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Abstract

We rcview some of the recent surprising theoretical and experimental results
obtaned on the transport properties of small disordered metal samples Fven in the
presence of disorder, the quantum mechantcal interference of electron wavefunc-
tions can still be observed The Aharonov Bohm effect 15 a particularly clear
demonstration of this In doubly connected structurcs (such as loops of wire)
threaded by a magnetic flux, the electrical conductance oscillates because of the
Aharonov-Bohm ellect In fact, because the electron trajectories are diffusive (re
random walks), even a lone were (a singly connected structurej will exhibit a random
pattern of conductance fluctuations as a function of the magnetic field because of the
same miterference effects All that 15 required for the observation of these
interferences 1s that the electrons retamn ‘phase memory’ duing the period of transit
through the sample The length over which memory 15 mamntamed (the phase
coherencce length) can be much larger than the random walk step length (the mean
free path) We focus mainly on effects observed in the hmit where the phase
cohercnee length of the electrons 1s comparable to or larger than the sample size We
explain how the interferences are averaged as the system size grows larger than the
phase coherence length We also remark on surprising aspects of the fluctuations
such as those resulting from the non-local character of the wavefunction, some of the
results are forbidden classically
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1 Introduction

The standard approach to calculating the electrical resistance of systems that
contam large numbers of particles 1s to assume some distribution of scatteicrs, average
over all possible distributions of these scatterers, and take the limit of the scattering rate
as the size of the system approaches mfinity This 15 known as the thermodynamic Lt
The ohmuc resistance of a wire 1s an example of an average property that can be
computed m this fashion The wire in question 1s assumed to be of homogeneous metal
in which the electrons move ballistically for a distance I (the mean free path), scatter,
move ballistically again, and so on The velocity correlations (the current through the
wirc 1s proportional to the average velocity of the electrons), when averaged over many
collisions, can predict the conductance of any piece of wire which has the same average
density of scattering sites If we were to consider only some very small volume of the
wire, 1t is clear that, not only would the resistance of this sechion be different from the
average of the whole system, but the quantum-mechanical characteristics of both the
electrons and scattering sites would have to be known in order o calculate the
resistance This 1s the difference between physics at the mucroscopic level "and
macroscopic level The usual Boltzmann approach to calculating transport coefficients
(such as conductivity) by averaging the velocity [1] breaks down al the microscopic
level The question 15 then How large must the system be so that the microscopic
details of the transport can be approxmmated by some average distnbution? The
surprising answer is that the system must be much larger than the distance the electron
travels before suffering phase randomizing collisions Elastic scatlering does not cause
the electrons to lose phase memory, only melastic processes are imporiant for
determming this size At low temperatures this distance can be very large many
millimetres m SOMe cases

The mintaturization of clectronics has now reached the stage where devices can be
fabricated at lengths of less than one micron In such devices, the electrons can traverse
the sample coherently -the quantum-mechanical wavelunction maintams 1ts phasc
coherence all the way across the sample This access to ‘coherent transport’ grantcd by
the advances 1n lithography has opened a very rich field of theoretical and experimental
physics Fxperimentahsts can now bunld devices that permit the study of the quantum-
mechanical properties of a large collection of particles One important realization that
has alrcady emerged 1s that the way we think about resistance (or dhssipation i general)
im these systems must be altered to include the possibility of elcctrons traversing the
entire sample with little or no voltage drop—zero resistance! By mvestigating the size
dependence and temperature dependence, we can determine how a quantum system
evolves into the more familiar classical system Thus allows a shghtly different probe of
the correspondence principle, where mstead of letting # tend to zero, we may directly
observe the averaging which leads to much of classical physics

The wavefunction of each electron comprises two parts amphtude C(r) and phase
¢, W =C(riexp(1¢) The quantum interference among electrons which have travelled
through the sample via all the various conduction paths available in a device has been
observed directly im recent expertments at very low temperatures Electrons might enter
thedevice 1n phase, but upon reaching the other end, have been phase-shifted relative to

———— Naiaasassd R T L LT e TV rr———— Paaaassasd e . -



Aharonov-Bohm effect m normal metal 377

each other because of collisions with defects along the way If phasc memory 15
maintained [2, 3] along each path, then the current exiting the device 15 a superposition
of the wavefunctions m all of the paths Moreover, the amplitude of the superposed
wavefunction 1s detcrmined by the defect configuration, because 1t 1s the details of the
defect scattermg that cause the wavefunction to dcquite a particular phase shift

A magnetic field can be used to tune the phase of the electronic wavefunction An
intriguing result of the relation between the wavefunction and the magnetic vector
potential A (the relationship, loosely speaking, 1s the quantum-mechanical analogue of
the Lorentz force) was pointed out by Aharonov and Bohm m 1959 [4] If upon
completing some path s the phase of the wavefunction 1s changed by J,,, then when the
path encircles a magnetic flux @, 6, = + (e/h) { A -ds (where the sign of the correction
depends on whether the electron circulated clockwise or anticlockwise around the
fluxord) Ths 1s true even if the magnetic field 1s completely confined to the intenior of
the path so that the electron always travels m a magnetic-field-free region The
existence of a vector potential A 1s all that 1s requuired to produce the phase shift Using
this relation and the 2z symmetry of thc wavefunction [5], Aharonov and Bohm
showed that, if 2 beam of electrons sphit around a fluxeid and then recombine (see
figure 1), the resulting current would be modulated penodically by the amount of flux
The modulation results from the alternating constructive and destructive interference
between the electrons from the two beams as the vector potential associated with the
fluxond shifts the wavefunction phases For each additional flux @, =h/e, there would
be one complete cycle m the intensity of the current

The coherence of the electron wavefunction 15 a crucial requirement for the
observation of osctliations mn current If the phases of the wavefunctions become
scrambled before the split beam recombincs and 1s detected, then the periodic
oscillations arc washed out The smooth tuning of the phases provided by the magnetic
field 15 lost m the random changes of phase suffered when the beam becomes
wcoherent The principal question to have been settled by the expertments 1s whether
or not the scattering that is inherent i transport 1n real condensed-matter systems 1s
enough to scramble the electron wavefunction phases

In the followng, the material will be presented roughly 1n the historical order 1n
whichitarose Although this approach sacrifices standard pedagogic methods, it serves
to make the tale of the scientific venture more accurate In 882 and 3, background s set
by discussing the phystcs of the Aharonov-Bohm effect and by describing the effects of
wavefunction coherence on electrical conductance The modern impetus to the
scarches for Aharonov Bohm oscillations in conductance was an cxperiment by

— ®

Figure 1 Schematic llustration of the geometry which results in pertodic Aharonov Bohm
oscillations A coherent beam enters from the left, splits around a magnetic Alux @ and
recombines The mtensity of the current cxiting to the right oscillates with perrod hle
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Sharvin and Sharvin which discovered oscﬂlaticﬁ of period hf2e 1n the resistance of a
cylnder This 1s reviewed 1n §4 Sections 5 and 6 recount the theoretical stuches which
sprang up from that cxperiment and which predicted a different result, namely that the
period of oscillation 1n a single loop should be hie In §7 and 8, the story of the
experimental confirmation of the hfe osaillations and the discovery of random
conductance flactuations is retold, and some of the phenomenology of the fluctuations
1s discussed Section 9 contains a brief review of the perturbation theory which 1s
relevant to coherent transport Various averaging mechanisims are described n §§ 10,
1land 12 Prehminary results on the effects of magnetic impurities are described in§ 13
A brief review of some of the interesting and Important expeniments on semiconducting
matenals 1s given mn §14 The explanation of why both the h/e and aperiodic
fluctuations are asymmetric with respect to magaetic field direction 1s detaited in § 15
In §16 1t 15 noted that significant discrepancies occur between the predictions from
perturbation theory and the experiment The observation of non-local voltage
fluctuations 1n small devices 1s described The theorctical predictions concerming the
possible observation of Josephson-like effects 1n small normal metal structures arc
reviewed 1n § 17 Finally, in § 18, some concluding remarks are made about a few of the
remamning questions 1n the field

2. The Aharonov-Behm effect

There arc two points which make up the cssental physics of the Aharonov—Bohm
offect [4] The first point 1s that the clectron wavefunction 1s single-valued cverywhere
tn space and has period 2x [5], and that [A-ds adds directly to the phase of the
wavefunction The wavefunction of an electron encircling a magnetic flux acquires an
additional phase & =(e/h)jA -ds (By the usual definitions 1 electrostatics, the flux @ 15
the magnetic intensity B 1n an arca L2, and the magnetic intensity B=V x A )1fa bcam
of electrons is spht around a magnetic flux and then recombied (sec figure 1), the
resulting superposition of the electrons 1n the combined beam will exhibit ampitude
oscllations The oscillations will be periodic 1n the magnetic flux, the period being
A® =d = h/e becausc @, 1s the amount of flux requared to enforce a 2x relative phase
shift between the sphit beams  The second criterion 1s that the wavefunction retain
phase memory throughout the sphitting, recombining and measurement of the
superpositton amphtude Any scattering events that randomuze the phases of the
wavefunctions 1 the beam wouid, therefore, wash-out the oscillations 1 the
superposed amplitude 1t 1s worthwhile to note that, in the geometry of figure 1, the
magnetic field H 1s physically separate from the wavefunction This spatial separation
of the wavefunctron and the field 1implies, 1 the framework of classical physics, that
there can be no effect on the particle represented by the wavefunction From this
argument, the Aharonov-Bohm effect 15 said to prove that the magnetic vector
potential 1s a real physical potential, not simply a mathematical convenience

Observations of the Abaronov -Bohm effect date back to the carly 1960s Within 4
year of the publication of Aharonov and Bohm’s first paper on this subject, Chambers
{7] reported an electron-beam experiment m which a standard electron microscope

t It 1s interestmg to note that, somewhat earlier, Ehrenberg and Siday [6] had arrived at the
samc conclusion using only the umqueness of the index of refraction and the de Broghc
construction
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was converted into an interferometor The expervmental arrangement was stmilar to
that shown m figure 1 with the addition of two types of magmetic field source The first
was a Helmholtz magnet which provided a unorm field along both branches of the
beam The apphcation of this field produced no noticeable effect on the interfercnee
pattern The second field was produced by an wron whisker 1ym 1n diameter and
0 5mm long, located 1n the centre of the split beam path As the position of the whisker
was changed, the mterference pattern changed in the way predicted It was argued that
the change 1n the pattern could not be due to any leakage flux, but depended only upon
the total amount of flux contained within the whisker Thus an effect which depended
solely upon the existence of a vector potential was apparently confirmed The same
oscillations i vacuum have been observed recently using more sophisticated methods
[%,9], wherein magnetic flux was completely confined to the regrton between the paths
by superconducting shtelds [9] These expeniments confirmed the Aharonov—Bohm
effect m vacuum and proved the physical existence of the vector potential A
Aharonov-Bohm oscillations have also been observed mn superconductors [10-12]
and 1 single crystals of bismuth [13] In all of these cases, however, there 15 essentially
no scattermng nothing which might destroy the electron’s phase coherence

The conduction process in normal metals 1 very different In a metal, the electron
diffuses its trajectory1s a random walk The electron scatters elastically from obstacles
sach as lattice defects, impurity atoms, boundaries between grains of metal forming the
device, and so on (collectively referred to as impurity scatienng), as it diffuses through
the sample For more than twenty years, theoretical physicists have argued as to
whether or not such momentum scattering would prevent the observation of the
Aharonov Bohm oscillations By far, the domnant opmion was that the rmpurity
scattering would destroy the oscaillations [14,15] A small group [16-18] of theor-
eticians have mamntained instead that only melastic scattering (which changes the
energy state of the electron) destroys the oscillations, and it 1s these few who have been
vindicated by the recent experiments [ 19-21]

3 Conductance in disordered systems: phase coherence and Landauver’s formula

In the canomcal version of the Aharonov-Bohm expenment, the wavefunction
propagates as a free particle (a plane wave) The diffusive motion of an electron 1n a
metal 1s not the same sttuation at all The electron’s trajectory 1s a random walk with an
average step length [ (One may mstead assume an average collision rate 1/7, and that
the mean free path length 1s the product of the Fermi speed and the mean time between
colhisions, {=vgr} Mean free paths in common metals depend strongly on the
cleanliness of the matenal and the quality of the crystal that form the wire In materials
that have many lattice defccts, for instance, chemical impurities, vacancies or grains, the
mean free path 1s usually of the order of the average distance between scatiering sites
Typically mn metals prepared by standard methods, this length 1s only a few nanometres
or 4 few tens of nanometres The motion of the electron 1n the metal is, therefore, in the
opposite limit 1t scatters very frequently, since the size of device 1s large compared with
the mean free path length, I« L

By analogy to Shubinikov de Haas theory [22], 1t was believed that elastuc
scattering would mix the energy levels, so that the Dingle factor exp (—#/TAE) would
damp the oscillation amplhitude {14,15] (Here-AE 1s the scparation of the individual
cnergy levels in the conduction band and t1s mean free time ) This 1s certainly true of
any effects that result from shifts in the energy levels of the device, as shown by Dingle
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tumself [23] To ilustrate just how damaging this exponential 1s 10 an experiment,
suppose that we study a gold wire, 50nm 1n diameter apd 500nm long, which has «
resistance R =10€Q In this altogether typical example, AE~10 27J and 1~ 10" '*s so
that #/AE 7~ 10° and the oscillation amplitude 15 completely destroyed

A second important problem 1s that of finite temperature At first thought, onc
would have expected that if the thermal energy 1s larger than the energy spacing
between levels, k, T AE, the quantum nterference existing over the wholc device,
would be destroyed For the previous example, the temperature would have to be below
10~ % K 1n order for thermal smearing to be unimportant This temperature 18 inverscly
proportional to the volume of the system, so 1t would appear hopeless to attempt to
observe any relative of the Aharonov-Bohm effect 1n a sample of reasonable sizc
Fortunately, this thermal smearing cffect 1s not as severe as this esttmate might suggest
and will be discussed m detail later

A munority [ 16, 17] held that such momentum rclaxation was irrelevant that only
elastic scattering would destroy the electrons’ phase coherence One of the carliest
demonstrations of this followed from Landauer’s work on the fundamental sources of
the electrical resistance ansmg from disorder Consider the strictly one-dimensiondl
model of conductance 1liustrated in figure 2 Electrons of cnergy E = g, arnve from the
left-hand reservor, arc transmitted through the random potential (which scatters only
elastically) with probability ¢ and reflected back with probability 1—¢ Upon
calculating the current from left to nght for o potential difference p;—p,, Landaver
found that the conductance G of the samplc was a sumple function of the transmission
probability of the disordercd region [2,3], namely

2e*

U= ho1—t (310
where e 1s the magnitude of the charge carried by an electron, h1s Planck’s constant and
the factor of iwo accounts for the spin degencracy of the electrons In hus analysss, he
noted that the transmission through the disordered region 18 reversible In fact, 1t was
necessary {o enforce phase relaxatton of the wavefunction (incoherence) m the
reservoirs in order to ensure the positive resistance of the device (The mfusion and
extraction of carricrs into and from the system 1s required, otherwise no dissipation
(resistance) occurs [ 241) This was done by thermalbizing the clectrons n reservoirs on
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Figure 2 The model used by Landaver to calculate conductance of 4 random one-dimensional
potential A random potential lies between two infinite reservoirs which supply (u,) and
stk () carriers A current (unit intensity) cnters from the left and 1s reflected or
transmitted with probability 1- £ or ¢, respectively
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cither side of the disordered Tegion In the absence of such reservoirs, however, the
reversibiity of the transmission through the disorder imphies that the electron
wavelunction retains phasc memory, 1e the phase shifts introduced by the elastic
collisions (momentum relaxation} with impurities do not prevent phase coherence [25]

This difference between elastic and melastic scattering 1s crucial In polycrystalline
metals, though the mean free path (the average distance travelled between collisions
with impurities) [ 1s seldom longer than a few hundred dngstrom, the distance over
which the electron retains phase memory L, (the distance between inelastic collisions
or other phase-randomizing events) can be as much as a few microns The random walk
which the electron undergoes while traversing the sample does not destroy its phase
memory Although the particle scatters 1nto a new momentum state, the phase of the
wavefunction 1s changed deterrumstically We are, therefore, using the word
‘coherence’ a bitloosely Usually a wave that propagates freely 1s said to have coherence
along the wave In contrast, the electrons in a metal scatter frequently, but since the
colhsions are elastic (1e reversible) all of the electrons that traverse a particular path
(colhde with the same impurities) arrive n phase they are coherent with each other (but
randomly shifted from a plane wave from the origin to the terminus of the path) On the
basis of this understanding, Landauer suggested that 1n a clean normal metal at low
temperatures one might be able to sce some effects associated with long-range phase
cohcrence [16]

4. Expeniments on large samples: observation of hj2e

The debate as to whether or not momentum relaxation would prevent the
observation of Aharonov-Bohm oscillations in metals was entirely theoretical until
1981 In that year, Sharvin and Sharvin [26] observed field-periodic oscillations in the
resistance of a Mg cylinder (approximately 1 um in diameter and 1 cm long) 1n an axial
magnetic field Moreover, the obscrved oscillations were periodic 1n AD = h/2e, half the
normal Aharonov-Bohm period Although startling to many of us because of the extra
factor of 21n the period, the results were, including the detailed shape of the oscillations,
m quantitative agreement [27] with theorctical predictions made scveral months
earher by Al'tshuler, Aronov and Spivak (AAS) [15] who applied the mathematical
techmques developed to describe weak locahzation [28] in doubly connccted
structures (1e loops and cylinders without leads)

In these experiments, the basic physics s that the electron trajectory around the
cyhinder has some probabihty of returning to1ts point of onigin If quantum-mechanical
phase coherence 1s maintained, then pairs of paths which are the time-reversal of each
other (llustrated in figure 3) strongly enhance the likelthood of return to the ongin
[29-31] One narve way of stating this 1s that the mterference 1s between two different
electrons which start at the same point, travel m opposite directions around the
cylinder, but scatter off from cxactly the same impurities and interfere back at the
ongin Because of their formal resemblance to superconducting Cooper patrs [32],
these time-reversed pairs are referred to as ‘Cooperons’ It is this enhancement that has
been widely studied 1n metallic systems under the name of *weak locahzation’ (For this
purposc, ‘metallic’ means that G>e?/h, 1t has nothmg to do with the chemical
composition of the sample ) The decreasing frequency of melastic scattering events as
the temperature tends to sero absolute aliows the contribution of ever larger time-
reversed paths, and since the electron 1s spending more tume at the origin, this mncreascs
the resistance of the sample (This increase has been mtensively studied 1n two
dimensions [33, 34], where the resistance mcreases logarithmically as the temperature
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ligure 3 Schematic illustration of the cyhinder expertment and the ttme-reversed pairs of
tragectories which ane rise to the AAS oscillations 1n the presence of an axial magnetic field H

decreases, and several excellent reviews of the theory exist [34 38]) Upon confiming
such pairs of time-reversed (rajectories to a loop that encircled a magnetic flux, it was
noted that the pair effectively encircled 2@, (see figure 3) Tt was simply this factor of 2
which appears 1 the period of oscillation observed n the cylinder cxperiments (One
final pomt note that as AAS considered only time-reversed pau s, they were ignoring
the processes that can give rise to the normal perod hfe They justified this negligence
using Dhingle’s argument [14,15])

We emphasize here that the expeniment by Sharvin and Sharvin was the first clear
observation of an Aharonov Bohm effect 1n disordered matenial The mean frec pathin
thesc experiments 15 very short about onc hundred tumes smaller than the crcum-
ference of the cylinder The electron on average will experience about 10* collisions
before returning to the origin Thesc experiments prove that elastic scattering does not
destroy the phase memory of the electrons (A simlar obscrvation had been made some
years earher m Al cylinders far above the superconducting critical temperature, but at
that time the osaillations were assumed to be the result of superconducting Nuctuations
[391)

After the observations by Sharvin and Sharvin, several groups repeated the cylinder
expeniment and confirmed the presence of the h/2e oscillations, as well as the absence of
any hfe oscillation [27,40- 43] Some typical data from the cxperiments of Gups et al are
shown 1n figurc 4 Tn all of the experiments, the osaillation amphitude, shape and decay
with mcreasing magnetic fiecld were in quantiiatwe agreement with the theory [40]
Upon enforcmg the boundaty conditions associated with the loop geometry (a ning
without leads), the Cooperon contribution to G has the {orm

el sinh{L/L,)

AG =" - 41
272h cosh (L/L. ) —cos 2ab/d,)’ @1)
wheret
1 1 1/ 2awH\?
= -2 42
L2 Lj,+¥( D, ) (42

+Strictly speaking, the unil tesla refers 1o magnetic inductton, conventionally denoted by B
In this work, however, our convention will be to use the umt tesla for magnetic ficld, H = B/u,,
sice the S1 umt lor ficld (Ampturnm ') 1s unwieldy
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bigure 4 Aharonov—Bohm conductance osaillations with period h/2e observed in two Mg
cyhinders at several temperatures by Gus et al [42] The solid hines are [its (using L;asan
adjustabte paramcter) to the AAS theory [15]

In equation (4 2), w 1s the width of the wires forming the loop, 1n other words, the
thickness of the cylinder The only free parameters in the theory are L, and the radius of
the cyhnder, both of these can be determined from other expenments so that, 1n
principic, the theory can be properly compared to the experiment, 1e not adjusted to
fit The sold curves in figure 4 are examples of how beautifully this theory describes the
data at each temperature (In this analysis, however, L, was fitted and not
independently determined ) A vanation on the experimental method mvolving large
iwo-dimensional arrays of loops instead of cylinders found the same dominant f/2e
period [44-47] Theoretical analysis of a two-dimenstonal network which followed the
work of AAS proved that the coherent backscattermg could also quantitatively
describe the oscillations tn arrays [48]

5. Conductance of a one-dimensional loop
There were two early qualitative discussions [16, 17] which suggested that the
oscillatons might not be destroyed by elastic scatterig, but solid theoretical evidence
that the elastic scattering was benign was presented only very recently There have been
three methods used to determine the existence of the expected conductance oscillations
One approach 1s to solve for the conductance of the device by direct caleulation of the
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quantum-mcchamcal transmission coeffiient of the sample [18] The second (histor-
cally) method was numertcal simulation [49], and most recently, a form of Green-
function perturbation theory has been applied with surprising results [50-52]

In 1983, 1t was shown that an 1solated strictly one-dimensional disordered loop
(closed chain of atoms) exhibits energy oscillations as the flux threading the loop
changes [53] The period of the oscillations 1s hfe (Eather work [54, 55] addressing flux
quantization 1n hollow superconductors had noted that ail cxtrinsic properties
osaillated with period ®,) The model maps onto the elementary case of a one-
dimensional tatticc where the magnetic flux replaces the lattice vector (see figure 5)
Following a marker around the loop corresponds to traversing the unit cell of a perfect
one dimensional crystal The energy oscillations are an 1ndication that the properties of
a disordered ring mught also osaillate with period hje, but in the absence of
irreversibihity, the relevance to the resistance of a loop with leads was not demon-
strated (The mportance of this distinction has been the subject of several works
[24, 56-59] The closed system stores energy, but cannot dissipate the energy an open
system dissipates the energy when the carriers leave the system [56] The closed system
does not have resistance, properly speaking -the flux of carriers through the device 15
necessary for reststance to occur [24] ) Several other authors have also studied the onc-
dimensional loop [60], mostly with an eye toward cxplaining the Sharvin—Sharvin
experiments [61-64] The nextiteration of the model was to add one-dimensional leads
to either side of the loop as illustrated in figure 6 (@) [65-67] The overall transmission
amplitude for the leads plus loop was calculated by brute algebra, and 1t was found to
oscillate periodicalty with hje, which by Landauer’s formula, implies that the resistance
oscillates Moreover, the relative amplitude of the osaillations 1n G was predicted to be
AG/Gy~1 (G 15 the average conductance of the sample )

One subtle pomt was also noted 1n this early work The details of the osciliation
amphitude and the phase of the oscillations were dependent upon the choice of impurity
configuration (1¢ on the values of £; and ;) It was discovered that the oscillations
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Figure 5 Schematic llustration of the encrgy bandsin a ong-dimenstonal loop Depending on
the model, the abscissa meght represent the lattice vector k (repeated-zone scheme) or the
magnetic flux @ (closed loop with Aharonov-Bohm flux) The Ferrm level 1s schematically
indicated by the dashed line
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Figure 6 (g} Schematic picturc of the diserdered one-dimenstenal loop, with one-dimensional
leads connected to reservoirs g, and g The scatterers:, and 1, represent the disorder in the
arms of the ring (b) The multichannel ring geometry The matric {,; 1s the transmission
coefficient mixing the various transverse channels m the arms of the loop The triangles at
the nodes of the loops represent rdeal beam splitters [69]

could be erther a maxymum or a mimumum n resistance at zero magnetic field, and
would vary from sample to sample because the microscopic location of scattering
centres would vary between nominally 1dentical samples We re-iterate for emphasis
the resistance of a given device might be either maximum or minimum at zero magnetic
field depending on the details of the scattering in that particular device In a different
device with another impurity configuration the oscillations might have the opposite
polanity The period of oscillation, however, 1s always h/e

The difference between the results obtained for a ring using the Landauer formula
and the weak-localization theory can be understood by reahzing that the conventional
approach to transport calculations (including the weak-localization calculations) 1s to
ensemble average over all possible impunty configurations The only quantum
corrections to the conductance which survive this approach are the Cooperon
contributions  All sample-specific contmbutions, such as those considered here, are
averaged to zero In all the experiments up until that data, the overall size of the devices
were rather large, L~ 1 mm> L, Because of the random polanty, Gefen noticed that
the amplitude of the h/e oscillations would average to zero n large samples (Y Gefen,
private communication, [68]) The polarity 1s unique only over distances of the order of
the phasc coherence length L, In samples which are much larger than L,, the polarity
of the hfe oscillations 15 not corrclated n regions of the sample that are separated by
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more than L, When these uncorrelated regions are averaged to form the overall
resistance of the device, the amphitude of the /e oscillations 1s reduced (presumably to
zero) in cyhinders and very large arrays

6 The conductance formula for many channels

After the prediction of hfe oscillations in onc-dimensional loops, an important
question was posed Will the hje oscillations survive in a real sample of fimite width and
thickness” The one-dimensional loop 1s an extremely idealized model of a real wirc with
many parallel channels over which the conduction paths are distributed The averaging
caused by scattering among these channels mught still destroy the oscillations 1n any
practicable measurement

The more realistic model (figure 6 (b)) contaimng N parallel momentum channels
was solved for the loop geometry [69] A new conductance formula was derived, agam,
by direet calculation of the transmission coefficient [69, 70],

o (i)

g=§ﬁG=‘* — ' ©n
z [(1 +F, _il)vl_l]

wherc t {r,) represent the total transmission {reflection) of current into channelzand v, 15
the veloeity (kk,/m) of the carniers m the ith channel The sum cxlends over a maximum
of N =Sk} transversc momentum channels, where § 1s the cross-sectional arca of the
wire, and kg 1s the wavenumber at the Fermi surface The reasonmg in support of this
conductance formula for many channels 15 guite subtle and still somewhat con-
troversial (P A Lee, private communication} 1t assumes idealized voltage probes [71]
which arc not casily fabricated 1 a real device In the hmit /<« L {fairly strong
scattering), however, 1t reduces to the widely accepted formula [72]

g=Tr{tt™}, (62)

where the matrix ¢ describes the fransmission across the disordered region Very
recently [ 73], it has become clear that the fundamental difference between the two
versions of the conductance formula 1s not the condition I« L, but rather that equation
(6 1) assumes an 1dealized four-probe mcasurement, and g=Tr {tt'} assumes an
idcalized two-probe mcasurement In the first case, the voltage drop across the device 1s
measurcd by ‘ideal potentiometers’ which are some distance [rom the points at which
the carriers thermalize (say, just outside the tnangles in figure 6(b)) Inequation e2) 1t
1s assumed that the chermical potentials (voltages) arc measured at the pomts where the
carriers reach thermal equilibrium with the environment

No matter which detailed form of the many-channel conductance formula one
accepts, onc finds that the conductance ¢ of the multi-channel loop oscillates

g:A+Bcosa+Ccos{3§q’ﬁ} (63)
B,
The first term 15 the classical conductance of the sample The second term 15 a random
number depending on the scattering details, and the third term contams the hye
oscillations It was noted that, if the incoming channels werc assumed to be completely
uncorrelated, then B and € would be smaller than 4 by a number of order 1/N This
jower-bound cstimate of the oscillation amphtude was quite discouraging smce
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1t inplied the oscillation amplitude would be very small in any available device,
AG/G=AR/R~1/N Since m the expenmental situation, the number N of
transverse channels m a Au wirc of thickness t=40nm and width w=40nm 1s
twki = 10°, 1t was doubtful that the observation could ever be made 1if the | /N estimate
were teally true

7 First experiments on single loops

Lhere was, at least, the encouraging result from the cylinder experiments [40] that
Aharonov-Bohm oscillations could be observed on length scales of the order of
microns in disordered matenials From this point, the question again arose as to
whether or not an experiment on a single loop would reveal the normal period e In
1983, cxperiments were begun to look for h/e oscillations 1 very small loops of gold
One of the early devices 1s shown 1n figure 7(a) The average diameter of the ring 18
245 nm, the thickness of the film from which the device 1s made 1s 39 nm, and the width
of the annulus 1s 30 nm—the width of the connecting leads being considerably larger,
120nm The film was polycrystalline, having grains about 50 100 nm across

The process for manufacturing this device has been described 1 detail previously
[74], but we summarize 1t here for the sake of completeness The devices are fabricated
on 813N, windows which are 100 nm thick (These are made by growing S1,N, onto a Si
wafer, and then etching away the S1 from the bottom, leaving a transparent window of
St3N4 } A metal film 1s deposited onto the walfer, generally the metal s Au or some
material which resists oxidation The film 1s coated with resist, and islands of resist are
carved with conventional electron-beam lithography to define contact pads The resist
1s developed away leaving the pad areas covered, and the wafer 1s diced mnto individual
devices The individual chips are installed mto a very high resolution scanning
transmission electron microscope (STEM), and the device 1s drawn by rastermg the
STEM beam back and forth in the desired pattern Any hydrocarbon contamination m
the chamber 1s burned onto the surface of the film where the beam strikes, and after
enough passes of the beam, this ‘contamination resist’ forms a mask over the device as
ilustrated in figure 7 () The unprotected mctai 1s then milled with Ar 10ns, and finally
an O, plasma strips away the contamnation on the surface of the device Ideally, one
achieves a very finc hnewidth (~10nm) metal device of any pattern which can be
defined on the computer which steers the STEM

After Al Si wires were bonded to the four pads on the device, the device was
mounted mside the mixing chamber of a *He-*He dilution refrigerator The sampl.
was then cooled to temperatures as low as 0 003 K and the resistance of the device was
measured by an ac bridge operated at ~200Hz As the data i figure 8(a)
demonstrate, the magnetic ficld dependence of the resistance was not at all what was
expected Rather than having simple e or h/2e periodic oscillations, the resistance
appeared 10 be a random function of magnetic field [75,76] The amplitude of these
fluctuations at the lowest temperatures was 0 1%, of the total resistance After months of
repealed measurements, 1t was possible to demonstratc that the structure was
reproducible as a function of field at constant temperature It was discovered that,
unless great care was exercised, small electrical transients delivered to the device when
the room-temperature leads were disconnected and reconnected would change the
pattern of the resistance fluctuations Under controlled circumstances, however, the
data were reproducible upon retracing the magnctic field or upon cyching the
tcmperature above 1 K



388 S Washburn and R A Webb

(a)

&-— ELECTRON BEAM

RESIST — CONTACT

|
| ™ 24 Pac
I

FINE LINE
MATERIAL

¢ .

|E SiaNg
|

|

|

|

th)

Figute 7 (@) Transmission electron photograph of a small Au device The drameter of the loop
18 about 245 nm, the width of the wires forming the loop 1s 30 nm, and the widih of the leads
15 ~120nm The dark areas on the perimeter of the photograph arc the edges of the
contact pads () Anillustration of the ithographic methods used to manufacture the small
devices, showing the film on the undercut wafer covered by the patterned e-beam resist and
the contaminatton resist (darkened materal)

Figure 8(b) shows the Fourner transform of the data displayed n figure 8{a) A
simple periodic function of magnetic field would appear here as a sharp spike 1n the
Fourter transform at the fundamenial frequency of the oscillations The arrows on the
figure mdicate the cxpected location of a peak (constramed by the inside and outside
diameters of the loop) m the frequency spectrum 1if erther h/e or h/2e oscillations were
present 1n the data Although there 1s much structurc in the transform, there 1s no clear
evidence for the existence of a large single-frequency component The spectrum 18 as
complicated as the raw data itself and, at first viewing, 1s difficult to interpret
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Figure 8 (a) The resistance fluctuations measured 1n the device n figure 7 () at several
temperatures (b) The Fourier transform of the data in (a) () The height of the peak at
(AH)"'=13T ! as a function of tempecrature The vertical scale n (b) 1s arbitrary and
linear, and the vertical scale in (c} 1s arbitrary as well

As lustrated m figure 8 (), the amphtudc of any particular peak 1n the Fourer
transform decreases with increasing temperature, although the positions of the peaks
remain more or less unchanged The smaller structure disappears first with increasing
temperature, while at higher temperature, only the broad fluctuations are visible The
temperature dependence could be approximated by a T~ Y2 law This form for the
temperature dependence was hard to understand, under the altogether reasonabic
assumption that L, was larger than the device In this case one expects the magnetic
field dependence of the resistance to be positive with a sharp dip near zero field
(1 £1T) and a logarithmic mcrease at higher field [77] There s, m fact, a dip near
H=01mthedata, but this was determined to be the result of superconducting proximity
cffects between the Al wires connected to the device (The temperature dependence of
the dip was opposite to what weak localization predicted ) In addition, the mag-
netoresistance at high fields (H 2 1 T) was weakly negative, m contrast to all existing
data on Ausamples [ 34] If, on the other hand, L, werc very short, one cxpects a broad
positive magnetoresistance which was not obscrved, but at least this would cxplain the
absence of the expected periodic oscillations None of these results could be interpreted
from the existing theoretical predictions for conductance Furthermore, these fluctu-
ations persisted to very large magnetic fields (H >8T), in contrast to the weak-
locahization effects which are destroyed by smaller fields There 1s a hint from the
proxumty cffect that the mean free path 1s long, but on balance, there ts no firm cvidence
m the data that phase coherence 1s maintaned around the loop

Although understanding of the origin of the fluctuations was poor when they were
first reported [ 78, 79], 1t began to blossom shortly thereafter Imry suggested that the
random fluctuations were the result of an Aharonov-Bohm effect caused by the
magpetic flux prercing the metal (Y Imry, private communication) Since the electron
trajectories in the metal are random walks, the superpositions, which result in periodic
oscillattons 1f the flux 1s confined to the centre of the loop, are random functions of the
amount of flux in the metal He also suggested that the wire would exhibit a fluctuation
m resistance after a certain amount of flux was added to 1, 1e that the fluctuations
could not be arbitrarly rapid The first attack on the problem was a numerical
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simulation by Stone (using a model developed to study weak localization [80]) which
exhibited fluctuations which were very remimiscent of the experiments [49] Morcover,
the simulations found that there was indeed a characteristic magnetie-field scale for the
fluctuations The field scale in the fluctuations was about 2@, through the area of the
metal projected normal to the field

Since it was certain that ! was much smaller than the sample size, these fluctuations
could not have been caused by size quantization of the electron wavefunctions In the
case of complete size quantization, the magnetic field shifts the energy levels around
and can lead to luctuations which may not appear periodic Such fluctuations will exisl
m metal particles that have dimensions of the order of the mean free path {23, 81, 82]
The avcraging caused by the Dingle factor, however, would destroy the fluctuations in
devices as large as that shown in figure 7(a) where L>»]

8 Observation of h/e oscillations in single loops

Based on the results of the simulations and upon analysis of the experimental ficld
scales, Stone suggested making a larger loop to improve the aspect ratio of hole arca to
metal area He predicted that, with a better aspect ratio, the field scales associated with
the random fluctuations and with the h/e oscillations would be sufficiently disparate
that the oscillations wouid be clearly observed In spite of the possibility of exceeding
the phase coherence length of the electrons, such a ring was manufactured (figure 9)
with 4 larger diameter (820 nm), but with comparable width of the wires (40 nm)
forming the device A renewed effort was made to mimmize the amount of mctal
between the voltage probes (software to steer the microscope was written by R Koch)

A sample of the data from this rimg 1 displayed 1n figure 10{@) Ncedless to say, the
prediction was borne out —many oscillations were seen superimposed on the slowly
varying random fluctuations The data in figure 10{a) cover a small range of magnetic
field containing approximately 25 h/e periods The h/e oscillations are plainly visible
[19] On purely phenomenological grounds, we can claim that these oscillations are
quite different from the AAS oscillations seen 1n long cylinders and large arrays Instead
of damping cut smoothly m magnetic field, these oscillations appear to be unat-
tenuated by the field Instead of the standard monotonic background magnetoresis-
tance associated with weak localization n the large samples, the fluctuations dominate
the background magnetoresistance A beautiful proof of the existence of the h/e period
lies m the Fourer trapsform of the magnetoresistance data (figure 10(b}) The
average area enclosed by the loop, as mcasured with an electron microscope, 1s
nr?=53x 107" m? impiying that AH[hje]=®,/m > =00077 T There s alarge peak
in the Fourer transform exactly at 1/0 0077 T=130 1~ as well as smaller pcak at the
harmome ‘frequency’ (AH) ™' =260T " This was the firsi clear observation of the hfe
Aharonov-Bohm oscillations in disordered systems

As mentioned above, these data mdicate quite a different physical situation than
that which ewsts 1n large samples The behaviour of the magnetoconductance over
larger ranges of ficld brings this point home In figure 11 the field scale has expanded to
mnclude a few ®,, through the metal in the device Several of the aperiodic fluctuations
are n evidence Accompanying the random fluctuations s 4 random modulation of the
oscillation amphtude, which uctuates on about the same magnetic-field scale as the
background The envelope which modulates the osaillations also results from the flux
in the metal Assigning each parameter in the conductance formula for a multichannel
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Figure 9 Transmisston electron photograph of a large-diameter ring made from 38 nm film of
polycrystalline Au, which has a better aspect ratto The diameter 15 820 nm and the wires
forming the device are about 40 nm across

loop to be a random function of H, one can write the following phenomenological
formula (A D Stone and R Landaucr, private communications)
2@
g(H)= A+ B(H) cos a(H)+ C{H) cos {(D —,U(H)}, &1
0
where o, §, B and C are all slowly varying, random functions of H B(H) and C{H) are
fluctuations of the background magnetoresistance and the envelope of the oscillations,
respectively The random modulation of the oscillation amphtude 1s a natural
consequenice of the apeniodic Aharonov-Bohm effects in the wrres
The Fourer transform of the data is presented in figure 11{b) In place of the sumple
peak at (AH) "=130T ! seen 1n figure 10(h), there 1s a feature which has noticeable
width and structure The structure arises from the convolution of the random envelope
with the periodic oscillations (A D Stone and R Landauer, private communications)
By measurimg the arcas defined by the mside and outside perimeters of the loop, we can
set bounds on the allowable range of h/e frequencies The arrows at the top of the graph
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Figure 10 (2) The oscillations 1n the magnetoresistance of the device m hgure 9 as a function of
magnetic field (T =004 K) showing the domunant h/e pertod 1n the ressslance of the loop
(b) The Fourter transform of the data in (a) which contams a large peak at the expected
frequency for the hje ((AH) '=130T ') oscillation and a smaller peak at the harmonic
frequency from 2kfe (AH)"'=260T ")
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Tigure 11 Conductance fluctuations from the device 1n figuie 9 over a range of 04T which
Wlustrates the components of the conductance formula the apertodic basehine and the
random envelope [unction which modulates the osullation amphtude Markers indicate
the rms amphtude of fluctuation expected from the conductance fluctuation theory (b)
The Fourter transform (in arbitrary units) of the data n {g) contaiming structurc m the
spectral fealures assoctated with the various terms i the conductance formula The arrows
mdicate the allowed ranges of frequency (or the aperiodic fluctuations (A¥ ), and for the hfe
and h/2e oscillations
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mdicate thesc limits, and all of the structure in the Fourner transform fits inside these
bounds A similar complexity appears in the hf2e pcak There 1s also a peak near zero
frequency which 1s associated with the random fluctuations in the background
magnetoresistance, and the field scale obtamed from the simulations, AH ~2h/e
through the metal, describes the pcak very well

As the magnctic-field scale expands, the osallations continue without any
measurable attenuation A typical sweep from 0-8 T 1s displayed 1n figure 12(a) As
more of the aperiodic fluctuations are encompassed, the Fourier transform (Ggure 12 (b))
becomes ever richer, but all of the spectral intensity 15 confined to within the limits set
by the device geometry Sweeps of the magnetic field as far as 16 T have revealed no
attenuation whatsoever in the oscillation amplitude The aperiodic fluctuations, the h/e
oscillations, and the envelope functions retan ¢ssentially the same character across the
entire field range The AAS oscillations seen 1n arrays of rings and cylinders were
confined to a small region near H =0 mainly because the Cooperon pairs which give
rise to these oscillations are destroyed by the field [27,34,77] Tt s clear that the i/2e
oscillations are not AAS oscillations (equation (4 1)), since the field scale for these
oscillations has long since been exceeded 1n figures 10, 11 and 12 Rather, the observed
oscillations are harmonics of the fundamental ke frequency It 1s possible that the
Aharonov-Bohm oscillations rmight vamsh when Shubmkov de Haas oscillations
appeart—when 1> 1, where hw,_ 15 the energy between Landau levels There s,
however, no chance of reaching such a field in normal metal, 1n the relatively clean gold
samples, this would require Hz200T

Figure 13 contans data from a somewhat smaller diameter Au loop (diameter
325nm and hnewidth 40nm) Once agamn, the oscillations are present The figure
displays the resistance up to H=55T Because of the smalier perimeter, there 1s some
Fourner spectral weight (see figurc 13 (b)) in the region of hf3e oscllations The
difference 15 that, compared to the 820 nm loop, the field scales associated with the
h{2e, hje and random fluctuations are not so widely separated This 1s simply because
the area of the metal between the voltage probes 15 not much smaller than the area
enclosed by the loop Apart from this difference of field scales, ail of the qualitative
features of the data seen n the larger ning are reproduced

A moment’s thought arnves at the principal difficulty 1n the early experiment on the
245 nm diameter loop The aspect ratio—the ratio of metal arca to the area enclosed by
the ring—was too small Instead of the one or two Founer peaks expected for i/e and
h/2e peniods, these frequencies were mterwoven with random fluctuations of nearly the
same field scale Since understanding of the random fluctuanons was so sketchy at the
time of that experiment, the data could not be mterpreted as mdicating Aharonov—
Bohm oscillations With hindsight, however, 1t 15 easily scen that the oscillations were
indeed present Comparison of the Fourer transform of the resistance of 4 lone wire

tIn fact, experiments on 4 single-crystal whisker samples of bismuth exhibited hfe Aux-
pertodic oscillation 1n 1ts resistance a decade or so ago [13] This, however, was not a disordered
matenial In those samples, the mean free path was larger than the diameter of the sample The
oscillations were size-hmited Shubnikov—de Haas oscillations—the maximum Landau orbit was
the diameter of the crystal Assoon as the field was large enough so that the Landau orbit would
Qit inside the crystal, the oscillations became the commonly known 1/H pertodic Shubntkov
de Haas oscillations
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(figure 14{a) having approximately the same area as one arm of the ring makes this
clear The two Fourier transforms are displayed 1n figure 14(h) The spectrum of the
wire has no features at frequencies AH) ' 2=7T™' In contrast, the riag spectrum
contans several peaks at higher frequencies These peaks lie in the regions of frequency
expected for the hfe and h/2e processes, and above the upper mit for the hi2e
frequency, the Fourter spectrum tails off These extra peaks were the signaturc of the h/e
and h/2e Aharonov-Bohm oscillations

It was suggested that, in the early experiment, strong coupling to the environment
[18,69] (through the wide connecting leads) might destroy the oscillations by
perturbing the coherent states in the ring which actually enclose the flux The data from
these three nings are mconsistent with this prediction Even in a loop with very widc
leads, the resistance fluctuations are quite strong AR/R ~0 1%, much larger than the
/N estimates [69], where N 1s the number of channels m the leads, which in hgurc 7 (a)
Is N~7x10° The oscillations, then, arc huge So long as the influence of the
environment 15 not strong enough to destroy the phase coherence, the size of the
contacts does not seem to affect the amphitude of the oscillations

AG | eih]

Fourter tranzform (arbitrary unis )

T/AH 14T |

(&)

Figurc 14 (a) Resistance of a single wire 310 nm long and 25nm wide at T=001K (h)
Companson of the Fourter transform of the wire data 1n {¢) (sohd line) and the ring data
from figure 8(b) (dashed line) tllustrating the prescnce of Aharonov—Bohm osaillations
outside the field scale assocated with the random Muctudtions from the wire only
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Very shortly after the reports [19,83-85] of these results, the he period was also
observed m silver loops [20} These observations 1n silver loops confirmed much of the
phenomenology mentioned above There were, however, two pomtedly different
results First, the Ag loops exhibited AAS oscillations near H =0 which had been
conspicuously absent from the Au loop data This absence appears to be umversal, in
that more than a dozen Au samples have been studied and none has exhibited AAS
osciilations Second, none of the four Al loops studied [20] exhibited h/e oscillations
Above T, the data from the Alloops contained AAS oscillations, but no hie oscillations
appeared Neither of these two matenal-associated discrepancies (the absence of AAS
oscillations 1n Au and the absence of iije 1n Al) has been explained satisfactorily Soon
after that, an entirely different device exhibited hfe oscillations [21] The device was a
double heterostructure (GaAs- Al, _,Ga,As) oriented so that the field was parallel to
the layers --loosely speaking 1t was a short cylinder The h/2e oscillations were not
observed, mstead a few hje oscillations which decayed smoothly with magnetic field
were observed At this time, 1t 1s not understood why the amplitude of the oscillations
should be a monotonically decreasing function of magnetic field 1n this device Tt was
noted by these authors that nearly all of the disorder in the device was concentrated i1n
the regions where the two layers were interconnected, and that the transport was nearly
ballistic 1n the layers themselves This 1s quite different from the more homogencous
disorder 1n the gold and silver loops Even after noticing this difference, however, 1t 1s
difficult to explamn the qualitative differences between the two kinds of experiment One
possibility 1s that the formation of Landau orbits in the high-mobility two-dimensional
layers destroyed the h/e oscillations The theoretical conditions are fulfilled (oot > 1
and kT ~hwg), but there 1s no evidence m the conductance for the cxistence of
Shubmkov-dc Haas osallations

9 Umversal conductance fluctuations

Within the last year or so, the ongin of the apenodic resistance fluctuations has
been attacked through numencal simulation and perturbation theory As mentioned
above, Y Imry (private communication) suggested that the magnetiv flux piercing the
wires 1n the device mught also cause an Aharonov Bohm effect The cffect would
probably be random (rather than periodic) because the path of the electrons erratic It
1s not subject to the same geometrical constramt that gives mise to the penodic
oscillations, namely there 15 no well-dehined area to enclose an Aharonov-Bohm flux A
stmulation of a disordered wirc [49] (using the method developed to study scaling m
the localization problem [80]) found such random fluctuations 1n the magnetoresis-
tance of the model system The model was very simple, 1t assigned a potential to each
lattice site which was the sum of a random term (representing the disorder caused by
mmpurities and defects) and eA/h (accounting for a untform magnetic ficld) The
numerical results for a given arrangement of ‘impurities’ contained random fluctu-
ations of the resistance versus magnetic ficld which resembled the aperiodic resistance
fluctuations observed 1n the experiment The model has another intriguing feature The
average amplitude of the fluctuations was only weakly dependent on the number of
transverse channels The amphtude appeared to follow (at worst) a weak power law 1n
the mnverse of the number of channels This result was m direct contradiction with the
1/N dependence suggested by the algebraic calculations [69] It was, at least, more
consistent with the expeniment than the 1/N prediction

Based on these hunts from the experiments and simulations, an ingenious use of
perturbation theory was estabhshed by Al'tshuler [50] and independently by Lec and
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Stone [51] Until that pomt, the standard Green function approach had failed to
predict any of the k/e or random effects because 1t contained an ensemble average over
the impurity configurations [86] Such an average 1s certamiy not appropriate to a
small system having a particular configuration of scattering sites which will be reflected
m the conductance (Y Gefen, private communication, [68]) The new method allowed
the average amplitude of the sample-specific conductance fluctuations and oscillations
to be calculated The crux of the argument 1s that changes 1 the magnetic field and the
Fermi level (larger than some scales) will cavse a fluctuation in the conductance which,
on average, will be the same as the change resulting from a new impurity configuration
[51,87] This permutted the powerful impurity-averaging techmiques [88] to be
brought to bear on the problem at hand Astoundingly, it was found that the only
criterion for the existence of such conductance fluctuations was the coherence of the
wavefunction The size of the sample 1s irrelevant, the fluctuations do not average 10
zero as the device gets larger, so long as the coherence 1s maintamned (As 2 technicahity,
we note that L must be small enough so that quantum coherence occurs 1n a practicable
experiment Typicaily this hmuts the sample size to L<10um)

The techmique used to obtain AG was to calculate the correlation function
F(AE, AH) for the conductance,

FIAE,AH)={g(E,H)g(E + AE, H+ AH)> — {g(E, H}?, @n

where the angle brackets denote ensemble averagmng over mpunty configurations
This correlation function 1s written as a sum of diagrams such as figure 15 F(AE,AH)1s
calculated by obtaining the diffusion propagator P(r, v, AE, AH) (e g the upper half of
figure 15) by solving the rclevant ‘diffusion equation’

[ —17AE+ Dt(—iV + eAAY*|P(r,7, AE, AH) = 8(r —r"), 92

restricted to the boundary conditions appropnate to a given sample geometry (A4 1s
the difference between the two values of A for the two trajectories In place of frequency
and vector potential [28], one now has the correlation scales for energy, AE, and

E+AE,B+AB

Figure 15 A genenic Feynman diagram which contmbutes to the conductivity correlation
functron studied by Maldague [87], Al'tshuler [50], and Lee et al [51,52] Curreat
vertices (wavy lines) are connected to each other by electron and hole Green functions
{(sold lines) which scatter from impurities (dots) Note that the two conductivity bubbles
interact with the same impurities but at different energres or magnetic fields



398 S Washburn and R A Webb

magnetic field, AH=V x A4 ) The impunity ladders (top of hgure 15) are summed
[37,38,86] to give P(1,#,AE AH) Note that near zero magnetic field where the
Cooperon (the bottom half of figurc 15) contributes there 1s an enhancement of F(AE,0)
by a factor of two Including all permutations on figure 15, they [51] find that so long as
phase coherence of the wavefunctions remams, F(0,0)1s independent of length, nearly
independent of shape, and of order unity Moreover. 1t was demonstrated that the
fluctuations remain n all physical dumensions ¥ This implies that 1n any quantum-
mechamcally coherent metallic sample therc 1s a umversal amplitude for the
conductance fluctuations and oscillations, namely

AG:%?meJn~evh ©3)

This result, Ag ~ 1,15 10 excellent agreement with the existing experimental data on Au
devices as tllustrated i figure 11 For instance, the data from figure 8 (a} (7' =0 046 K)
yield AG=AR/R*=06¢*/h Tt does not describe the data from the near-ballistic
samples which exhibit larger oscillations [21]

Imry has proposed onc intwtive argument for the size mndependence of the
fluctuations [89 91] He shows that, in a long sample, L>{, the conductance formula
can be represented as the sum over the Lth power of the eigenvalues x, of preducts of
the transfer matnix (which relates currents on one side of the sample to those on the
other side),

gg']r{ttt}=2(xj)’ 94
I

In this sum, the largest eigenvalues dominate, and the smaller eigenvalues have
exponentially smaller contributions to the conductance As the length of the sample
increascs, the conduction paths associated with smaller cigenvalues no longer
contribute to the conductance After arranging the terms of the sum n descending
order, eigenvalues smaller than some x,, < 1 become irrelevant (Alternatively one may
say that when L exceeds some given length, the paths with T < I, arc effectively
localized, since (T,,,.)" < 1/e, and T, which are smaller than T, have an exponentially
smaller contribution )} If the sample length L. becomes comparable to the localization
length &, which describes the decay of the wavefunction to cero, then only the largest
aigenvalue x, 1s still contributimg to g, and for longer samples [92] (L>¢£), the
conductance 1s g = (x,)* cxp (— 1/€) Noting that the eigenvalues are more or less evenly
spaced, one can write Xo =1 - d and x,~ 1 —jo so thatone obtains x,, ~exp( —m/&) The
number of surviving eigenvalues m 15 the number active channels in the device Ny
Upon recalling [92], ¢= N/, 1t follows that

N~ NIL ©5)

The si7e of the relative fluctuations 18 Ag/g ~ 1/N 4, which implies that Ag ~ L/ NI which
(by the defintion of x,;) 1s of order umty Very recently, Lec has put forward 4

+This 15 a truly startling result sige it also implies that each coherent segment {L=L,) of the
sample contributes such fluctuattons The stattstical averaging whtch destroys the fluctuations in
samples contaming many incoherent segments 13 relatively weak -- the amplitude decrcases only
as (L/L,)"%* m d dimensions The mplication 1 that the fluctuations will have measurable
amplitude, even for rather large objects
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complementary argument which starts with the reflection coefficients and arrives at
equation (9 5}[93] Imry’s physical argument has been tied to the spectral ngidity of the
large random matrices which describe the transmission through the disordered region
[81,88,94-96]

Changes 1n the magnetic field [51] or the Fermi encrgy [51,87] larger than some
scale cause changes n conductance which are equivalent Lo those caused by changes in
the impunity configuration The correlation function F(AE, AH) decays on this scale of
AH or AE In one dimension, the encrgy scale AE over which F(AE,0) decays 1s
(Y Imry, private communication, [51])

Fo=nhDjL? (9 6)

This 1s the sensitivity of the energy levels to the boundary of the device made famous by
Thouless 1 his development of the scaling theory of locahzation [91] Within a
bandwidth E, the electron states are spatially corrclated, and all of the carricrs
contribute to the same random pattern of fluctuations in G The particular random
function AG{H) depicted 1n figure 11 1s such a fluctuation pattern Changing the Fermu
energy by less than £ has no effect on the pattern of conductance fluctuatrons, changes
of more than this amount would result in the observation of a different pattern of
fluctuations, which has the same rms amplitude The magnetic-field scale for the
decay of the correlation function was also calculated and found to be A® ~ h/e through
the wire Adding this amount of flux through the device would change the conductance
randomly by an amount of order e’/h (An excellent discussion of the theory of
conductance fluctuations has been published recently [52], and many of these results
have been derived mdépendcntly by Al'thsuler et af [50, 88,95 97], Imryetal (Y Imry,
private communication, [94, 88-100]) and others [101-107]

Surprisingly, 1t was found that, 1n two or fewer dimensions, the fluctuation pattern
18 critically dependent upon the placement of the impurtties Moving a single impurity
farther than approximately one de Broghe wavelength completely rewrites the random
pattern AG(H) [97,104] This extreme sensitivity of G to the individual impurity
locations has been invoked to explam the amplhitude of the ubiquitous 1/ f noise seen 1n
metallic films [104]

Extensions of the theory of conductance fluctuations to the casc of rings ([ 108, 1097,
D Di Vincenzo and D Stone, private commumication) predict an rm s h/e oscillation
amplitude of AG=04e*/h This value depends somewhat on geometrical parameters
but the correcttons are of order of umty This prediction 1s 1 excellent agreement with
the observed low-tempetature hfe amphtudes For instance, the data in figures 12 and
12 both yield an k/e oscillation amphtude AG[h/e]=02¢%/h

The correlation functions extracted from the expenimental data on a Au wire
310 nm long and 25 nm wide 1s compared with the theoretical calculation [52]infigure
16 We emphasize that this 1s not a fit with adjustable parameters Considering the
simplicity of the model, the theory 1s m excellent agreement with the experimental
results

10. Energy averaging and correlated energy bands
The temperature dependence of the fluctuations in the more recent experiments is
quite complicated [110] In figure 17 (a), we display three traces of R(H) at different
temperatures On average, the oscillations are large at the lowest temperature and, as
the temperature increascs, the average oscillation amphitude decreases Viewed focaily,
the temperature dependence at a particular valuc of field may not be a smooth function



400 S Washburn and R A Webb

010 T T T
£ 008
"
7 0086
@
-
Q04
+
[a1]
@ 002
X
& -0 00
@
02 L 1 Looon
00 05 10 15 20

AB | @ |

Figure 16 Autocorrelation function in magnettc Gield of the resistance fluctuations from an Au
wire (solid line) The dashed curve 1y the theoretical calenlation [32] for a wiie which has an
area equal to that covered by the materal between the voltage probes mn the expertment

of temperature For instance, tracing along the dashed line, at 0 70K, the oscillations
are very small, by 0 20 K, they have grown considerably, but at the lowest temperature,
003 K, the oscillations have completely vamished A similar oddity appears in some of
the peaks i the Fourier transform Following the dashed line in figure 17 (b), at 0 70K
the peak 15 farrly small, larger at 020K, but has shrunk again by thc lowest
temperature

The Fourier transform can be reduced one step further to obtan information on the
average amplitudes of the vanous fuctuations as a function of temperature The
temperature dependence data in figure 18 are calculated from the Fourier transform by
summing the spectral weight across the region allowed by the device geometry, 1e from
the mside pertmeter to the outside perimeter for the oscillations, and over the region
®,/L* (where L? 15 the area of the metal, projected normal to the ficld) for the random
fluctuations The data arc independent of temperature at very low temperatures, and
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Frgure 17 (a) The magnetoresistance of the large-diameter (820 nm) loop at three temperatures
{(h) The Fourier transform of the data in (a) The dashed lmes arc meluded to serve as a
guide to the eye as described in the text
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Figure 18  The summed spectral weight of the aperiodic fluctuatrons () and the hfe
fluctuatrons (V) from the 820nm diameter ring and the f/e oscillations (C]) from the
325nm dameter ring The solid lmes indicate where the data are mdependent of
temperature and the dashed lines depict the T 12 faw

fall off as a weak power law, AGoc T~ 12, at lugher temperatures The point at which the
temperature dependence ceases for the two samples 1s different by a factor of 2 or so,
even though the conductances were measured at the same tume and in the same
cnvironmernt

The theoretical explanation of all of these features was developed from the
perturbation theory [49, 51,997 At zero temperature, the impurnty configuration in the
sample will cause a particular pattern to appear n G(H) Within some bandwidth, 1t
would be expected that the neighbouring levels m the conduction band have spatial
correlation and, therefore, gencrate the same pattern in the conductance According to
Thouless [92],

2h
Ec=G AL, (101)

where AE 1s the scparation between levels m the conduction band Thus relation, which
1sequivalent to equation (9 6), gives Eo/ky =0 085 K for the 325 nm rngand 0035 K for
the 820 nm rmg These numbers are m excellent agreement with the temperatures at
which the power law flattens to a constant 1n figure 18 When ky T < E the fundamental
pattern only contributes to the conductance (illustrated by the solid lines in figure 19)
In this situation, the averaging ceases 1n these devices, and this condrtion 1 highlighted
by the solid lines in figure 18 For k, T > E, uncorrelated bands, attended by their own
independent fluctuation patterns (dashed lines 1 figure 19), contribute to the overall
(averaged) pattern recorded 1n the experiment The number of uncorrelated patterns 1s
simply N=kyT/Ec, and therefore the amphtude of the fluctuations 1n the sum over
these patterns 1s proportional to N ™12 T -1/ *—precisely the power law determined
by the data 1n figure 18 (dashed lines) We admit that this 1s a rather naive analysis
(49, 51] of compiicated physics, but a more carcful calculation reproduces this result in
one or two dimensions {52]
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Figure 19 Schematic conduction band D{E) and }ermu surface smearing & f/CE In the hirst case
(solid lines), kg T < E¢, and only onc pattern 1s represented m the conductance In the
wecond casc (dashed lines), where kT K, several independent patterns are averaged
together

The non-monotonic temperature dependence m the oscillation amplitude at
particular magnetic field values (the dashed line 1n figure 17(a)) can be explaincd as
follows At the lowest temperature, only the ‘fundamental’ pattern was bemg sampled,
but as the temperaturc increased above k., more fluctuation patterns began
contributing to the conductance The appearance of oscillations where previously
there had been none simply implies that one of the new patterns contained oscillations
at that value of H

11  Small arrays of loops: direct measurement of ensemble averaging

The question as to why the array [44] and cylinder expeniments {40] failed to
observe hfe oscillations has been settled on heuristic theoretical grounds by the
arguments put forward by Gefen (Y Gefen, private communication, [64,68,108]) The
cxperimental determination of the averaging was accomphshed m a study of small
series arrays of Ag loops [111] The resistances werce measured for arrays contaming 1,
3, 10 and 30 loops (see figure 20(a))

Figure 20(b) contains some of the raw data from this expenment The AAS
oscillations dominate at these low values of magnetic hield m all of the arrays From the
field dependence of the AAS oscillations, 1t was possible Lo extract the Cooperon phase
coherence length L; =22 um Thislength was roughly the separation between the loop
centres, which implied that each loop contributed indepcndently to the conductance
At higher fields when the AAS oscillations has been quenched, the hfe period
domunated [20,111]

R — e —y P PRt S TR ot s e S



Aharonov—Bohm effect in normal metal 403

{a)

x AR/R

(#)

15"

x AR/R

(e

5

10

HbmT |

Figure 20 (a) Electron muicrograph of part of a sertes array of Ag loops The linewidth 1s 70 nm
and the length of eaclt line segment s 920 nm (b) The magnetoresistance of each array at
low hield 1lustrating the AAS oscillations (¢) The data from (b) filtered to select the hje
oscillattons The polanty of the osaiflation at H =0 changes from device to device

As predicted by Gefen, the essential point 1s that the AAS oscillations AG[h/2e] are
always maximal (for strong spin orbit scattering [40]) at H =0, and the polarity of
AG[h/e] s randomly —1 or +1 This dichotomy 1s observed dircctly in the data from
this experiment The AAS oscillations from all of the samples (figure 20(b)) have
maxima at H=0 (as have the AAS oscillations observed m all other published
experiments on heavy metals [40] There were also contnibutions from the h/e process
in the vicimity of H =0 These can be displayed more clearly by digatally filtering out the
random fluctuations and the h/2e processes and leaving only the h/e frequency The
filtered data are shown n figure 20(¢) The first point to note 15 that the predicted
random polarity [68] 1s indeed observed Two of the samples (N =1 and N = 30) have
maxima at H =0, while the other two have mimima

This random polanity causes the averagimg of the hje period In fact, 1t 13
immediately noticed that the oscillation amplitude shrinks as the number of loops
mcreases The explanation 1s that within each series array the same random poldarities
appear If the loops add incoherently, then we expect that the average oscillation
amplitude 1s reduced Each phase-coherent segment of the array contributes “its own’
fluctuations with amplitude AG = AR /R? ~e2/h (R, 1s the resistance of the segment)
The number of such segments 1s simply N = L/L, The fluctuations 1n resistance 4cross
the entire array increase as AR = N'2AR_ so that

202 1 2e? (LN
AG== Nm:h<f) ar
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Figure 21 Therm s amplitude of the 1 ¢ oscitlations and the AAS escillations (normalized to
the resistance of a single loop) as 4 funciion of the number of loops The theoretical
cstimates are obtained from the theory [15 108]

For the purposes of this discussion, it 1s more illumimating to consider the AG
fluctuations as normalized to a single loop without connecting leads This removes one
factor of N from equation (11 1), and AG[h/e]ac N™"/* The data in figure 21 yield
precisely this result for the hfe oscillations The greater the number of incoherent loops,
the smaller the oscillations The AAS oscillations, 1n contrast, are independent of N In
samples containing 10°-10° effectively independent loops [40], the h/e period would be
buncd 1n the nowise Choosmg to study such large samples predetermines that only
processes which survive this ensemble averaging can be observed n the experiment
The only component of the Aharonov—Bohm conductance fluctuations which survives
1s the AAS effect, and 1ts preponderance in the cyhnders and large arrays 1s thereby
explained

12 The effect of the phase coherence length
All of the above arguments follow from the assumption that phase coherence spans
the loop at all temperatures As demonstrated 1n innumerable experiments studying
weak localization [33, 34], L, consists of a tcmperature-dependent component L,, and
temperature-independent components such as magnetic scattering (see the mext
section) L, and spin -orbit scattering In the absence of spin orbit scattering we have

[34]
1 1 2
L2 'L?,,+Lf (azh
L, 1s temperaturc dependent, usually Lo 7% where 1 <a<2 The effect on the
Aharonov—Bohm oscillations of the shortened phase coherence length which cventu-
ally appear at higher temperatures was explored in another experiment [112]

An Sb rng of approximately 900nm diameter was studied carefully in the
temperature range where the inelastic diffusion length was changing The temperature
dependence of the inelastic diffusion length L,,=+/(D1,,) {D 15 the chffusion constant,
and t,, 15 the mean time between inelastic collisions that destroy the wavefunction
phase) can be determined from the magnetoresistance associated with weak localie-
ation [34,77] In the Sb ring, the measured L,, followed the usual T 112 dependence
seen in many one-dimensional samples [113] The shorteming of L., enforces another
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averaging process on the fluctuations This process affects the petiodic and aperiodic
components differently

The apenodic components, which result from the effects withm a wire, merely
‘sense¢’ a shortened sample length Instead of the length L defined by the lithographic
pattern, the cohercnt transport acts only 1n a region of length L, so the wire between
the voltage probes contans L/ L, statisticaily independent coherent devices One result
1s that the field scale over which the conductance fluctuates increases as the smaller L,
reduces the effective samiple size Another results 15, of course, that the average
amplitude of Auctuations 1s reduced (see equation (1t 1)) because L/L, statistically
mdependent patterns contnibute to the observed fluctuations The periodic compo-
nents suffer a more destructive averaging The device geometry asserts itseif here
regardless of whether or not phase coherence 1s mamntamned The loss of phase
cohercnce between the nodes of the ring causes an ex ponential roll-off of the oscillation
amplitude AGacexp(— L/L,) because the number of cohercnt electrons arnving at the
terminus of the loop 1s exponentially reduced

This exponential averaging of the h/e oscillations from the Sb loop 15 confirmed by
the data shown n figure 22 The fluctuation amplitude decays rather slowly and can be
fitted by equation (111), whereas the h/e amplhitude decays exporentially as the
temperature decreases By the standard analysis of the weak-localization magneto-
resistance (an example of the fit to obtain Ly 1s given 1n the inset) the phase coherence
length for the Cooperons (the time-reversed pairs which result 1n localization) was
calculated [34, 77] The prelimmary results of the fitting procedure yielded L, =0 76 um
and L,,=026 um T~ "2 The solid line through the hle data 1s

e? [ 2nhD \\1?
AG:h(mT) exp(—mar/L,) (122)
2k
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Figure 22 The temperature dependence of the hfe oscillatrons () and aperiodic Auctuations
(V) tor an Sb loop having a diameter of 900nm The sohd curves are fits to the dara as
described 1n the text The nset 1s an example of the low-field magnetoresistance and the
theoretical fit which determmes L,
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The h/e data are described quite well by this curve [112] once 1t1s noted that £q1s larger
than kg T (because Sb s a semumetal and D 1s quite large) so the quantity 1n brackets 1s
equal to one In fact, on the sole assumption that the value of L, determined for the
Cooperon describes the single electron, the exponential dependence 1s confirmed The
samc value of L, appears to descrnibe all of the data, and the only adjustable parameter
1s Ag at T=0 From the experiment we obtain Ag=0 56 and Agl{h/e] =020 which1sn
agreement with theoretical predictions [50, 51, 108] and previous experimental results
[110,111] m other matenals

Strictly speaking, all of the theoretical analysis presented so far i1s vahd only for
Ly<L Thisis guarantced 1n the Landauer formula (see figure 2) since phase coherence
cannot extend 1nto the reservoirs, but 1n the case of four-probe techniques (see § 16)
voltages can be measured at L < I, where this analysis breaks down

13. Effects of magnetic scattening
Spin exchange between the conduction electrons and any paramagnetic umpurities
1n the sample 15 another source of phase breaking which 1s famihar mn the study of weak
localization [34,77] The coherence of the wavelunction s destroyed when the spin
component 1s randomized, and the superpositions which cause the conductance
fluctuations are washed out Scattering from paramagnetic impunities 1s then expected
to destroy the Aharopov Bohm osaillations as well {[52], H Fukuyama, private
communtcation} For strong spm scattering when the spin-exchauge rate 1, Y15 very
large (t7'~1"'»1,"), where all of the impunties 1n the device carry paramagnetic
moments, onc only needs to consider two regimes At low magnetic field (gpgH < kg I),
the spins are free 1o orient themselves randomly, and the spin exchange randomizes the
phase of the wavefunction At high fields (gugH > ky T), however, the impunty spins arc
all aligned with the ficld as are the conduction-electron spins, and exchange between
the two causes no change in the wavefunction In the intermediale region, one can
calculate the probabibity that a spin 1s aligned with the field
gipH
§,=coth kT (13 1)
In the case of dilute paramagnetic impurities [97] (N, « N s N, 15 Lhe density of
paramagnetic scattercrs and N, 1s the total density of impurities), the carricrs have
some reasonable probability of traversing the sample oblivious of spin exchange The
calculation of the fluctuation amphitude must then mnclude a reduction of v, 1, which
accounts for the smaller probability that an exchange will ocour (Kondo interactions
and spin glasses [97] are further comphcations which we 1gnore for the moment ) Not
only must one include the probability of the spin being paramagnetic, but also the
probabihity of the carnier encountering such an impurity At a particular value of field,
this can be accommodated by simply renormalizing L, (the diffusion length between
spin faps), but if one wishes to describe the cntire parameter space (N, H, [') a more
sophisticated model must be invoked [ 1 14] The modct predicts that for a given density
of magentic tmpurities ong obtams an amplitude of the oscillations

AGThje] — (2 h) coth (gupHt [kp T)

with the ‘g-factor’ renormahzed to account for the matrix element for spin exchange
and the dilution of paramagnetic spins Thus, for a given sample wath its fixed impunty
population, one expects that i the region near H =0 the osallations are guenched by
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spin exchange, this region will gradually widen as T increases Thas 1s precisely what an
experiment finds [114] Furst, a sample was measured to ensure that there were hje
oscillations throughout the field range Then a small concentration of paramagoetic
mpunties was adsorbed onto the surface of the device, and the fluctuations were
remeasured Figure 23(a) contains data for AG[h/e] from this Au loop at three
temperatures At the lowest temperature (near-zero magnetic. field where the mpuriy
spins are free to rotate), the amplitude of the oscillations is zero to within the notse in the
measurement, but as the field increases and the spins begin 10 align, the amphtude
ncreases and eventually recovers the expected value AG[h/e]~¢?/h The value of N .
(the effective g-factor) 1s undetermined 1n this experiment, but was fitted to the lowest
temperature data This value of ¢ then explains alf of the data at lugher temperatures
{see figure 23 (a))

The electron trajectories which result in the h/2e oscillations are about twice as long
as those for the h/e oscillation Since the trajectorics are diffusive, one would cxpect that
the cffective g-factor for these oscillations would be larger by a factor of about 4, fewer
of the electrons survive without destroying their spins An experiumental test [114] of
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Figure 23 (4) The rms ampliude of the hje oscillations, m the presence of paramagnetic
rmpurities, as a function of magnetrc field at three temperatures =006 K (), 012K
(V) 021K (+) (b) The amphtudes of the hie (V) and hf2e (L) oscillations as function of
magnetic ficld The dashed curves are fits to the data using the same fitted value of the

magnetic impurity concentration The theoretical value of AG[h/e] for g H >k, T has
been adjusted to account for eneigy dveraging
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this hypothests has borne out this estimate (to within the scatter in the data) Figure
23(b) contains the amplitudes of the two scts of oscillations as a function of field The
h'e osallations () are recovered at a lower characteristic field than the h 2e
osuillations (1 1) Using the same value, Ng, one can fit both curves by simply mcluding
the extra factor of 2 in the path length

Both of these studies were performed with the paramagnetic spins on the surface of
the device - -not in the bulk The behaviour of the system with the same concentration
of bulk impurities 1s not known The probability to form Kondo singlets 1s presumably
larger for localized spins in the buik, since the contact integral between the carners and
the local moment s larger These Kondo simglets are not expected to destroy the
oscillations completely at low fields since they carry no moment [97] The likelthood of
spin-glass freezing of the localhized spins may also be greatern the bulk Fxchange with
the random local moments [97] will be less damaging to the oscillation ampiitude,
since these moments are frozen, making exchange less Iikely

14. Experiments on semiconductor devices

Metal-oxide semiconductor field-effect transistors (MOSFETSs) have proved to be
useful devices m the study of conductance fluctuations, because semiconductors
generally have higher diffusion coefficients and, therefore, larger E,-—frequently a few
kelvin Assuming phase coherence can be maintained, this makes access to the T=0K
limit easicr By changing the gate voltage, onc can change the Fermi level This
flexibility opens the avenue to a different class of expenments

An clegant observation of the corrclated energy bands was made by tuning the gatc
voltage (and thereby the Ferm energy) of a MOSFET [115] In thatl experiment, the
local fluctuation pattern was found to be mvarant under small changes i Er, and to
change rather sharply once AE, > k., whereupon it remamned fairly constant again
until AE, > 2Eand another band was crossed Under the assumption that the Zeeman
terms 1 G are irrelevant, this made a very mice demonstration of the existence of
neighbouring bands of internally correlated levels

In another study [116], the plane of the sample was tilted rclative to the magnetic
field With H perpendicular to the plane of the device, a certain correlation field was
observed When the device was tilted, the correlation field seemed to increasc as
expected for orbital motion confined to the plane of the MOSFET Similar experniments
on GaAs samples [ 117, 118] have confirmed [117] that the correlation field scale grows
as expected when the sample 1s tilted

One of the important realizattons that has emerged from the theoretical work on
universal conductance fluctuations 1s that they should persist mnto the regime of very
large samples and high temperatures [118] This 1s simply the result of the weak
algebraic averaging Several expenments on very narrow channel MOSFETs have
becn accomplished [119] which test the predictions about averaging of AG as a
function of conductance, width and length of the device All of the cxperimental results
arc  support of the theory

We arc 1gnoring 1n this discussion the rescarch in the insulating regime (also called
‘strong localization’) where conductance fluctuations [120] as large as Ag/gz 10’
(g« 1) are commonly observed [121-125] In this case, the conduction processes are
not coherent 1 the sense which we discuss 1 this paper—the carrier wavefunctions are
not extended so they do not coherently span the device The electrons in strongly
localized samples traversc the device by Mott hopping [126 128] among locahized
states or by resonantly tunneilig [129 130] through a particular localized state In the
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case of Mott hopping, the conductance fluctuations can be an indirect count of the
number of available hopping sites near the Fermi surface, and m the resonant
tunnelling case, the fluctuation peaks are a more or less direct measures of the width
and position of the individual energy level being sampled [131] and of the
perturbations on that level caused by neighbouring sites [123, 132]

15. Magnetic ficld asymmetries: Onsager relations

Since the first data from the experiments, 1t has been apparent that the measured
resistance 1s mot a symmetric function of the magnetic field [75,76,133] This
observation wds a little unsetthing at first, because there are strong arguments that the
resistance should be absolutely symmetric about H =0 In large systems, the symmetry
G(H)=G{(— H)1s equivalent to (and results from) microscopic time-reversal symmetry
[134,135]

The observation has prompled several theoretical discussions which have attemp-
ted to resolve the ongin of the asymmetry Upon looking more closely at the
mult:channel conductance formula (equation (6 1)), Buttiker and Imry {136] noticed
that 1t was not symmetric about H=0 For weak disorder (I~ L), the formula could
have asymmetric components with relatively large amplhitude The model invoked the
experimental fact that the voltage measurements are made away from the reservoirs
which supply and sink the current through the sample— that the measurements are
done with four probes In contrast, the morc widely accepted formula g="Tr {ee'},
makes no such allowance and, hence, enforces the simple Onsager symmetry
G(H)=G(—H) The difficulty with this explanation is that in the expeniments, Lz 107
50 that the conductance, according to conventional wisdom, should have conformed to
g=Tr{tt'} and exhibited no asymmetry

Others have suggested that shght rearrangements of the spins on localized moments
i the sample [97] can cause asymmetry in the conductance It was recently
demenstrated that very small changes in the mimpurity configuration could completely
rewrite the pattern of conductance fluctuations [97,104] Based on this conclusion,
Al'tshuler and Spivak [97] proposed that even very small chan ges1n the orientations of
local moments could account for the observed asymmetry It has also been noted that
the quantum-mechanical analogue of the classical Hall voltage mught fluctuate Ths
prediction has been obtained both from linear response [63,87,137] and from direct
calculation of the conductance using Landauer’s approach [18, 100]

Very recently, Buttikcr [73] has trcated the four-probe gecometry from the
Landauer point of view and found that Onsager’s symmetries are indeed conscrved so
long as they are defined for that measurement technique The voltage probes mvariably
measure some muxture of diagonal components R, and off-diagonal components of
the resistance R,, In general, these mixtures contain contributtons from off-diagonal
Onsager coefficients so that the symmctnes arc also muxed This gives rise to
asymmetry n the measurement Moreover, the asymmetries which arise n this
formulation require only phase coherence for the wavefunctions they do not require
that {~[L In fact, the quantum-mechanical conductance fluctuations mimic the
symmetrics found 1n classical electrodynamics [138-140]

The experiments [133] support the calculations of Buttiker [731 as far as
symmetries 1n G(H) are concerned Some of the expenmental data are displayed 1n
figurc 24 The three traces correspond to three different arrangements of the leads The
top trace G, 1s the result of current imjected 1nto 1 and withdrawn through 4 and a
voltage drop measured from 2 to 3 The other two traces result from permutations of
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figure 24 The varnation of the conductance fluctuation pattern with different lead configur-
ations The hje oscillations have been filtered from the data for clanty of display The msel
ustrates the measurement configuwiation for cach of the traces

the voltage and current leads as illustrated in the mset The conductance measured for
any particular arrangement of contact probes 1s related by some symmetry transform-
ation to the conductance measured with the permuted leads If the current and voltage
leads are interchanged, then the conductance 1s nearly mirror-symmetrc through the
plane H=0 Thus suggests that the measured conductance comprises a symmetric part
and an antisymmetric part For a certain measurement configuration, the separation of
these two parts 15 obtained from

Gszzf[Rm 23(H)+R23.14(AH)]’ (15 1)
GA=2/[R14. 23(”)—R21 14(—H)—| (]52)

When the conductance data are reduced according to these formulae, the resulting G
and G, (figure 25) are indeed ncarly symmetric and antisymmetnc, respcctively The
calculations of Buttiker predict just this sct of symmetrics for this measurement Short-
range autocorrelation between G4 53 and Gz 14 indicates that 90 per cent or more of
the asymmetry resuits from G,

The constructions can also be performed on mdividual measurements made with
particular lead arrangements As demonstrated 1n figure 25 (b), ali of the traces generate
nearly the same Gg as 1s found from 2/[R;, 2aH)+ Ry 4(—ID)], and the rms
amplitude of all of the traces 18 AG, =056 ¢?/h The symmetric part of G 15 not a
function of the choice of current and voltage leads This result follows theoretically
from the four-probe Landauer formula [73] 1n the restricted case of a very long (quasi-
one-dimensional) sample

The data also support the predictions that the Hail voltage fluctuates The
amphitude of the fluctuations in G, build up over the course of a few fluctuations and
then saturate at AG,=044¢>/h The feld scale associated with the antisymmetric
Auctuations indicates that all of the phase coherent region of the wire (including the
voltage probes) contributes to the fluctuations This field scale, however, 1s not
independent of the shape of the sample [130], 1t just happens to be true for long
samples All of these observations are consistent with the calculations by Ma and Lee
f137]
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Figure 25 (a) The symmetric and anttsymmetric componeunts of the conductance constructed
from G;= URszzf[Rm 23(H)+ Ry q(— HY], G, = R,=2/[R,, 23H) — Ry, 4 -],
and the residual asymmetry w Gg=Gy{H)—Gy(—H) (h) The symmeiric part of the
conductance Gg=1 /RQ:Q/[RU mal )+ R, {(—H)] for cach of the traces n figure 24

A careful study (figure 26) of the Aharonov—Bohm oscillations near zero field has
revealed that these too are not symmetric The oscillations have a random sample-
dependent offset 0 < f <z from I =0 Turthermore, the offset-ff changes s1ign when the
lcads are permuted, as described above in the discussion of the random fluctuations (see
figure 24) The onigin of the offset (the parameter f§ in equation (6 3)) 1s certainly the
asymmetry discussed by Buttiker [73] In contrast to the random fluctuations m G,,
this offset does not represent Hall voltages 1 the wires The finite value of f1s an
Aharonov -Bohm cffect in the sense onginaily proposed for the free-electron case [41—
it 1s due to the gauge flux threaded through the loop

The fimte values of f agam confirm the phase coherence of the electron
wavefunctions across the sample According to current understanding [ 73], the offsct 15
the least robust of the imterference manifestations In contrast to the aperiodic
Auctuations, which suffer only algebraic averaging 1n the presence of inclastic
scattering, the offset 1s finely dependent on cohercnce The presence of even shght
phase-breaking in the device (particularly i the connecting leads) rapidly drives fto 0
orm
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{a)

(b)

()

Frgure 26  The Aharonov—Bohm oscillations at near-zero magnetic ficld illustrating the offset 8
which reverses sign when the leads are permuted The three pairs of traces are from three
different samples having the same diameter (900 nm} The tnangles and circles are G, 5,
and G,; 4, respectively The solid limes are fits to the data which account for a sloping
hackground, an offset to the oscillations, and the amphtude of the oscillations Tn (b} and ()
account has also been taken of the k/2e peniod prescut 1n the data The fitted offsets arc (a)

—25° and 18", (b) —86° and 89°, and {c) —63° and 66"

16. Voltage fluctnations and umversal conductance fluctuations:
measurements with L <L,

The results of the universal conductance theory were derived by calculating [51] the
transmission coefficient for a long sample connected by two perfect leads to infinite
reservoirs On the other hand, as pointed out m § 15, most of the experiments discussed
here employ a four-probe measunng counfiguration The coanecting leads are
fabricated from the same material and must be mcluded in the computation of the
fluctuations Without losing phase coherence, electrons can propagate into the leads (1n
particular the voltage leads) up to a distance L, Recent experiments on lmcs and rings
[141] have clearly proven that, when L< L, the measurcd voltage fluctuations are
independent of the distance L between the voltage probes Upon converting this to
conductance, one sces that the conductance fluctuations diverge as (L,/L)* This 1s 1n
direct contrast to the opposite nmt L> L, where, as we have shown (equation (11 1)},
AGoc(L,/L)** Thus, when L< Ly, the conductance fluctuations are not unaversal in a
four-wire measurement They are unbounded and can be very large This counter-
mtmtive result can be derived by considering what happens when four voltage leads aic
connected to a long hne as shown 1n figure 27 (¢} Considering the case where L, 15
greater than the largest separation between voltage probes and assuming that the
voltages are additive (1c V, 3+ V5 4+ V, ,=0) the measured voltage fluctuations
between any two probes should depend only on the distance between voitage probes
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Figure 27 (1) Schematic for measurement of voltages along a wire as discussed 1n the text
(b) The rms amplitude of the antisymmetnic part of the voltage finctuations ¥V, {open
symbols) and the symmetric part Vg solid symbols as a function of L, The mnset shows
schematically the cxpected behaviour of the voltage fluctuations as a function of length as
discussed 1n the text (c) Electron microscope photograph of Sb sample

AV(L)oc L* Using the general property that the voltage fluctuation of one term 1s less
than or equal to the sum of the fluctuations of the other terms, one can wrile

AL, + L)< AVIL)+AWVL,), (16 1)
AV ySAVUT 4+ L)+ AV ) (16 2)

By considering the two cases, L, = L, 1n equation (16 1) and L., —01n equation (16 2),
one can show 0<a<! Usmng the symmetnies discussed in §15 and forming the
antisymmetric part of the voltage measures between leads 3 and 4, one can also show 1n
general [141] that AV, s a constant, independent of L The totai fluctuation amphitude
can never be smaller than the antisymmetric contribution, therefore a dependence
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AV L* with >0 15 not allowed for L< L, The final result 15 that the total measurcd
voltage fluctuation 1s constant for w<L<L, (w 15 width of the wires) Similar
considerations apply to the iije periodic voltage oscillations measured between any two
points on a ring [142]

As an example, the r m s amplitude of the aperiodic voltage fluctuations measured
in a tong line 1s shown 1n figure 27 (b} as a function of /L, The data were obtained from
Sb wires with voltage leads of similar dimension and material connccted alternately to
cach side of the wire al varying distances One of the samples used m these
measurements 1s shown in figure 27 (¢) By selecting dufferent leads, fluctuations for 15
different lengths between 0 2 and 4 um can be measured As discussed i § 15, I, and V),
were determined and are plotted as closed and open symbols, respectively The data
show that for all values of the sample length L, the antisymmetric part of the voltage
fluctuations 1s constant, but the symmetric part of the voltage fluctuations 1s
independent of length only for I <L, For lengths greater than L, the voltage
fluctuations are mcreasmng as (L< L)', 1n agreement with the discussion m §11

The point corresponding to L~ 01n figure 27 (b} was measured by injecting current
nto two adjacent leads and measuring the voltage between two leads 0 2 um away from
the classical current paths Howcver, the measured voltage Quctuations have the same
value as those determined 1n a conventional resistance measurement so long as L.<L,,
This measurement 1s proof that the fluctuations in voitage are m fact constant
independent of the position of the voltage probes It also demonstrates the importance
of the propagation of the clectrons into the leads It 1s clear that the measurcd
conductance fluctuations are not universal 1n a four-wirc measurement and can be
much larger than e’/h We emphasize that this 15 not mconsistent with the universal
conductance Mluctuation theory which only applies to a fimte-length sample with two
leads In the casc of L—0, howcver, the average voltage measured can be arbitranly
near sero If we convert the average voltage 1o a resistance and usc 1l Lo calculate
conductance the rms voltage fluctuation for the point L~0 m figure 27 (h) implies
AG =2x 10%¢2/k This shows that 1t 15 the voltage fluctuation and not the
conductance fluctuation that should be considered when I <L, Lxperimentally, of
course, the antisymmetric pait of the fluctuations exists regardless of the geometrical
arrangement of voltage probes The explanation of the asymmetry mn terms of a
transverse voltage 1s not inconsistent with this result because the voltage fluctuations
will not cancel for measurements on the same side, as 1t does lor the classical Hall efTect
in 4 homogeneous rectangular bar [142] The transverse voltage Auctuation can
contain both symmetric and antisymmetric contributions Expenmentally only the
symmetric part (longitudinal and (ransverse contribution) and the antisymmetric part
{(transversc only) can be determined

Figure 28 (a) displays one of the most surprising experimental results obtamned to
date The trace represents the non-local voltage fluctuations obtamned from the
measurement configuration shown in the inset The measured average voltage (V- V,)
1s nearly zero, while the r m s fluctuation amplitude i1s the same as that measured along
a segment of the line in the usual way (V- Vy) (50 long as the distance between voltage
probes arc less than L) Figure 28 (b) demonstrates a similar effect measurcd on a ring
with six Jeads cqually spaced around the perimeter When curient 1s apphed to
aiy two adjacent leads and voltage measured between leads on the opposite side of the
ring, the amphtude of the hie voltage oscillations are the same as from a measurement
made using the standard configuration (see hgure 9) Both these effects demonstrate the
mportance of voltage leads attached to the sample Since the clectron wavetunction
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Figuie 28 (a) Non-local voltage fluctuations A(V, —V;) measured m a wire as illustrated in the
mset (b) Non-local ke osullations 1n an Au loop with six leads measured as dlustrated 1n
the imset The non-local measurement and the conventional measurement eg V;— M, m
the mset (@) yield the same Auctuatton and oscillation amplttudes

exists everywhere within L, of a given point, voltage probes with L< L, will observe
fluctuations having a field scale which is the same as that for probes which are separatcd
by L, (The field scale will, of course, reflect the fact that the coherent region n the
sample 15 no longer a simple rectangular slab)

A consequence of the power-law dependence of the voltage fluctuations AV(L)ec L?
is that the correlation function between different voltages measured on the same line
depends on o The correlation € between measured voltages can be computed by
noting that the voltages along the wire add For two adjoining segments of equal
length, 1t ¢can be shown that C=312"—1 For a=1, there 15 complete correlation
between voltages (C = 1), and for 2= L, there 1s no correlation between voltages (C =0},
and finally, for o =0, one finds C=—1 Figure 29 displays three voltage correlation
functions, for the case of adjacent segments This ligure 1liustrates the transition from
4 regton without correlation (L> L, a=3) to a region with negative correlation
(L<Ly 2=0} The correlation measurcd for the smallest ratio (L/L;=025) is
C=--048+007 Of course, all correlations measured for non-adjacent segments are
£ero 1o within experimental error
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Figurc 29 Cross-correlations between the voltages measured 1n adjacent hine segments for the
three different ratios L1,

The length independence of the voltage fluctuations must break down when L—0
In the case of ideahzed one-dimensional probes. when L=0, AV must be zcro
Therefore there must be a characteristic distance, below which the length independence
breaks down and this 1s the subject of intensive theoretical and experimental
investigation ([109,144], Y Imry, P A Lee and S Maekawa and D Stone and
W Skocpol, private commumcations) The current ideas [141] are that for lengths
shorter than the mean free path in strictly one-dimensional samples, the voltage
fluctuations must approach zero with decreasing length, <1 For rcal samples and
voltage probes with finite width and thickness, the result 1s still very much in question
The measured voltage fluctuations may also depend upon the cross-sectional area and
the phase coherence length, as well as the mecan free path

17 Persistent currents and a.c. Josephson effects

In § 5 we mentioned that the energy of a closed normal metal loop 1s periodic n h/e
and, m the absence of coupling to reservoirs cannot dissipate energy Flectrons
encirching the loop behave just hike electrons 1 an infinte periodic lattice with the unit
cell equal to the circumference of the loop [145] Calculating the band structure (see
figure 5}for a one-dimensional loop one finds that, within a band, the energy of a single
clectron 1s a pertodic function of flux threading the loop with period hje At a given
value of @, the veloaity of the carriers dE/d® alternates between adyacent bands In
general, for a constant flux applied to the ning, there will be a circulating current of 4
magnitude given by a sum over the velocities 1n all the occupied bands,

11¢)=— 7 L0 (171)

where L 1s the circumference of the loop, and v,(¢) 15 the velocity of the electrons in the
nth band The velocity dk/d® inereases monotonically with r, and because of the near
cancellation between parrs of filled bands, the current should be dominated by the last
filled band For very weak disorder, the bands should be stmilar to the free-electron
case. but with mncreasing disorder (more elastic scattering) the bands become flatter and
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the velocitics smaller In addition, the presence of disorder will most likely produce
local fluctuations within a given band so that dE/d® or the velocity could vary
substantially within a band, and the near cancellation provided by adjacent bands
might be less cffective Quantitative theoretical techmiques need to be applied to this
problem n order to predict accurately the contribution of ali the bands to the persistent
current Assuming the probability for Zener tunnciling [56, 103, 146, 147} from one
band to another 1s very smali at T~0, this current cannot decay and can be considered
as a real persistent current An upper estimate for the magmtude of this current can be
obtained by using I ~ev, /L For the ring in figure 9 (excluding the leads), 1gnoring the
number of transverse channels for the moment, a persistent current of magnstude
I~1077 Aspredicted The loop inductance 1s on the order of 10~ 2 H Assuming good
coupling to a detector, a flux resolution of at least 1072 Wb would be required to
measure this signal This 1s close to the scnsitivity of available d ¢ SQUIDs

The arguments 11 § 5 give an cstimate of the magnitude of the persistent current Tt
would appear that the magnitude of the current should decrease with 1nercasing
transverse channel number, but quantitative estinates of the averaging law are lacking
for the moment Similar reasoning, however, suggested the same reduction for the
magnitude of the Aharonov-Bohm effect which 1s clearly not what has been observed
The cffects of fimte temperature on the magmtude of the persistent current are not
completely understood Theoretically, melastic events cause the persistent current to
fluctuate but do not suppress 1t [18, 56] In addition, the Zener tunnelling between the
adjacent bands, might be a source of dissipation, but this is a controversial point
[59,146] From the discussion in § 10, the effect of finite temperature on the Aharonov-
Bohm osciilations and aperiodic conductance fluctuations 1s not as severe as first
expected Owing to a hgh degree of correlation between bands, the transport
properties are not sensitive to temperature until k5T exceeds the typical correlation
encrgy k¢ In the case of persstent currents, 1t appears that when thermal cnergy
comparable to the band-separation, transitions between bands become possible and
arc likely to lower the magmitude of the circulating current Ths suggests that for the
ring of figure % temperatures less than 0 1 mK may be required to see the maximum
persistent current  This temperature could be 100 to 1000 umes larger for
scrruconductors

If we were to apply a flux to the loop which increases lincarly 1n time, the current in
cach band would osallate periodically with a frequency f=2neE/h, where E 15 the
mnduced electric field This 1s the Josephson frequency for a single electron If the flux
varies slowly, and Zener tunnelling can be neglected, then the current 1s confined to the
same bands The induced frequency must be kept small enough so that hes 15 less than
the band separation, which means f < 108 Hz for the ring of figure 9 Experimental tests
of these predictions promuse to be very difficult, but they would serve to increase our
understanding of dissipative processes and their time-scales in normai metals

18  Conclusions and speculation
Unanswered questions and partiaily answered questions remain The advances i
understanding made 1n the past few years have, of course, opened new fields which have
to be explored Inthis section, we hist a few of the questions which might be successfuily
attacked with current technology
One of the conclustons of the conductance fluctuations theory 1s that a puzzlen the
understanding of 1,/ noise 1s now solved The noise which dappears ubiquitously 1n
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resistance medsurements was mysterious, in that the switching of microscopic (single-
paiticle) traps, which are the source of the noise, seemed to be a tnivial perturbation on
the resistance of the samples In short, the obseived amplitude of the noise was far too
areat to be explained by such weak changes n the impurity potential The conductance
fluctuation pattcrn 15, however, critically dependent on the exact configuration of
defects The movement of a single impurnity causes fluctuations Ag~1,1e 1t1sas violent
a change as moving all of the impunitics No comparison was made between thesc
calculations and the wealth of existing experimental data on 1; f nosse [148], but along
with weak averaging of the fluctuations, the critical dependence on mmpurity position
appears to be a significant step toward explamning the amplitude of 1/ noise The
experimental evidence, however, which bears on these predictions has wrought mixed
conclustons at the time of this witting ([149 151], W Wcbb, private communication)

Two unsolved conundra have been mentioned already at the end of § 8, but there are
more fundamental questions at hand The presence in the devices of Kondo
interactions or the formation of spin-glass states {97] have not becn mvestigated
experimentally Experimental tests of the complete many-channel conductance
formula (6 2) and the Auctuations near [152] the ballistic regime (!~ L) are among the
topics which come to mind Other questions such as the description of the effect of
superconductivity (and the proximity effect) on the fluctuations are being addressed at
present It has also been noted that other transport coeflicients, such as the
thermoelectinc cffect [90, 98], can exhibat fluctuations

Excluding, of course, the hje oscillations which had been predicted some tume ago,
many of the important conclusions about the fundamental physics of conduction
menttoned 1n the previous sections were unknown before these experiments began The
random fluctuations, and the theoretical work which they prompted, were completely
unexpected In many ways, this aspect of the research has a further reach than the
periodic effects The trend to study smaller devices at lower temperatures will focus on
the case of coherent transport, and the predictions from the conductance fluctuation
theory will bear on all of these investigations The speculations on the phase cohercnee
of the electron wavefunctions 1n weakly disordered materials were clarified by the data
from these studies Some hints had been obtained from the phase cohcrence of the time-
reversed pairs which result in localization, but these were the first direct measurements
of single phase-coherent electrons in disordered systems Lven alter due consideration
we still find 1t rather miraculous that one can directly detect the mteiference of
wavefunctions 1n a disordered system
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