
Master Complex systems 7 janvier 2020

ADVANCED NONLINEAR PHYSICS

Duration: 3 hours. Problems A and B correspond to the first part of the course, problem C to
the second part. They are all independent of each other. Please use different sheets for writing up
the solution of each problem.

Dictionaries, handwritten notes on the courses and tutorials are allowed. Books as well as
computers, telephones and other electronic devices are forbidden.

A Non convex flux: shock-rarefaction

One considers the nonlinear advection equation:

ut + (u3)x = 0 ⇐⇒ ut + c(u)ux = 0 , where c(u) = 3u2 . (A1)

The initial condition is of the Riemann type:

u(x, 0) =

{
a if x < 0 ,

b if x > 0 ,

where a and b are two constants, with a > 0.

1/ Assume that b > a. Schematically draw the characteristics in the (x, t) plane and sketch the
shape of u(x, t) for t > 0.

2/ Same question for 0 < b < a.

3/ One now considers the situation b < −a/2. In this case, although one can write a shock
condition fulfilling the conservation equation [left equation in (A1)], one cannot fulfill the so called
Lax entropy condition:

c(b) ≤ ṡ(t) ≤ c(a) , (A2)

where s(t) is the position of the shock and ṡ(t) its velocity1.

(a) Show that when b < −a/2 a solution of the type found in question 2/ violates the left
inequality in the Lax condition (A2).

Note: this is a simple, but technical question. You may use the property a3−b3 = (a−b)(a2+
ab + b2). You may also admit the result, remember that, just at threshold, when b = −a/2,
one has c(−a/2) = ṡ and go to the next question.

(b) In this case, one looks for a solution of the shock-rarefaction type: a shock with a spatial
discontinuity of u(x, t) from a to −a/2 attached to a rarefaction wave. Draw the associated
profile u(x, t) and the corresponding characteristics in the (x, t) plane.

1The physical origin of this condition is clear: the shock should be at the meeting of characteristics and cannot
be faster than the fast ones and slower than the slow ones.
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B Nagumo model

We consider here a reaction-diffusion process governed by the equation2

ut = uxx + u(u− a)(1− u) , where a ∈ [0, 1] . (B1)

One looks for a traveling wave solution of the form
u(x, t) = U(x − ct), where c is a positive constant.
One will denote z = x− ct and U ′ = dU/dz.

1/ Write the equation of the corresponding flow in the
(U, V ) phase space where V = U ′. A typical phase
portrait is displayed in the figure at the right.
Identify the 3 equilibrium points. Compute the corre-
sponding Jacobian matrices, and discuss the stability
of these points as a function of the value of the pa-
rameters a and c.
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2/ One looks for a traveling wave solution of (B1) joining the value u = 1 at x→ −∞ to the value
u = 0 at x → +∞. This corresponds to a heteroclinic orbit joining two saddles: it is natural to
expect that it is only realized for particular values of the parameters.

As an educated guess, one looks for an equation for this heteroclinic orbit of the form V =
bU(1− U), where b is a constant. Determine the possible values of b and the corresponding value
of c, imposing that c should be positive.

3/ Give the corresponding explicit expression of the traveling wave solution3 U(z) (choosing the
integration constant so that U(0) = 1/2). Which is the unique possible value of b fulfilling the
expected boundary conditions ?

2This is a version of the Fisher model where the logistic map is modified in order to account for the so called
Allee effect: negative growth for low population densities (lower than a). The physical idea is that at small densities,
animals are less able to find mates.

3Indication:
∫

dU/[U(1 − U)] = ln[U/(1 − U)].
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