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1 Introduction

In 1991 Rolf Landauer argued that information is physical [1]. Since information
is processed in physical devices, he concluded that information has to obey the
laws of physics, and in particular the laws of thermodynamics. Information is
thus stored in physical systems, such as books or memory sticks, and transmitted
by physical means, for instance with the help of electrical or optical signals.
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But what is ‘information’? A simple, intuitive answer is ‘what you don’t already
know.’ If someone tells you that the earth is spherical, you surely would not
learn much: this message has low information content. However, if you are told
that the oil price will double the day after tomorrow, assuming for a moment
this to be true, you would learn a great deal : this message has hence high
information content. Mathematically, the amount of information is quantified by the
so-called information entropy H introduced by Claude Shannon in 1948; the larger
the entropy, the bigger the information content [2]. The simplest device to store
information is a system with two distinct states, for example up/down, left/right or
magnetization/no magnetization. If the system is known to be with probability one
in one of either states, probing the system will not reveal any new information, and
the Shannon entropy is zero. On the other hand, if the two states can be occupied
with probability one-half, and the actual state is therefore initially undetermined, an
examination of the system will provide information about the state it is in. In this
case, the Shannon entropy is equal to ln(2). This value corresponds to the smallest
amount of information and is called a bit. A two-state system can thus store up to
one bit of information.

The second law of thermodynamics, as formulated by Rudolf Clausius in 1850,
is based on the empirical observation that some processes only occur spontaneously
in one preferred direction [3]. Everyone who forgot a cup of hot tea on a table has
noted that heat flows by itself from a hotter (the cup) to a colder body (the room), and
never the other way around. Heat flow is therefore said to be irreversible. Clausius
characterized the irreversibility of natural macroscopic processes by defining the
thermodynamic entropy S, a quantity that is not conserved, in contrast to energy,
but can only increase in isolated systems. This asymmetry in the change of
entropy imposes restrictions on the type of physical phenomena that are possible.
Similarly, the application of the second law of thermodynamics to information sets
limitations on information processing tasks such as transmission or erasure. More
general questions address the thermodynamic consequences of information gain. In
particular, whether it is possible to extract useful mechanical work from a system
by observing its state, and if yes how much. And at the more fundamental level: are
thermodynamic and information entropies related [4, 5]?

1.1 Maxwell’s Demon and Szilard’s Engine

The first hint of a connection between information and thermodynamics may be
traced back to James Clerk Maxwell’s now famous demon introduced in 1867 [6–
8]. The demon is an intelligent creature able to monitor individual molecules of a gas
contained in two neighboring chambers initially at the same temperature, as shown
in Fig. 1. The temperature of the gas is defined by the mean kinetic energy of the
molecules and is hence proportional to their mean-square velocity. However, not all
the particles will have the same velocity. Some of the molecules will be going faster
than average and some will be going slower. By opening and closing a molecular-
sized trap door in the partitioning wall, the demon collects the faster molecules in
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Fig. 1 Maxwell’s demon. By detecting the positions and velocities of gas molecules in two
neighboring chambers and using that information to time the opening and closing of a trapdoor
that separates them, a tiny, intelligent being could, in theory, sort molecules by velocity. By doing
so, it could create a temperature difference across the chambers that could be used to perform
mechanical work. If the trapdoor is frictionless, the sorting requires no work from the demon
himself, in apparent violation of the second law of thermodynamics (drawn by Claire Lebeau)

one of the chambers and the slower ones in the other. The two chambers now contain
gases with different mean-square velocities and hence different temperatures. This
temperature difference may be used to run a heat engine and produce mechanical
work. By gathering information about the position and velocity of each particle
and using this knowledge to sort them, the demon is therefore able to decrease
the entropy of the system and convert the acquired information into energy. The
problem is that the demon, assuming a frictionless trap door, is able to do all this
without performing any work himself, in apparent violation of the second law of
thermodynamics. The proper resolution of this paradox took 115 years.

A simplified one-particle engine has been suggested by Leo Szilard in 1929 [9].
In this setup, schematically shown in Fig. 2, the gas consists of a single molecule and
the wall separating the identical chambers is replaced by a moving piston to which
a weight can be attached. We now have a two-state system very similar to the one
discussed above. Initially, the particle has a probability of one half to be in one of the
two chambers. By looking into the container the demon acquires information about
the actual state of the system, learning what he did not know before. If the molecule
is found in the right chamber, the weight is attached to the right-hand side of the
piston which is then released from its former position. During the expansion of the
gas, the piston is pushed to the left and the weight is pulled upwards, performing
work against gravity. The piston is attached to the left-hand side of the piston when
the molecule is observed in the left chamber. The second law of thermodynamics
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Fig. 2 Szilard’s engine. A crafty observer can turn a single particle in a box into an engine that
converts information into mechanical work. If, say, (a) the particle is found on the box’s left-hand
side, (b) the observer inserts a movable wall and (c) attaches a weight to its left side; (d) the free
expansion of the one-particle gas pushes the wall to the right, lifts the weight, and thereby performs
work against gravity (adapted from Ref. [8])

limits the maximum amount of work that can be produced by the Szilard engine
to kBT ln(2), where kB is the Boltzmann constant and T the temperature of the
gas. This corresponds to the maximum amount of energy that can be obtained by
converting one bit of information, and is historically the first clear statement of
the relationship between information and energy. In modern language, this result
further implies that information and thermodynamic entropies are equal, S = kBH ,
up to the multiplicative factor kB introduced for dimensional reasons (the Shannon
entropy H is dimensionless).

1.2 Landauer’s Principle and Bennett’s Resolution

It is useful to distinguish two complementary aspects: the first one is informa-
tion gain, as we have just discussed with Maxwell’s demon, the second one is
information erasure, which has been investigated from a thermodynamic point of
view by Landauer in 1961. Let us again consider a two-state system and let us
assume that it initially stores one bit of information, that is, the two states are
occupied with equal probability one-half. This bit may be erased by resetting the
system to one of the states, which will then be occupied with unit probability, a
situation that corresponds to a zero Shannon entropy. By applying the second law
of thermodynamics, Landauer demonstrated that information erasure is necessarily
a dissipative process: the erasure of one bit of information is accompanied by
the production of at least kBT ln(2) of heat into the environment. This result is
known as Landauer’s erasure principle. It emphasizes the fundamental difference
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between the process of writing and erasing information. Writing is akin to copying
information from one device to another: state left is mapped to left and state
right is mapped to right, for example. This one-to-one mapping can be realized in
principle without dissipating any heat (in statistical mechanics one would say that it
conserves the volume in phase space). By contrast, erasing information is a two-to-
one transformation: states left and right are mapped onto one single state, say right
(this process does not conserve the volume in phase space and is thus dissipative).

Landauer’s principle played a central role in solving the paradox of Maxwell’s
demon. In 1982 Charles Bennett noted that the demon has to store the information
he acquires about the gas molecules in a memory [10]. After a full information
gathering energy producing cycle, this memory has to be reset to its initial state
to allow for a new iteration, and its information content has thus to be erased (a
similar argument was put forward by Oliver Penrose in 1970 [11]). According to
Landauer’s principle, the erasure process will dissipate an amount of energy that is
always larger than the quantity of energy produced by the demon during one cycle.
The demon has consequently to pay an energetic price to sort the molecules and have
heat flow from the colder chamber to the hotter chamber, in full agreement with the
second law of thermodynamics. Before Bennett’s resolution, it was often believed,
following arguments put forward by Leon Brillouin and Dennis Gabor, that it was
the energetic price of the measurement, that is, of the act of gathering information,
that would save the second law [12]. However, as shown by Bennett, there is no
fundamental energetic limitation on the measurement process, which like the copy
operation may in principle be performed without dissipation, in stark contrast to
erasure.

Box 1 Landauer’s Erasure Principle
Landauer’s principle can be seen as a direct consequence of the second law
of thermodynamics. Consider a system (SYS) coupled to a reservoir (RES)
at temperature T . According to the second law, the total entropy change
for system and reservoir is positive: STOT = SSYS + SRES ≥ 0. Since
the reservoir is always at equilibrium, owing to its very large size, we have
followed Clausius, �SRES = QRES/T . In other words, the heat absorbed by
the reservoir satisfies QRES ≥ T �SSYS. For a two-state system that stores one
bit of information, there are initially two possible states that can be occupied
with probability one half, and the initial Shannon entropy is Hi = ln(2). After
erasure, the system is with unit probability in one of the states and the final
Shannon entropy vanishes Hf = 0. The change of information entropy is thus
�H = − ln(2). During this erasure process the ability of the system to store
information has been modified. By further using the (assumed) equivalence
between thermodynamic entropy S and information entropy H we can write
�SSYS = kBH = kB ln(2). We hence obtain QRES ≥ kBT ln(2), showing
that the heat dissipated into the reservoir during the erasure of one bit of
information is always larger than kBT ln(2).
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2 Experimental Implementations

For almost a century and a half, the demon belonged to the realm of a gedanken
experiment as the tracking and manipulation of individual microscopic particles was
impossible. However, owing to the remarkable progress achieved in the last decades,
such experiments have now become feasible. Just to give a hint on what can be
done, we will discuss in the following sections several experimental realizations of
Maxwell’s demon and Szilard’s engine, as well as several verification of Landauer’s
principle.

2.1 Experiments on Maxwell’s Demon

The first realization of a Maxwell demon was used to cool atoms in a magnetic trap.
An ensemble of atoms is first trapped in a magnetic trap (see Fig. 3) [14]. A one
way barrier (which plays the role of the demon) sweeps the magnetic trap from the
right to the left, starting at a very large value of the potential. The atoms reaching
this position have transformed almost all their kinetic energy in potential energy
and are, therefore, very cool. These atoms go through the barrier but they cannot
come back, i.e. the barrier behaves as an atom-diode [13–15]. Thus the hot atoms
are on the right and the cold atoms are on the left. At the end of the process when
the sweeping one-way barrier reaches the bottom of the magnetic potential all of
the atoms are cooled down. The one way barrier is composed by two laser beams
suitable tuned to atomic transitions. In Fig. 3 (left) one of the two lasers is on the left
of the barrier and forces the atoms in an excited state. The frequency of the second
laser, which is on the right of the barrier, is tuned in such a way that it has no effect
on the atoms in the excited state and it repels the atoms in the ground state. Thus
the atoms coming from the right, which are prepared in the excited state, go through
the barrier and relax to the ground state by emitting a photon. Instead the atoms
coming from the left, which are in the ground state, encounter first the barrier and
remain trapped because they are repelled. Where does the connection with Maxwell
demon come from? Indeed each time that an atom loses a photon the entropy of
the light shining the atoms increases because before all the photons were coherently
in the laser beam (low entropy state) and now the emitted photons are scattered in
all directions (high entropy state). This entropy is related to an information entropy
because each time that a photon is emitted we know that an atom has been cooled. It
can be shown that indeed this gain of entropy is larger than the reduction of entropy
produced by the cooling of the atomic cloud. It is important to notice that in this
example the demon has not to be an intelligent being but it is just a suitable tuned
device which automatically implements the operation.
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Fig. 3 Using a Maxwell’s demon to cool atoms. A pair of laser beams can be tuned to atomic
transitions and configured to create a one-way potential barrier; atoms may cross unimpeded in
one direction, from left to right left in this figure, but not in the other. Left panel : when the
barrier is introduced at the periphery of the trapping potential, (right side) the atoms that cross the
barrier will be those that have converted nearly all their kinetic energy to potential energy, in other
words, the cold ones. By slowly sweeping the barrier (from the right to the left) across the trapping
potential, one can sort cold atoms (blue) from hot ones (red), reminiscent of Maxwell’s famous
thought experiment, or cool an entire atomic ensemble. Because the cold atoms do work against
the optical barrier as it moves, their kinetic energy remains small even as they return to the deep
portion of the potential well. Right panel: schematic representation of the optical set-up showing
the optical trap (red beam), the translational stage and the two beams one way barrier (adapted
from Ref. [13])

2.1.1 The Szilard Engine: Work Production from Information

A Szilard engine has been realized in 2010 by using a single microscopic Brownian
particle in a fluid and confined to a spiral-staircase-like potential shown in Fig. 4
[16]. Driven by thermal fluctuations, the particle performs an erratic up and down
motion along the staircase. However, because of the potential gradient downwards
steps will be more frequent than upwards steps and the particle will on average fall
down. The position of the particle is measured with the help of a CCD camera.
Each time the particle is observed to jump upwards, this information is used to
insert a potential barrier that hinders the particle to move down. By repeating this
procedure, the average particle motion is now upstairs and work is done against
the potential gradient. By lifting the particle mechanical work has therefore been
produced by gathering information about its position. This is the first example of a
device that converts information into energy for a system coupled to a single thermal
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Fig. 4 Experimental realization of Szilard’s engine. (a) A colloidal particle in a staircase potential
moves downwards on average, but energy fluctuations can push it upwards from time to time. (b)
When the demon observes such an event, he inserts a wall to prevent downward steps. By repeating
this procedure, the particle can be brought to move upwards, performing work against the force
created by the staircase potential. In the actual experiment, the staircase potential is implemented
by a tilted periodic potential and the insertion of the wall is simply realized by switching the
potential, replacing a minimum (no wall) by a maximum (wall) (adapted from Ref. [16])

environment. However there is not a contradiction with the second law because
Sagawa and Ueda formalized the idea that information gained through microlevel
measurements can be used to extract added work from a heat engine [17]. Their
formula for the maximum extractable work is:

〈Wmax〉 = −�F + kB T 〈I 〉 (1)

where �F is the free energy difference between the final and initial state and the
extra term represents the so-called mutual information I . In absence of measurement
errors this quantity reduces to the Shannon entropy : I = −∑

k P (�k) ln[P(�k)],
where P(�m) is the probability of finding the system in the state �k . Then in the
specific case of the previously described staircase potential [16]: I = −p ln p −
(1 − p) ln p where p is the probability of finding the particle in a specific region.
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In this context the Jarzynski equality (see “Appendix 1: Stochastic Thermody-
namics and Information Energy Cost”) also contains this extra term and it becomes:

〈exp(−βW + I )〉 = exp(−β�F) (2)

which leads to

〈W 〉 ≥ �F − kBT 〈I 〉 (3)

Equations (2) and (3) generalize the second law of thermodynamics taking into
account the amount of information introduced into the system [5, 18]. Indeed Eq. (3)
indicates that thanks to information the work performed on the system to drive it
between an initial and a final equilibrium states can be smaller than the free energy
difference between the two states. Equation (2) has been directly tested in a single
electron transistor [19].

2.1.2 The Autonomous Maxwell Demon Improves Cooling

An autonomous Maxwell demon using a local feedback mechanism allows an
efficient cooling of the system [20, 21]. The device, whose principle is sketched
in Fig. 5a, is composed by a SET (Single Electron Transistor) formed by a small
normal metallic island connected to two normal metallic leads by tunnel junctions,
which permit electron transport between the leads and the island. The SET is biased
by a potential V and a gate voltage Vg , applied to the island via a capacitance,
controls the current Ie flowing through the SET. The island is coupled capacitively
with a single electron box which acts as a demon which detects the presence of
an electron in the island and applies a feedback. Specifically when an electron
tunnels to the island, the demon traps it with a positive charge (panels 1 and 2).
Conversely, when an electron leaves the island, the demon applies a negative charge
to repel further electrons that would enter the island (panels 3 and 4). This effect
is obtained by designing the electrodes of the demon in such a way that when an
electron enters the island from a source electrode, an electron tunnels out of the
demon island as a response, exploiting the mutual Coulomb repulsion between the
two electrons. Similarly, when an electron enters to the drain electrode from the
system island, an electron tunnels back to the demon island, attracted by the overall
positive charge. The cycle of these interactions between the two devices realizes
the autonomous demon, which allows the cooling of the leads. In the experimental
realization presented in [20], the leads and the demon were thermally insulated,
and the measurements of their temperatures is used to characterize the effect of
the demon on the device operation. In Fig. 5b we plot the variation of the leads
temperatures as a function of ng ∝ Vg when the demon acts on the system. We
clearly see that around ng = 1/2 the two leads are both cooled of 1 mK at a mean
temperature of 50 mK. This occurs because the tunneling electrons have to take the
energy from the thermal energy of the leads, which, being thermally isolated, cool
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Fig. 5 (a) Principle of the experimental realization of the autonomous Maxwell demon. The
horizontal top row schematizes a Single Electron Transistor. Electrons (blue circle) can tunnel
inside the central island from the left wall and outside from the right wall. The demon watches
at the state of the island and it applies a positive charge to attract the electrons when they tunnel
inside and they repels them when they tunnel outside. The systems cools because of the energy
released toward the heat bath by the tunneling events and the presence of the demon makes the
cooling processes more efficient. The energy variation of the processes is negative because of
the information introduced by the demon. (b) The measured temperature variations of the left
(blue line) and right (green line) leads as a function of the external control parameter ng when the
demon is active and the bath temperature is 50 mK. We see that at the optimum value ng = 1/2
both leads are cooled of about 1 mK and the current Ie flowing through the SET (black line) has
a maximum. At the same time in order to processes information the temperature of the demon
(red line) increases of a few mK . (c) The same parameter of the panel (b) are measured when the
demon is not active. We see that the demon temperature does not change, whereas both leads are
now heated by the current Ie (adapted from Ref. [20])

down. This increases the rate at which electrons tunnel against Coulomb repulsion,
giving rise to increased cooling power. At the same time the demon increases its
temperature because it has to dissipate energy in order to process information, as
discussed in Ref. [22]. Thus the total (system+demon) energy production is positive.
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The coupling of the demon with the SET can be controlled by a second gate which
acts on the single electron box. In Fig. 5c we plot the measured temperatures when
the demon has been switched off. We clearly see that in such a case the demon
temperature does not change and the two electrodes are heating up because of the
current flow. This is the only example which shows that under specific conditions an
autonomous local Maxwell demon, which does not use the external feedback, can
be realized.

2.2 Experiments on Landauer’s Principle

The experiments in the last section show that one can extract work from information.
In the rest of this section we will discuss the reverse process, i.e. the energy
needed to erase information. By applying the second law of thermodynamics,
Landauer demonstrated that information erasure is necessarily a dissipative process:
the erasure of one bit of information is accompanied by the production of at least
kBT ln(2) of heat into the environment. This result is known as Landauer’s erasure
principle. It emphasizes the fundamental difference between the process of writing
and erasing information. Writing is akin to copying information from one device to
another: state left is mapped to left and state right is mapped to right, for example.
This one-to-one mapping can be realized in principle without dissipating any heat
(in statistical mechanics one would say that it conserves the volume in phase space).
By contrast, erasing information is a two-to-one transformation: states left and right
are mapped onto one single state, say right (this process does not conserve the
volume in phase space and is thus dissipative).

Landauer’s original thought experiment has been realized for the first time in
a real system in 2011 using a colloidal Brownian particle in a fluid trapped in
a double-well potential produced by two strongly focused laser beams [23, 24].
This system has two distinct states (particle in the right or left well) and may thus
be used to store one bit of information. The erasure principle has been verified
by implementing a protocol proposed by Bennett and illustrated in Fig. 6. At the
beginning of the erasure process, the colloidal particle may be either in the left or
right well with equal probability of one half. The erasure protocol is composed of
the following steps: (1) the barrier height is first decreased by varying the laser
intensity, (2) the particle is then pushed to the right by gently inclining the potential
and (3) the potential is brought back to its initial shape. At the end of the process,
the particle is in the right well with unit probability, irrespective of its departure
position. As in the previous experiment, the position of the particle is recorded
with the help of a camera. For a full erasure cycle, the average heat dissipated into
the environment is equal to the average work needed to modulate the form of the
double-well potential. This quantity was evaluated from the measured trajectory
and shown to be always larger than the Landauer bound which is asymptotically
approaches in the limit of long erasure times. However, in order to reach the bound,
the protocol must be accurately chosen because as discussed in Ref. [23] and shown
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Fig. 6 Experimental verification of Landauer’s erasure principle. (a) A colloidal particle is
initially confined in one of two wells of a double-well potential with probability one-half. This
configuration stores one bit of information. (b) By modulating the height of the barrier and (c)
applying a tilt, (d) the particle can be brought to one of the wells with probability one, irrespective
of the initial position. This final configuration corresponds to zero bit of information. In the limit
of long erasure cycles, the heat dissipated during the erasure process can approach, but not exceed,
the Landauer bound indicated by the dashed line (adapted from Ref. [23])

experimentally [25] there are protocols that are intrinsically irreversible no matter
how slow are performed. The way in which a protocol can be optimized has been
theoretically solved in Ref. [26] but the optimal protocol is not often easy to apply
in an experiment.

2.3 Other Experiments on the Physics of Information

By having successfully turned gedanken into real experiments, the above four sem-
inal examples provide a firm empirical foundation to the physics of information and
the intimate connection existing between information and energy. This connection
is reenforced by the relationship between the generalized Jarzinsky equality [27]
and the Landauer bound which has been proved and tested on experimental data in
Ref. [24] and shortly summarized in the “Appendix 1: Stochastic Thermodynamics
and Information Energy Cost” of this chapter .

A number of additional experiments have verified the erasure principle in various
systems [28–34]. The latter include an electrical RC circuit [28] and a feedback trap
[30, 31]. In addition, Ref. [32] has studied the symmetry breaking, induced in the
probability distribution of the position of a Brownian particle, by commuting the
trapping potential from a single to a double well potential. The authors measured
the time evolution of the system entropy and showed how to produce work from
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information. Finally, experiments on the Landauer bound have been performed
in nano devices, most notably using a single electron box [29] and nanomagnets
[33, 34]. These experiments open the way to insightful applications for future
developments of information technology.

3 Extensions to the Quantum Regime

3.1 Experiments on Quantum Maxwell’s Demon

The experimental investigation of the physics of information has lately been
extended to the quantum regime. The group of Roberto Serra in Sao Paulo has
successfully realized a quantum Maxwell demon in a Nuclear Magnetic Resonance
(NMR) setup [35]. The demon was implemented as a spin-1/2 quantum memory
that acquires information about another spin-1/2 system and employs it to control
its dynamics. Using a coherent measured-based feedback protocol, the demon was
shown to rectify the nonequilibrium entropy production due to quantum fluctuations
and produce useful work. Concretely, the demon gained information about the
system via a complete projective measurement. Based on the outcome of this
measurement, a controlled evolution was applied to the system to balance the
entropy production. Using quantum state tomography to reconstruct the density
matrix ρ of the system at all times, the produced average work 〈W 〉, or equivalently
the mean entropy production 〈�〉 = β(〈W 〉 − �F), was shown to be bounded by
the information gain, 〈�〉 ≤ Igain. The latter quantifies the average information that
the demon obtains by reading the outcomes of the measurement and is defined as
Igain = S(ρ) − ∑

i piS(ρi), where ρi is the state after a measurement which occurs
with probability pi (see Fig. 7).

More recently, a quantum Maxwell demon has been implemented in a circuit
QED system [36]. Here, the demon was a microwave cavity that encodes quantum

Fig. 7 Thermodynamics of a
quantum Maxwell demon.
Verification of the second law
for the nonequilibrium mean
entropy production,
〈�〉 = β(〈W 〉 − �F) ≤ Igain,
in the presence of quantum
feedback as a function of
temperature. The parameter
Igain quantifies the
information gained through
the measurement (adapted
from Ref. [35])
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information about a superconducting qubit and converts that information into work
by powering up a propagating microwave pulse by stimulated emission. The power
extracted from the system was directly accessed by measuring the difference
between incoming and outcoming photons of the cavity. Using full tomography of
the system, the entropy remaining in the demon’s memory was further quantified
and was shown to be always higher that the system entropy decrease, in agreement
with the second law.

In addition in a quantum demon setting a multi-photon optical interferometer
allowed the measure of the extractable work which was used as a thermodynamic
separability criterion to assess the entanglement of two-qubit and three-qubit
systems [37]. An experimental analysis of two-qubit Bell states and three-qubit
GHZ and W states has confirmed that more work can be extracted from an entangled
state than from a separable state. Bounds on the extractable work can therefore be
employed as a useful thermodynamic entanglement witness.

3.2 Experiments on Quantum Landauer’s Principle

Erasure of information encoded in quantum states has been first theoretically consid-
ered by Lubkin [39] and Vedral [40] (see also Ref. [8]). An experimental verification
of the Landauer principle in a quantum setting has been recently reported using a
molecular nanomagnet at a temperature of 1 K [38]. One bit of information was
initially stored in a double-well potential of collective giant spin Sz = ±10 of a
Fe8 molecule. Work for the application of the tilt induced by a transverse magnetic
field was determined via measurements of the magnetic susceptibility. Contrary to
classical erasure which is achieved by decreasing the barrier height, here erasure
was promoted by a thermally activated quantum tunnelling process. As a result,
full erasure can be achieved much faster than in the classical regime. Using the
product of the erasure work and the relaxation time, W · τrel, as a figure of merit for
the energy-time cost of information erasure, this experiment has reached the lower
value to date with W · τrel � 2 × 10−23 erg/bit, as compared to 10−12 erg/bit. s for
the classical experiment with the colloidal particle [23]. This puts the experiment
close to the fundamental limit imposed by the Heisenberg uncertainty relation (see
Fig. 8).

4 Applications

Landauer’s principle applies not only to information erasure but also to all logically
irreversible devices that possess more outputs than inputs. Thus, any Boolean gate
operation that maps several input states onto the same output state, such as AND,
NAND, and OR, has several states which are logically irreversible and will lead
to the dissipation of an amount of heat of kBT ln(2) per processed bit, akin to
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Fig. 8 Energy-time cost of
erasure. The diagram shows
the product of the energy and
the time needed for erasure,
W · τrel, for various systems.
The quantum limit is given by
the Heisenberg uncertainty
relation, E · �t ≥ π�/2. The
Fe8 molecule is currently the
closest to the quantum limit
(red dot) (adapted from
Ref. [38])

the erasure process. As a result, Landauer’s principle has important technological
consequences. Heating laptops are nowadays becoming part of everyday experience.
Heat production in microprocessors used in modern computers is known to be a
major factor hindering their miniaturization, as it gets more and more difficult to
evacuate excess heat when size, and thus surface, is reduced. While the overall
heat dissipated in microchips is steadily decreasing, it still several orders of
magnitude larger than the Landauer limit. However, the switching energy of a
CMOS/FET transistor is predicted to reach the Landauer bound by 2035, indicating
that engineers will soon face a fundamental physical limitation imposed by the
second law of thermodynamics [41, 42]. This is remarkable as kBT ln(2) is about
3.10−21 Joule at room temperature and hence 22 orders of magnitude smaller than
typical energy dissipated on our macroscopic scale. Recently, an experiment has
demonstrated that Maxwell’s demon can generate electric current and power by
rectifying individual randomly moving electrons in small transistors [43].

Man-made computers are not the only existing information processing devices.
Scientists have long realized that living biological cells can be viewed as biochem-
ical information processors that may even outperform our current technology [44].
Cells are, for example, able to reproduce and create copies of themselves, acquire
and process information coming from external stimuli, as well as communicate
and exchange information with other cells. Recently, Landauer’s principle has been
employed to evaluate the energetic cost of a living cell computing the steady-state
concentration of a chemical ligand in its surrounding environment [45]; it has been
argued that it sets strong constraints on the design of cellular computing networks,
as there is a tradeoff between the information processing capability of such a
network and its energetic cost. Another important problem is the investigation of
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ultrasensitive switches in molecular biology. A concrete example is the flagellar
motor of E. coli bacteria that switches from clockwise to counterclockwise rotation
depending on the intracellular concentration of a regulator protein. Switching mech-
anisms are highly complex and not fully understood. A mathematical framework
that models the sensing of the protein concentration by the flagellar motor as a
Maxwell demon has been successfully developed to calculate the rate of energy
consumption needed to both sense and switch, and provide a quantitative description
of the switching statistics [46]. More recent work has focused on the efficiency of
cellular information processing [47], biochemical signal transduction [48], as well
as on cost and precision of Brownian clocks [49] and computational copying in
biochemical systems [50].

Maxwell’s demon is therefore still vibrant 150 years after its inception. Together
with Landauer’s principle, he continues to play a prominent role in modern
research as illustrated by the last examples. Having only very recently become an
experimental science, information physics appears to have a promising future ahead.

Appendix 1: Stochastic Thermodynamics and Information
Energy Cost

When the size of a system is reduced the role of fluctuations (either quantum
or thermal) increases. Thus thermodynamic quantities such as internal energy,
work, heat, and entropy cannot be characterized only by their mean values but
also their fluctuations and probability distributions become relevant and useful to
make predictions on a small system. Let us consider a simple example such as
the motion of a Brownian particle subjected to a constant external force. Because
of thermal fluctuations, the work performed on the particle by this force per unit
time, i.e., the injected power, fluctuates and the smaller the force, the larger is the
importance of power fluctuations [51–53]. The goal of stochastic thermodynamics
is just that of studying the statistical properties of the above-mentioned fluctuating
thermodynamic quantities in systems driven out of equilibrium by external forces,
temperature differences, and chemical reactions. For this reason it has received
in the last twenty years an increasing interest for its applications in microscopic
devices, biological systems and for its connections with information theory[51–53].

Specifically it can be shown that the fluctuations on a time scale τ of the internal
energy �Uτ , the work Wτ and the heat Qτ are related by a first principle like
equation, i.e.

�Uτ = U(t + τ) − U(t) = W̃τ − Qτ (4)

at any time t .
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Furthermore the statistical properties of energy and entropy fluctuations are
constrained by fluctuations theorems which impose bounds on their probability
distributions (for more details see Ref. [51–53]). We summarize in the next section
one of them which can be related to information and to Landuer’s bound.

Estimate the Free Energy Difference from Work Fluctuations

In 1997 [54, 55] Jarzynski derived an equality which relates the free energy
difference of a system in contact with a heat reservoir to the pdf of the work
performed on the system to drive it from A to B along any path γ in the system
parameter space. Specifically, when a system parameter λ is varied from time t = 0
to t = ts , Jarzynski defines for one realization of the “switching process” from A to
B the work performed on the system as

W =
∫ ts

0
λ̇

∂Hλ[z(t)]
∂λ

dt, (5)

where z denotes the phase-space point of the system and Hλ its λ-parametrized
Hamiltonian.1 One can consider an ensemble of realizations of this “switching
process” with initial conditions all starting in the same initial equilibrium state. Then
W may be computed for each trajectory in the ensemble. The Jarzynski equality
states that [54, 55]

exp (−β�F) = 〈exp (−βW)〉, (6)

where 〈·〉 denotes the ensemble average, β−1 = kBT with kB the Boltzmann
constant and T the temperature. In other words 〈exp [−βWdiss]〉 = 1, since we can
always write W = �F +Wdiss where Wdiss is the dissipated work. Thus it is easy to
see that there must exist some paths γ such that Wdiss ≤ 0. Moreover, the inequality
〈exp x〉 ≥ exp 〈x〉 allows us to recover the second principle, namely 〈Wdiss〉 ≥ 0,
i.e. 〈W 〉 ≥ �F .

Landauer Bound and the Jarzynski Equality

We discuss in this appendix the strong relationship between the Jarzynski equality
and the Landauer’s bound. In Box 1 we presented the Landauer’s principle as related
to the system entropy. Let us consider as a specific example the experiment on

1This is a more general definition of work and it coincides with the standard one only if λ is a
displacement (for more details see Ref. [53]).
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the colloidal particle described in Sect. 2.2 [24]. In the memory erasure procedure
which forces the system in the state 0, the entropy difference between the final and
initial state is �S = −kB ln(2). In contrast the internal energy is unchanged by the
protocol. Thus it is natural to await �F = kBT ln(2). However the �F that appears
in the Jarzynski equality is the difference between the free energy of the system in
the initial state (which is at equilibrium) and the equilibrium state corresponding
to the final value of the control parameter: F(λ(τ)) − F(λ(0)). Since the height of
the barrier is always finite there is no change in the equilibrium free energy of the
system between the beginning and the end of the procedure. Then �F = 0, which
implies

〈
e−βWst

〉 = 1. Thus it seems that there is a problem between the Landauer
principle (see Box 1) and the Jarzynski equality of Eq. (6).

Nevertheless Vaikuntanathan and Jarzyski [27] have shown that when there is
a difference between the actual state of the system (described by the phase-space
density ρt ) and the equilibrium state (described by ρ

eq
t ), the Jarzynski equality can

be modified:

〈
e−βWst(t)

〉

(x,t)
= ρeq(x, λ(t))

ρ(x, t)
e−β�F(t) (7)

where 〈.〉(x,t) is the mean on all the trajectories that pass through x at time t .
In the experiment presented in Sect. 2.2, the selection of the trajectories where

the information is actually erased corresponds to fix x to the chosen final well at the
time t = τ . It follows that ρ(0, τ ) is the probability of finding the particle in the
targeted state 0 at the time τ . Indeed because of the very low energy measured in the
protocol thermal fluctuations play a role and the particle can be found in the wrong
well at time τ , i.e. the proportion of success PS of the procedure is equal to ρ(0, τ ).
In contrast the equilibrium distribution is ρeq(0, λ(τ )) = 1/2. Then:

〈
e−βW(τ)

〉

→0
= 1/2

PS

(8)

Similarly for the trajectories that end the procedure in the wrong well (i.e. state 1)
we have:

〈
e−βW(τ)

〉

→1
= 1/2

1 − PS

(9)

Taking into account the Jensen’s inequality, i.e.
〈
e−x

〉 ≥ e−〈x〉, we find that Eqs. (8)
and (9) imply:

〈W 〉→0 ≥ kBT [ln(2) + ln(PS)]
〈W 〉→1 ≥ kBT [ln(2) + ln(1 − PS)]

(10)
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Notice that the mean work dissipated to realize the procedure is simply:

〈W 〉 = PS × 〈W 〉→0 + (1 − PS) × 〈W 〉→1 (11)

where 〈.〉 is the mean on all trajectories. Then using the previous inequalities it
follows:

〈W 〉 ≥ kBT [ln(2) + PS ln(PS) + (1 − PS) ln(1 − PS)] (12)

which is indeed the generalization of the Landauer’s limit for PS < 1. In the limit
case where PS → 1, we have:

〈
e−βW

〉

→0
= 1/2 (13)

Since this result remains approximatively verified for proportions of success close
enough to 100%, it explains why in the experiment we find �Feff ≈ kBT ln(2).

This result is useful because it strongly binds the generalized Jarzynski equality
(a thermodynamic relation) to Landuer’s bound.
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