
CHAPTER 12 

Wave Patterns 

Some of the most interesting wave patterns are found in water waves. 
Some of them, such as the V-shaped ship wave pattern or the pattern of 
rings spreading out from a stone thrown in a pond, are familiar to 
everyone, and others are relatively easily observed. We start with these. 
Here the dispersion relation, the only input required, will be merely 
quoted. We shall need to look further into the subject of water waves later, 
since it was the first and most fruitful source of ideas on nonlinear 
dispersive waves. The derivation of the dispersion relation will be included 
then. 

12.1 The Dispersion Relation for Water Waves 

In still water elementary solutions for the perturbation TJ in the height 
of the surface take the basic form (11.1): 

■n = Aelkx-iu', 
provided 

«2=(gfctanh*/i)(l + — k \ k = \V\. (12.1) 

Here h is the undisturbed depth, g is the gravitational acceleration, p is the 
density, T is the surface tension. In still water the waves are isotropic and 
the dispersion involves only the magnitude k of the wave number vector. 
There are a number of interesting limits which are conveniently used as 
approximations in appropriate circumstances. 

Gravity Waves. 

Inc.g.s. units, g = 981, p= l , and 7=74, so that \m = 2n(T/pg)1/2 = 
1.73 cm. Thus the surface tension effects become negligible for wavelengths 
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several times greater than this value. Then we have the usual formula for 
gravity waves: 

u2 = gktanhkh, A»Am. (12.2) 

For these, the phase and group velocities are 

/ * \ ' / 2 

c(*) = ( | tanh*Aj , (12.3) 

C(*).^-I.(*)(. + 5 m j ) . (12.4, 

Within this approximation, we have the limiting cases 

co~(g/c)'/2, c ~ ( £ ) , C ~ i ( | ) , kh-+co, (12.5) 

u~(gh)l/% c~(gh)l/\ C~(gh)l/\ kh->0. (12.6) 

For fixed h, both c and C are increasing functions of\ = 2'n/k, with C<c; 
in the long wave limit (12.6), C-^c and the dispersive effects become small. 
Of course, the approximation (12.5) is appropriate for short waves when 

m 

Capillary Waves. 

For A«CAm, the surface tension effect may be dominant and (12.1) is 
then approximated by 

<o2=-A:3tanhA:fc. (12.7) 
P 

In this case 

c{k) = [-k\xahkh\ , (12.8) 

c^=H1+3iiik)- (12-9) 
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The further limits of these are 

-~(j)'V ~(f)V H f̂*"' »—■ 
(12.10) 

and 

"~(?f* <-(?)'"*• c~iffk- kh~°-
(12.11) 

For capillary waves, c and C are decreasing functions of X, with Oc. 

Combined Gravity and Surface Tension Effects. 

When both effects are important, it is usually sufficient to consider 
relatively short waves, kh~>\, and take 

u2 = gk+-k\ (12.12) 
P 

The phase and group velocities are 

c -(f + 7*j ' (1213) 

1 \ + (3T/pg)k2 

C=\c \ n ' . . (12.14) 

The phase velocity has a minimum at k = km> where 

1/2 

* « - ( y ) • X „ = | ^ = 1.73cm; (12.15) 

the corresponding values of c and C are equal with 

cm = 23.2 cm/sec. 

For X>XOT, often known as the gravity branch, C<c; whereas for X<Xm, 
known as the capillary branch, Oc. For any given value of c>cm, there 
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are two possible wavelengths. The minimum group velocity is attained at 
A = 2.54Xm = 4.39 cm, C = 0.77cm= 17.9 cm/sec. 

Shallow Water with Dispersion. 

In the limit kh-*0, (12.1) may be expanded as 

"2~sHki,+(^-\)kv+-\ <,2•,6, 
and we have 

' -^i '+iyp- ib 1 —)- (i2i7» 
When dispersion is neglected altogether, the equations for nonlinear shal-
low water theory are hyperbolic and similar to those of gas dynamics; this 
so-called hydraulic analogy has been exploited for experiments. The dis-
persion must be kept to a minimum so h is chosen such that 

- ^ - 1 = 0 
Pgh2 3 U' 

that is, 

(
J / 2 

— ) =0.48 cm. 

Magnetohydrodynamic Effects. 

In a conducting liquid a third vertical restoring force may be intro-
duced when a horizontal magnetic field is applied and horizontal currents 
flow through the liquid. This has been investigated by Shercliff (1969), who 
finds that the dispersion relation is 

pu2 = kt&tihkh(pg + k2T+JsBn), 

where Bn is the magnetic field normal to the wave crests and / , the current 
along them. The term JsBn is the vertical component of the Lorentz force. 
It is interesting that the propagation depends on the orientation of the 
waves to the field and becomes anisotropic. Details of the phase and group 
velocities, and of the various limiting cases, are to be found in the paper 



Sec 12.3 WAVES ON A STEADY STREAM 407 

quoted. We shall not pursue this case further here, although the various 
wave patterns can be studied by the methods developed below. 

12.2 Dispersion from an Instantaneous Point Source 

The waves from a point source spread out isotropically and the 
different values of k introduced initially propagate out with the corres-
ponding group velocities C(k). At time / any particular value k will be 
found at r=*C(k)t. Hence k(r,t) is the solution of 

C(*)-J. (12.18) 

For deep water gravity waves (12.5), we have therefore 

This is the axisymmetric counterpart of the one dimensional problem 
noted in Section 11.4. This very simple formula for w has been checked by 
Snodgrass et al, (1966) against observational data of the swells produced 
by storms in the South Pacific. At distances of the order of 2000 miles, the 
frequency was found to vary linearly with /, and the constant of propor-
tionality gave a very accurate determination of the distance of the storm. 

On a smaller scale, the typical rings spreading from a stone or other 
splash in a pond satisfy (12.18) with C(k) given by (12.14). Since C(k) has 
a minimum value of about 18 cm/sec, there is a quiescent circle of radius 
18/ cm. Beyond that there are two values of k for each r/t, one on the 
gravity branch and one on the capillary branch, so there are two super-
imposed wavetrains. Of course, the energy in the different wave numbers is 
determined by the initial disturbance. Waves with wavelength of the same 
order as the size of the object will have the largest amplitudes and will be 
most accentuated. 

123 Waves on a Steady Stream 

The waves produced by an obstacle on a steady stream U in the x, 
direction may be viewed as the waves produced by an obstacle moving 
with speed U in the negative x, direction. For a two dimensional obstacle, 
with flow independent of x2, the only waves that can keep up with the 
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obstacle and appear steady when viewed from the obstacle must satisfy 

c(k)=U. (12.20) 

We again take the situation when (12.12)—(12.14) apply. There will be no 
solutions to (12.20) and hence no steady wavetrain if U<cm. In this case 
there will be local disturbances dying out away from the obstacle but no 
contribution to the asymptotic wave pattern. If U >cm there will be two 
solutions of (12.20): one of them, kg say, on the gravity branch, and one, 
kT say, on the capillary branch. Now kg<km and kT>km\ hence from the 
properties of (12.13)—(12.14), we have 

C(kg)<c(kg) = U, (12.21) 

C{kT)>c{kT) = U. (12.22) 

Therefore, the gravity waves kg have group velocity less than U and will 
appear behind the obstacle; the capillary waves kT have group velocity 
greater than U and will be ahead of the obstacle. The resulting pattern is 
shown in Fig. 12.1. 

Fig. 12.1. Sketch of capillary waves (upstream) and gravity waves (downstream) produced 
by an obstacle on the surface of a stream. 

This is an interesting use of the group velocity concepts to determine 
the correct radiation condition in a steady flow problem. For this reason it 
is also interesting to derive the result in detail from the exact Fourier 
transform solution and see how the group velocity condition comes out of 
the usual type of radiation condition used in the techniques of solving 
boundary value problems. At the same time, the full solution gives the 
amplitudes of the waves. The asymptotic analysis tells us only that the 
amplitude remains constant in each wavetrain; the detailed initial condi-
tions have to be analyzed to determine their values. It would interrupt the 
present discussion of kinematics to give the details here. They will be given 
in Section 13.9. 
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12.4 Ship Waves 

For an obstacle that is finite in the x2 direction we have a two 
dimensional wave pattern on the surface of the water and the analysis is 
more complicated. We shall study only the gravity wave problem for deep 
water and use the dispersion relation (12.5). This covers the pattern 
produced by any object of dimension /»Xm moving on water with depth 
A»/; this is the usual situation for ship waves. 

The most striking result, originally due to Kelvin, is that in deep water 
the waves are confined to a wedge shaped region of wedge semiangle 
s i n - 4 = 19.5°. This result is independent of the velocity provided the 
velocity is constant; it is independent of the shape of the object, and it 
depends only on the fact that C/c = { for deep water. 

Fig. 12.2. Construction of wave elements in ship wave problem. 

A concise form of the argument is given by Lighthill (1957). Consider 
the "ship" to move from Q to P in Fig. 12.2, in time t, and let its speed be 
U. For a wave crest to keep a stationary position relative to the ship, 

Ucosyp = c(k), (12.23) 

where <// is the inclination of the normal (direction of k) to the line of 
motion QP. This condition is most easily seen by taking the frame of 
reference in which the stream of velocity U flows past a stationary ship; 
the stream has component Ucosxp normal to the wave element and this 
must be balanced by the phase velocity of the element. The condition tells 
us the value of k to be found in the direction \p. It may be represented 
geometrically in Fig. 12.2 by constructing the semicircle with diameter PQ 
and noting that PQ=Ut, SQ= Utcos\j/ = ct. Therefore wave elements 
parallel to PS will have ct = QS. Now c is the phase speed and is 
appropriate for condition (12.23), but the group velocity C=\c determines 
the location of these waves. The waves produced at Q will have traveled a 
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Fig. 12.3. Envelope of the disturbance emitted at successive times. 

distance Ct= {ct. Therefore in the direction tp they will be found at T, the 
midpoint of QS. Including all values of $, we deduce that those waves 
produced at Q which can contribute to a stationary pattern lie on a circle 
of radius j Ut centered at R, where PR = \ Ut. Finally, varying / for a fixed 
point P, we have the pattern of circles of Fig. 12.3. From the construction 
in Fig. 12.2, each circle has a radius one third the distance of its center 
from P. Hence they fill a wedge-shaped region with semiangle s in~4 = 

19.5°. It is amusing to note that the construction in Fig. 12.3 is the same as 
for supersonic flow with Mach number 3; all swimming objects have 
effective Mach number 3. 

Further Details of the Pattern. 

In discussing the pattern in more detail, it is convenient to take the 
reference frame in which the source is fixed at P and there is a uniform 
stream U in the xx direction (see Fig. 12.4). This raises some general points 
about handling steady patterns which are also useful in other contexts. The 
dispersion relations in Section 12.1 apply to waves propagating into still 
water, but we may transfer to any other reference frame moving with 
relative velocity — U by noting that the frequency u> relative to the moving 
frame is given in terms of the frequency w0 in the stationary frame by 

w = U-k + w0(k). (12.24) 

This is the dispersion relation between w and k for waves superimposed on 
a stream U. Of course the propagation is no longer isotropic since the 
direction of U enters. For a steady wave pattern in this frame, w = 0 and 
(12.24) becomes a relation between the components /c, and k2 of the wave 
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number vector k. With w0(k)= Vgk , we have 

G{kvk2)=Uk, + Vg~k =0. (12.25) 

Since COSJ/^ - kJk and c{k)=Vg/k , this is the same as (12.23). We 
may also write it using the polar coordinates (k,$) for k as 

§ (k,^) = Uk cost-Vgk =0- (12.26) 

Since the frequency w is zero and k is independent of /, the kinematic 
description (11.43) reduces to the consistency relation 

3/c, 3A:, 
— -^-=0. (12.27) 

From (12.25), kx=f(k2), say, and (12.27) gives 

Hence k2 and k{ are constant on characteristics 

dx1 

For a point source P, the characteristics carrying disturbances pass 
through P and we have a centered wave 

*' = ~f\k2); (12.28) 
i x 

this gives k2 as a function of x2/x{, and kl=f(k2) completes the solution 
for k. 

The basic relation (12.28) can be written symmetrically in kx and k2. If 
ki=f(k2) satisfies (12.25) identically, 

f'(k2)Gk+Gkr0, 

and (12.28) may be written 

x- Gk(kvk2) 

*i Gk(kx,kJ ' 
G(k{,k2) = 0. (12.29) 
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These are to be solved to give kx and k2 as functions of x. The distribution 
of k is sufficient to sketch out the pattern, but the phase 9(xt,x2) can also 
be deduced to give the equations of the crests. 

It might be noted that (12.29) is the limit of the nonstationary 
centered wave solution as w—»0. For the centered wave solution in (11.49) 
we have 

x. Gk 

If we take the ratios of the first set to eliminate / and Gu, (12.29) follows as 
the limit «-*0. We can think of the disturbance propagating out with the 
group velocity Ct even though its form is unchanging and there is no 
change in the appearance of the pattern. We may refer to the group 
velocity in this sense even though it is only its direction 3(7/d/c, that 
appears in the formulas. 

A further remark is that polar coordinates are sometimes useful, as in 
(12.26). In polar coordinates the gradient 9(7/9 k has a component 9 % /dk 
in the direction of k and a component 9 § /k d\p perpendicular to k. Hence 
the angle ft in Fig. 12.4 is given by 

i as/a* n ™ 
t a n " = * 9 S 7 9 * - ( 1 2'3 0 ) 

The content of (12.29) is then equivalent to 

S-V-II-+, g ( * , t f ) - 0 . (12.31) 

Equations 12.30 and 12.31 determine k and \f/ (and hence k) for the 
direction £. 

These formulations apply to any steady two dimensional pattern, and 

dG/dk 

U P xl 

Fig. 12.4. Geometry of wave crests in ship wave problem. 
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Fig. 12.5. A complete wave crest in ship wave problem. 

we now apply them to ship waves. Using (12.25) in (12.29), we have 

tan |= — = 
2k vr 

2k \ k 

Uk^Vgk =0. 

U+ 

It is clearly more convenient to switch to the (k,\(/) description of k and 
reduce these to 

tan£= 
tan ̂  

l+2tan2i|/ ' 
* = g 

U2COS2xP 
(12.32) 

If the approach via (12.30)—(12.31) is preferred, we have 

tanju=-2tan^, (12.33) 
and (12.32) follows. 

We may now sketch out a typical wave crest as \p varies. From (12.25) 
or (12.26), A;,<0 and cosifX), so that only the range -7 r /2<^<7r /2 is 
permissible. The pattern is clearly symmetrical and it is sufficient to take 
the range 0<i^<w/2. From (12.32) we see that the values <//-»0 and 

Fig. 12.6. Final ship wave pattern. 
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\p—>Tr/2 are both to be found on £ = 0, and there must be a maximum value 
of £ in the range. It is easily verified that the maximum value is 

£ = t an - '—— = 19.5° at d. = tan"' — =35.3°. 
2V2 V2 

This agrees with the wedge angle found earlier and shows that the wave 
pattern is confined to this wedge. At the maximum \p^=Tr/2 therefore the 
wave crest can not turn back smoothly; there must be a cusp at \p = \pm on 
the boundary of the wedge. We may then complete the shape as given in 
Fig. 12.5 and the whole pattern must appear as in Fig. 12.6. 

The formula for the phase function 9(x) may be found from 

9 = (\-dx, (12.34) 

using any convenient path since k is irrotational. Obviously the rays 
£ = constant are convenient since k remains constant on them. We have 

9=(kcosn)r, (12.35) 

where r = |x| is distance from the origin. Here k and /x are functions of £ 
given by (12.32) and (12.33). A phase curve 0 = constant is given parametri-
cally in terms of xp by 

9 U29 2 , r ,_L„. 2,i |/2 r= = c o s ^ l +4la.n'i\l/} , 

tan£ = 

k cos fi g 

tarn// 
l + 2tanV ' 

and 9 is negative. These may also be written 

J C l - - i ^ c o s i K l + sin2*), 
g 

U29 2, ■ , x-,= cos d/smu/. 
g 

12.5 Capillary Waves on Thin Sheets 

(12.36) 

One can study steady patterns of capillary waves in similar fashion, 
and a particularly interesting setting is Taylor's study (1959) of waves on 


