z + ε3∂3Z . (15)

4A complex α would correspond to a damped or to an unstable wave, depending on the sign of the imaginary part.
Can you see that ?

5For a more general treatment, cf. the book “Solitons in Mathematics and Physics” by A. C. Newell, 1985.
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Inserting the ansatz (13) into KdV equation (12) one gets at leading order in ε: ∂tu1 +∂3zu1 = 0. This
imposes

ω0 = −k30 , (16)

which is the dispersion relation of linear waves obeying KdV equation (12) in the absence of back-
ground. At next order one gets

(∂t + ∂3z )u2 = −(∂T1 + 3∂2z∂Z)u1 + u1∂zu1 = −(∂T1 − 3k20∂Z)u1 + ∂z(
1
2u

2
1) . (17)

This is a linear equation for u2 with a source which contains terms behaving as exp(±iθ) (the term
in u1) and as exp(±2iθ) (the term in u21). The terms behaving as exp(±iθ) being resonant with the
right-hand side of Eq. (17) lead to a secular behavior in u2 and should be discarded6. This imposes

(∂T1 − 3k20∂Z)u1 = 0 , → A(Z, T1, T2) = A(Z − vgT1, T2) , where vg = −3k20 =
dω0

dk0
(18)

is the group velocity of the carrier wave. The remaining right-hand side of (17) can be written as
∂z(

1
2u

2
1) = i k0A2 exp[2iθ] + c.c. and the corresponding solution u2 of Eq. (17) should be sought under

the form
u2 = B0(Z, T1, T2) +

[
B1(Z, T1, T2)eiθ + c.c.

]
+
[
B2(Z, T1, T2)e2iθ + c.c.

]
. (19)

When one inserts the form (19) into (17), only terms behaving as exp(±2iθ) remain. Equating their
coefficients yields

B2 = −A2k0/(2ω0 + 8k30) = −A2/(6k20) , (20)

but B0 and B1 are still undetermined.
The final step consists in writing the KdV equation at order ε3:

(∂t + ∂3z )u3 = −(∂T2 + 3∂z∂
2
Z)u1 − (∂T1 + 3∂2z∂Z)u2 − ∂z(u1u2)− 1

2∂Z(u21) . (21)

In this equation one should remove the resonant sources: the ones which are independent of θ and the
ones behaving as exp(±iθ). This leads respectively to

∂T1B0 + ∂Z |A|2 = 0 , and (∂T2 + 3ik0∂
2
Z)A+ (∂T1 − 3k20∂Z)B1 + ik0(AB0 +A∗B2) = 0 . (22)

Using the form (18) for A yields ∂T1(B0 − |A|2/vg) = 0, and one takes

B0 = |A|2/vg = −|A|2/(3k20) . (23)

One thus sees that the terms A, B0 and B2 depend on the slow variables Z and T1 only through the
combination Z − vgT1. This corresponds to the important physical result that the envelope of the
wave packet propagates at the group velocity. We want to enforce this property and we impose that
B1 should also depend only on Z − vgT1. This cancels the term (∂T1 − 3k20∂Z)B1 in the right equation
of (22), which then takes a NLS form if one expresses B2 and B0 in term of A through (20) and (23):

∂T2A = −3ik0∂
2
ZA− ik0(−|A|2A/3k20 −A∗A2/6k20) ⇐⇒ i∂T2A = 3k0∂

2
ZA−

1

2k0
|A|2A . (24)

6Secular behavior refers to a situation in which the iterates u2, u3, ... grow algebraically in the fast time or space
variables. If this were allowed to happen, the asymptotic series (13) would not be uniformly valid over long times and
distances.
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Finally one goes back to the original variables z and t. One defines x = z − vgt and A(x, t) =
εA(Z − vgT1, T2). Then a term ε2 factorizes out in (24) and one obtains

iAt = 3k0Axx −
1

2k0
|A|2A . (25)

Note that the coefficient of the dispersive operator ∂2x in this equation is −1
2d2ω0/dk

2
0, as expected

from Eq. (11) [see Eq. (16)]. In the present case the coefficient α of Eq. (11) is α = −1/2k0. It is
indeed k0-dependent.

3 Modulation of a monochromatic wave in a nonlinear dielectric
medium

In this section we study the propagation of a monochromatic optical beam in a nonlinear dielectric
medium. The physical problem is again the nonlinear modulation of a plane wave, but the context is
slightly different from the one of Secs. 1 and 2. As a result, the form of the resulting NLS differs from
the one of Eqs. (11) and (25).

One7 considers a non magnetic dielectric material. Maxwell equations read

~∇∧ ~E = −∂t ~B , ~∇∧ ~B =
1

ε0c2
∂t ~D , ~∇ · ~D = 0 , ~∇ · ~B = 0 , (26)

where ~D = ε0 ~E + ~P , ~P (~r, t) being the electric polarization density. We consider a medium in which
~P depends nonlinearly on ~E (see below). Assuming that ~∇ · ~E = 0 (this will be justified a posteriori),
one gets ~∇∧ ~∇∧ ~E = −~∇2 ~E and the two first of Eqs. (26) yield

~∇2 ~E =
1

ε0c2
∂2t ~D =

1

c2
∂2t ~E +

1

ε0c2
∂2t ~P . (27)

One considers a linearly polarized beam, of the form

~E(~r, t) =
(
1
2E(~r ) e−iω0t + c.c.

)
x̂ , (28)

where E(~r ) is a complex function. This will be denotes as a stationary beam (since the beam profile
does not depend on time).

One has two types of dielectric response of the medium: the linear polarization density ~PL(~r, t),
and the nonlinear one, ~PNL(~r, t). One has

~PL(~r, t) = ε0 χ
(1) ~E(~r, t) =

{
1
2ε0 χ

(1)E(~r ) e−iω0t + c.c.
}
x̂ , (29)

where χ(1) is the linear electric susceptibility. In a non-isotropic medium, the susceptibility is a second

rank tensor: PL,i = ε0 χ˜(1)ij Ej ; it may also depend on position, and be nonlocal in time. In the following

we consider none of these effects.

7This section is largely inspired by §109 of the 8th volume of the course of Landau and Lifshitz: “Electrodynamics of
continuous media”.
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In standard materials, with spatial inversion symmetry8, the dominant nonlinear dielectric response
reads (assuming it is local in time)

PNL,i(~r, t) = ε0 χ˜(3)ijklEj(~r, t)Ek(~r, t)El(~r, t) , (30)

where χ˜(3) is a fourth rank tensor. In an isotropic medium, it is customary to simply write χ˜(3)xxxx = χ(3),

and counting the different equal contributions to (30) one gets9

~PNL(~r, t) =
{

3
8ε0χ

(3)|E(~r )|2E(~r ) e−iω0t + c.c.
}
x̂ = 3

4ε0χ
(3)|E(~r )|2 ~E(~r, t) . (31)

In the following one considers an almost monochromatic wave propagating mostly along the z axis
and one writes

E(~r ) = A(~r⊥, z) eiβ0z , where |∂zA| � β0|A| , (32)

meaning that one considers a weak modulation of a plane wave. Then

~∇2E = eiβ0z
(
~∇2
⊥A− β20A+ 2iβ0Az +��Azz

)
. (33)

Inserting this expression (without the Azz term10) in (27) one sees that the amplitude A verifies

2iβ0Az + ~∇2
⊥A− β20A = −ω

2
0

c2

(
1 + χ(1) + 3

4χ
(3)|A|2

)
A . (34)

Discarding nonlinear effects, for a perfect plane wave (constant A), Eq. (34) yields β20 = (1+χ(1))ω2
0/c

2,
which is customarily written as β0 = n0k0, where k0 = ω0/c and n0 = (1 + χ(1))1/2 is the linear index
of refraction. Eq. (34) is thus written as

iAz = − 1

2β0
~∇2
⊥A− k0n2|A|2A , where n2 =

3

8n0
χ(3) . (35)

This is a nonlinear Schrödinger equation in which z (the propagation distance within the medium)
plays the role of time [compare with (11)]. Typically n0 ' 1 and k0 = 8.05× 106 m−1 (λ0 = 780 nm
for a typical infrared laser). In present time experiments, choosing units such that A2 is an intensity,
one has typically A2 ∼ 105 W.m−2 and in highly nonlinear media n2 ∼ 10−10 W−1.m2.

It remains to check that, indeed, the approximation ~∇ · ~E = 0 – made before Eq. (27) – is sound.
From (26) ~∇ · ~D = 0, where ~D = ε0(1 + χ(1) + 3

4χ
(3)|E|2) ~E. Taking the divergence of both sides of

this equality yields11

0 = (1 + χ(1) + 3
4χ

(3)|E|2)~∇ · ~E + 3
4χ

(3)( ~E · ~∇)|E|2 .

From the form (28) one gets ~E · ~∇ = E(~r )∂x, and the above equation reads

~∇ · ~E = − 2n0 n2

1 + χ(1) + 2n0n2|E|2
E(~r ) ∂x|E|2 .

This terms is non zero only through the transverse derivative of the slowly varying envelope. It is
additionally small because the nonlinear contribution is small (n2|E|2 � 1): it can safely be neglected.

8A second order term (χ(2) contribution) is discarded because it only exists in a medium in which, when ~E → − ~E,
the nonlinear response is not affected. This does not occur in materials with spatial inversion symmetry.

9Discarding terms ∝ e−3iω0t which correspond to third harmonic generation.
10Neglecting Azz is legitimate because of the inequality at the left of (32). This is called the “paraxial approximation”.
11For a scalar field f(~r ) and a vector field ~E(~r ) one has ~∇ · (f ~E) = f ~∇ · ~E + ~E · ~∇f .
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4 Stability of a plane wave

Using the notations of Sec. 1, we say that a perfect plane wave solution η(z, t) has an amplitude A(x, t)
of constant modulus. The corresponding solution of Eq. (11) is of the form12 A0 exp(−iαA2

0t), where
A0 can be chosen in R+. The carrier wave gets an additional phase αA2

0t induced by nonlinearity:
this phenomenon is denoted as “self phase modulation” (SPM) in optics.

For studying the stability of a plane wave, one looks for the dynamics of a small perturbation to
its amplitude and one writes:

A(x, t) = A0e
−iαA2

0t [1 + a(x, t)] , where |a| � 1 . (36)

One gets, upon linearizing Eq. (11)

i at = −1
2ω
′′
0axx + αA2

0 (a+ a∗) , (37)

where a∗ is the complex conjugate of a. Writing a = u(x, t) + iv(x, t) where u and v are real, one gets

∂t

(
u
v

)
=

(
0 −1

2ω
′′
0∂

2
x

1
2ω
′′
0∂

2
x − 2αA2

0 0

)(
u
v

)
. (38)

Looking for solutions (u, v) under the form of plane waves with a phase (qx− Ωt) one gets

Ω2 = αA2
0 ω
′′
0 q

2 + (q2ω′′0/2)2 , (39)

which is called the Bogoliubov dispersion relation. It displays an instability if αω′′0 < 0. This is
called the Benjamin-Feir-Lighthill criterion of modulational instability. For instance, this criterion
tells us that the plane wave solution of KdV equation studied in Sec. 2 is stable (since in this case
αω′′0 = (−2k0)

−1(−6k0) > 0). In the unstable case, the most unstable mode is the one for which Ω has
the largest imaginary part. Simple computation shows that it has a wave-vector q∗ = (−2αA2

0/ω
′′
0)1/2.

k0

ω0

k0 − q ∗ k0 + q ∗

ω(k)

ωren(k) =ω(k) +αA 2
0

k

ω

12This can be verified by direct insertion in Eq. (11), or by looking for the simplest among the possible constant
modulus solutions of (11) of the form A(x, t) = A0 exp[iϑ(x, t)].

7



On can devise a geometric construction illustrating the mechanism of modulational instability.
This is done in the above figure which corresponds to the case ω′′0 > 0 and α < 0. One first plots
the approximate parabolic ω(k) of Eq. (7): ω = ω0 + (k − k0)ω′0 + 1

2(k − k0)2ω′′0 . One also plots the
“renormalized dispersion relation” ωren(k) given by (10) which entails nonlinear effects. It is easy to
check that the tangent to ω(k) at (k0, ω0) intercepts the shifted parabola ωren(k) at points of abscissa
k1 = k0 − q∗ and k2 = k0 + q∗, and that, besides, ωren(k1) + ωren(k2) = 2ω0 and k1 + k2 = 2 k0.
This suggests that the initial carrier wave at frequency ω0 decays into two side-bands according to the
process: {

ω0 + ω0 → ωren(k1) + ωren(k2) ,

k0 + k0 → k1 + k2 .
(40)

This behavior, with the formation of two side-bands at k1 and k2, is illustrated by the figure below13

which represents a power spectrum measured at the output of a nonlinear optic fiber, for increasing
input powers [(a) low-power (or input) case, (b) 5.5 W, (c) 6.1 W, and (d) 7.1 W]. The largest the
input power, the largest A0, the more developed is the instability at the output.

Finally some terminology: if αω′′0 < 0 one speaks of focusing NLS. In the opposite situation one
speaks of defocusing NLS. As just seen, constant amplitude solutions of the focusing NLS suffer from
a modulational instability, but there exists many other stable solutions of this equation, in particular
solitons. The defocusing NLS also admits stable soliton solutions14, but of a slightly different type
(they are called “dark solitons”), cf. tutorial # 2.

13From K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
14They have been observed, for instance, in the envelope of surface water waves, see A. Chabchoub et al., Phys. Rev.

E 89, 011002(R) (2014).
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