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We study the quantum fluctuations in a one-dimensional Bose-Einstein condensate realizing an
analogous acoustic black hole. The taking into account of evanescent channels and of zero modes makes it
possible to accurately reproduce recent experimental measurements of the density correlation function. We
discuss the determination of Hawking temperature and show that in our model the analogous radiation
presents some significant departure from thermality.
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The Hawking effect [1] being of kinematic origin [2] can
be transposed to analogue systems, as first proposed by
Unruh [3]. Among the various platforms that have been
proposed for observing induced or spontaneous analogous
Hawking radiation and related phenomena, the ones for
which the experimental activity is currently the most
intense are surface water waves [4–10], nonlinear light
[11–17], excitonic polaritons [18], and Bose-Einstein con-
densed atomic vapors [19–22].
Because of their low temperature, their intrinsic quantum

nature, and the high experimental control achieved in
these systems, Bose-Einstein condensates (BECs) seem
particularly suitable for studying analogue Hawking effect.
Steinhauer and colleagues have undertaken several studies
of quasiunidimensional configurations, making it possible
to realize analogue black hole horizons in BEC systems, and
made claims of observation of Hawking radiation [20–22].
Their results have triggered the interest of the community
[23–33] and generated a vivid debate [34,35]. One of the
goals of the present Letter is to contribute to this debate, and
to partially close it, at least in what concerns density
correlations around an analogue black hole horizon. A
definite theoretical answer can be obtained thanks to a
remark that had been overlooked in previous works: one
needs to develop the quasiparticle operator on a complete
basis set for properly describing the density fluctuations.
This is achieved in the first part of this Letter, and we apply
this theoretical approach to the analysis of the experimental
results of Ref. [22].
While in general relativity the thermality of the Hawking

radiation is constrained by the laws of black hole thermo-
dynamics, no such general principle is expected to hold for
analogue systems [2]. It is nonetheless commonly accepted
that the spectrum of analogous Hawking radiation only
weakly departs from thermality [36–38], and that all
relevant features of an analogue system can be understood
on the basis of a hydrodynamical, long wavelength
description. However, the phenomenology of analogous

systems provides mechanisms supporting the impossibility
of a perfectly thermal analogue Hawking radiation [39]. In
the second part of this Letter we argue that in the BEC case
we are considering, it is legitimate to determine a Hawking
temperature from the information encoded in the density
correlation function, but we show that some features of the
radiative process at hand significantly depart from thermal-
ity and propose a procedure for confirming our view.
We consider a one-dimensional configuration in which

the quantum field Ψ̂ðx; tÞ is a solution of the Gross-
Pitaevskii equation

iℏ∂tΨ̂ ¼ −
ℏ2

2m
∂2
xΨ̂þ ½gn̂þUðxÞ�Ψ̂: ð1Þ

In this equation m is the mass of the atoms, n̂ ¼ Ψ̂†Ψ̂, and
the term gn̂ describes the effective repulsive atomic
interaction (g > 0). We have studied several external
potentials UðxÞ making it possible to engineer a sonic
horizon, but we only present here the results for a step
function: UðxÞ ¼ −U0ΘðxÞ with U0 > 0. The reason for
this choice is twofold: (i) This potential has been realized
experimentally in Refs. [21,22]; (ii) from the three con-
figurations analyzed in Ref. [31], this is the one that leads to
the signal of quantum nonseparability which is the largest
and the most resilient to temperature effects.
In the spirit of Bogoliubov’s approach, we write the

quantum field as

Ψ̂ðx; tÞ ¼ expð−iμt=ℏÞ½ΦðxÞ þ ψ̂ðx; tÞ�; ð2Þ

where μ is the chemical potential. ΦðxÞ is a classical field
describing the stationary condensate and ψ̂ðx; tÞ accounts
for small quantum fluctuations. Although such a separation
is not strictly valid in one dimension, it has been argued in
Ref. [31] that it constitutes a valid approximation over a
large range of one-dimensional densities. In the case we
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consider, Φ is a solution of the classical Gross-Pitaevskii
equation describing a sonic horizon: the x < 0 profile is
half a dark soliton [40], withΦðx→−∞Þ¼ ffiffiffiffiffi

nu
p

expðikuxÞ,
where nu and Vu ¼ mku=ℏ (> 0) are the upstream asymp-
totic density and velocity, respectively. The downstream
(x > 0Þ flow of the condensate corresponds to a plane
wave: Φðx > 0Þ ¼ ffiffiffiffiffi

nd
p

expðikdx − iπ=2Þ. The asymptotic
upstream and downstream sound velocities are cðu;dÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðu;dÞ=m

p
. The analogous black hole configuration

corresponds to a flow that is asymptotically upstream
subsonic (Vu<cu) and downstream supersonic (ℏkd=m ¼
Vd > cd).
We describe the quantum fluctuations on top of this

classical field within a linearized approach. The relevant
modes are identified by using the asymptotic ingoing (i.e.,
directed towards the acoustic horizon) and outgoing chan-
nels, far from the horizon. As discussed in previous
references [41–45] and recalled in [46], the Bogoliubov
dispersion relation supports a decomposition of ψ̂ onto
three incoming modes that we denote as U, D1, and D2.
For instance, the U mode is seeded by an upstream
incoming wave that we denote as ujin, which propagates
towards the horizon with a long wavelength group velocity
Vu þ cu. It is scattered onto two outgoing transmitted
channels (propagating in the analogue black hole away
from the horizon), which we denote as d1jout and d2jout
with respective long wavelength group velocities Vd þ cd
and Vd − cd (both positive) and one outgoing reflected
channel (propagating away from the horizon, outside of the
analogue black hole, with long wavelength group velocity
Vu − cu < 0). The corresponding three scattering coeffi-
cients are denoted as Sd1;u, Sd2;u, and Su;u. There is also an
upstream evanescent wave (ujeva) that carries no current,
does not contribute to the S matrix, but is important for
fulfilling the continuity relations at x ¼ 0. The situation is
schematically depicted in Fig. 1.
The frequency-dependent boson operators associated to

the three incoming modes U, D1, and D2 are denoted as

b̂U, b̂D1, and b̂D2; they obey the commutation relations
½b̂LðωÞ;b̂†L0 ðω0Þ�¼δL;L0δðω−ω0Þ. In addition, Bose-Einstein
condensation is associated with a spontaneously broken
Uð1Þ symmetry that implies the existence of supplementary
zero modes of the linearized version of (1). As discussed in
Ref. [50], one is lead to introduce two new operators P̂ and
Q̂ accounting for the global phase degree of freedom, and
the correct expansion of the quantum fluctuation field reads

ψ̂ðx; tÞ ¼ −iΦðxÞQ̂þ iqðxÞP̂ þ
Z

∞

0

dωffiffiffiffiffiffi
2π

p
X

L∈fU;D1g

× ½uLðx;ωÞe−iωtb̂LðωÞ þ v�Lðx;ωÞeiωtb̂†LðωÞ�

þ
Z

Ω

0

dωffiffiffiffiffiffi
2π

p ½uD2ðx;ωÞe−iωtb̂†D2ðωÞ

þ v�D2ðx;ωÞeiωtb̂D2ðωÞ�: ð3Þ

In this expression the uL’s and vL’s are the usual
Bogoliubov coefficients (their explicit form is given for
instance in Ref. [44]), and the quantization of the D2 mode
is atypical, as discussed in several previous referen-
ces [41,42,51]. The function qðxÞ is one of the components
of the zero eigenmodes; see [46]. Omitting the contribution
of the zero mode operators P̂ and Q̂ would correspond to
using an incomplete basis set for the expansion of the
quantum fluctuations; in other words, their contribution is
essential for verifying the correct commutation relation
½ψ̂ðx; tÞ; ψ̂†ðy; tÞ� ¼ δðx − yÞ. The operator Q̂ is associated
with the global phase of the condensate. P̂ is the canonical
conjugate operator (½Q̂; P̂� ¼ i) that typically appears in the
quadratic Hamiltonian Ĥquad describing the dynamics of the

quantum fluctuations with a P̂2 contribution, while Q̂ does
not [50,52,53]. This means that the degree of liberty
associated with the broken symmetry has no restoring
force—as expected on physical grounds—and that the zero
excitationquantumstate jBHidescribing the analogous black
hole configuration verifies P̂jBHi¼0 and b̂LðωÞjBHi¼
0 for L ∈ fU;D1; D2g.
Once the appropriate expansion (3) has been performed,

and the correct quantum state jBHi has been identified, one
can compute the density correlation function,

G2ðx; yÞ ¼ h∶n̂ðx; tÞn̂ðy; tÞ∶i − hn̂ðx; tÞihn̂ðy; tÞi
≃ΦðxÞΦ�ðyÞhψ̂†ðx; tÞψ̂ðy; tÞi

þΦðxÞΦðyÞhψ̂†ðx; tÞψ̂†ðy; tÞi þ c:c: ð4Þ

In this equation, the symbol ∶ denotes normal ordering and
the final expression is the Bogoliubov evaluation of G2,
encompassing the effects of quantum fluctuations at lead-
ing order. At zero temperature, the average h� � �i in Eq. (4)
is taken over the state jBHi. Although this state is
thermodynamically unstable and cannot support a thermal

FIG. 1. Sketch of the different channels contributing to the
incoming quantum modes U, D1, and D2. In each plot the
background BEC propagates from left to right, the white region
corresponds to the upstream subsonic flow, the gray one to the
interior of the analogous black hole (downstream supersonic
flow), and the region of the horizon is represented by the dark
gray shaded interface. The Hawking channel and its partner are
labeled ujout and d2jout. The d1jout channel is a companion
propagating away from the horizon, inside the analogous black
hole region. Each mode (U, D1, and D2) is seeded by an ingoing
channel (ujin, d1jin, and d2jin) whose group velocity is directed
towards the horizon.
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distribution, finite temperature effects can still be included
as explained for instance in Refs. [31,41,42].
In 2008 a collaboration between teams from Bologna

and Trento [54,55] pointed out that, in the presence of a
horizon, G2 should exhibit nonlocal features resulting
from correlations between the different outgoing chan-
nels, in particular, between the Hawking quantum and its
partner (ujout − d2jout correlation in our terminology).
The importance of this remark lies in the fact that, due to
the weak Hawking temperature TH (at best one fourth
of the chemical potential [44]), the direct Hawking
radiation is expected to be hidden by thermal fluctua-
tions, whereas density correlations should survive temper-
ature effects in typical settings [42]. This idea has been
used to analyze the Hawking signal in Ref. [22], where a
stationary correlation pattern was measured in the vicinity
of the horizon. In this region, it is important for a
theoretical treatment to account for the position depend-
ence of the background density and to include the
contribution of the evanescent channels in the expansion
(3). We also checked that it is essential to take into
account the contribution of the zero modes to obtain a
sensible global description of the quantum fluctuations.
The corresponding two-dimensional plot of the density
correlation pattern is represented in Fig. 2. G2 has been
computed at zero temperature, for Vd=cd ¼ 2.90, which
imposes Vu=cu ¼ 0.59 [44,46]. This value is chosen to
reproduce the experimental configuration studied in

Ref. [22]. The dotted line in the upper left quadrant
of Fig. 2 marks the anticorrelation curve that results
from the Hawking-partner (ujout−d2jout) and Hawking-
companion (ujout − d1jout) correlations. We find that
these two correlation lines, which separate at large
distance from the horizon [42,44,55], merge close to
the horizon, as also observed experimentally.
A precise comparison of our results with experiment

can be achieved by following the procedure used in
Ref. [22], which consists in averaging G2 over the region
inside the green rectangle represented in Fig. 2. One defines
a local coordinate x00 that is orthogonal to the locus of the
minima of G2, and one plots the averaged G2 (denoted as
Gav

2 ) as a function of the variable x
00. This is done in Fig. 3.

We insist that the good agreement between our approach
and the experimental results can only be achieved through a
correct description of the quantum fluctuations—Eq. (3)—
including the contribution of zero modes and evanescent
channels.
It has been noticed by Steinhauer [56] that the determi-

nation of G2ðx; x0Þ in the upper left (or lower right)
quadrant of the ðx; x0Þ plane makes it possible to evaluate
the Hawking temperature thanks to the relation

Su;d2ðωÞS�d2;d2ðωÞ ¼ hĉUðωÞĉD2ðωÞi

¼ S−1
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nundLuLd
p

Z
0

−Lu

dx
Z

Ld

0

dx0e−iðkHxþkPx0ÞG2ðx; x0Þ:

ð5Þ

In this expression S is the matrix that describes the
scattering of the different channels onto each other, and
S0ðωÞ ¼ ðukH þ vkHÞðukP þ vkPÞ is the static structure
factor, where the uk’s and the vk’s are the standard
Bogoliubov amplitudes of excitations of momentum k
(see, e.g., Refs. [57,58]). The ĉL’s are outgoing modes
related to the incoming ones by the S matrix [42]

FIG. 2. Intensity plot of the dimensionless correlation function
ξðnundÞ−1=2G2ðx; x0Þ for x and x0 close to the horizon. The
parameter ξ ¼ ffiffiffiffiffiffiffiffiffi

ξuξd
p

is the geometrical mean of the healing
lengths ξu and ξd, where ξðu=dÞ ¼ ℏðmgnðu;dÞÞ−1=2. The line of
anticorrelation in the upper left and lower right quadrants
corresponds to the merging close to the horizon of the
Hawking-partner (ujout − d2jout) and Hawking-companion
(ujout − d1jout) correlations. The green rectangle delimits the
region where we average G2 for comparison with experimental
data (see Fig. 3).

FIG. 3. Red solid line: zero temperature density correlation
function Gav

2 ðx; x0Þ plotted as a function of x00. The blue dots with
error bars are the results of Ref. [22]. The orange solid line is the
finite temperature result for kBT ¼ 0.2gnu, i.e., T ≃ 1.9TH .
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0
B@

ĉU
ĉD1

ĉ†D2

1
CA ¼

0
B@

Su;u Su;d1 Su;d2
Sd1;u Sd1;d1 Sd1;d2
Sd2;u Sd2;d1 Sd2;d2

1
CA

0
B@

b̂U

b̂D1

b̂†D2

1
CA: ð6Þ

The Fourier transform of G2 in Eq. (5) is performed at
fixed ω, for wave vectors kHðωÞ and kPðωÞ, which are the
momenta relative to the condensate of a Hawking quantum
and its partner (ujout and d2jout channels in our terminol-
ogy) having an energy ℏω in the laboratory frame. The
integration region ½−Lu; 0� × ½0; Ld� lies in the upper left
quadrant of Fig. 2, and should be adapted for each value of
ω in such a way that [31,59]

Lu

jVg;HðωÞj
¼ Ld

Vg;PðωÞ
; ð7Þ

where Vg;HðωÞ [Vg;PðωÞ] is the group velocity of a
Hawking quantum (of a partner) of energy ℏω. We have
checked that once the prescription (7) is fulfilled, for-
mula (5) is very well verified [46]. It is then intriguing to
observe that, while theory and experiment both agree on
the value of G2 in real space (Fig. 3), they do not for the
correlation hĉUðωÞĉD2ðωÞi: as can bee seen in Fig. 4, the
agreement is restricted to the low energy regime. This is
the bluish region in the figure, which corresponds to a
domain where the ratio kHðωÞ=kPðωÞ is equal to its long
wavelength value ðcu − VuÞ=ðcd − VdÞ with an error less
that 10%.
Let us discuss this discrepancy in some detail. The

interest of Eq. (5) lies in the fact that the scattering matrix

coefficient Su;d2 is the equivalent of the Hawking β
parameter: its squared modulus is expected to behave as
a Bose thermal distribution nTHðωÞ with an effective
temperature TH, the Hawking temperature [1]. In an
analogous system such as ours, because of dispersive
effects, this equivalence is only valid in the long wave-
length limit, typically in the blue region of Fig. 4. This
suggests a possible manner to reconcile theory and experi-
ment: we assume that the ratio kHðωÞ=kPðωÞ is ω inde-
pendent and equal to its low energy value, ðcu − VuÞ=
ðcd − VdÞ (this value is denoted as tan θ in Refs. [21,22]).
We also assume that, in the scattering process schematically
illustrated in Fig. 1 for theD2mode, the companion d1jout
channel plays a negligible role, so that the jSd1;d2j2 term can
be omitted in the normalization condition jSd2;d2j2 ¼ 1þ
jSu;d2j2 þ jSd1;d2j2 of the S matrix (see, e.g., Ref. [42]).
Then one obtains

jSu;d2j2jSd2;d2j2 ≃ nTHðωÞ½1þ nTHðωÞ�: ð8Þ

Using the experimental values from Ref. [22] for Vα and cα
(α ∈ fu; dg) and for the Hawking temperature TH leads,
within approximation (8), to the blue curve of Fig. 4 that
agrees with the results published in Ref. [22] (blue dots
with error bars). It is important to note that this procedure is
self-consistent in the following sense: If one performs
numerically the Fourier transform (5) over a domain that,
instead of fulfilling the relation (7), verifies the ω-inde-
pendent condition Lu=jVu − cuj ¼ Ld=ðVd − cdÞ, appro-
priate in a nondispersive, long wavelength approximation,
one obtains a result (not shown for legibility, but see [46])
close to a thermal spectrum, i.e., to the blue curve in Fig. 4.
Although this procedure is self-consistent, it is not fully
correct, as can be checked by the fact that the resulting
value of hĉUðωÞĉD2ðωÞi only agrees with the exact one (red
curve in Fig. 4) in the long wavelength limit. Stated
differently: this procedure leads to the erroneous conclu-
sion that the radiation is fully thermal. However, since all
approaches coincide in the long wavelength regime (blue
colored region of Fig. 4), they all lead to the correct
determination of the Hawking temperature. For a flow with
Vd=cd¼2.9, our theoretical treatment yields kBTH=ðgnuÞ¼
0.106, whereas the experimental value reported for this
quantity in Ref. [22] is 0.124 (corresponding to a Hawking
temperature TH ¼ 0.35 nK).
In conclusion, our work sheds a new light on the study of

quantum correlations around an analogous black hole
horizon, and on the corresponding Hawking temperature.
From a theoretical point of view, we argue that the
contribution of zero modes is essential for constructing a
complete basis set necessary to obtain an accurate descrip-
tion of the quantum fluctuations. This claim is supported by
the excellent agreement we obtain when comparing our
results with recent experimental ones. On the experimental
side, we substantiate the determination of the Hawking

FIG. 4. Hawking-partner correlation signal represented as a
function of the dimensionless energy. The red solid curve is the
theoretical result from Eq. (5). The dots with error bars are from
Ref. [22]. They are obtained after processing the experimental
result for G2 by means of the Fourier transform (5). The blue
region corresponds to a domain where the ratio of Hawking and
partner wave vectors is equal to its long wavelength value within
a 10% accuracy. The blue solid curve is the theoretical result
obtained by neglecting dispersive effects in Eq. (5) and discarding
the contribution of the companion d1jout channel (see the text).
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temperature presented in Ref. [22], although we find that
the Hawking spectrum is not thermal for all wavelengths.
We identify a natural but unfounded procedure for analyz-
ing the information encoded in G2ðx; x0Þ that leads to the
opposite conclusion; we show that, within our approach, an
alternative analysis of the correlation pattern accurately
accounts for nonhydrodynamical effects. It would thus be
interesting to reanalyze the data published in Ref. [22] to
investigate if the windowing (7) we propose for Eq. (5)
modifies the experimental conclusion for the Hawking-
partner correlation signal and confirms the departure from
thermality we predict.

We acknowledge fruitful discussions with I. Carusotto,
M. Lewenstein, and J. Steinhauer, whom we also thank for
providing us with experimental data.
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THE BACKGROUND FLOW AND DENSITY
PROFILES

We recall here the properties of the background tran-
sonic flow Φ(x) realizing an analogue black hole horizon
[1]. Φ(x) is solution of the classical stationary Gross-
Pitaevskii equation

µΦ = − ~2

2m
∂2
xΦ + [g n(x) + U(x)] Φ , (S1)

with n(x) = |Φ(x)|2 and U(x) = −U0Θ(x), where Θ is
the Heaviside step function and U0 > 0. There exists a
stationary solution of this equation which is half a dark
soliton glued at x = 0 to a plane wave [2]:

Φ(x) =

{√
nu exp(ikux)χu(x) ≡ Φu(x) for x ≤ 0,
√
nd exp(ikdx− iπ/2) ≡ Φd(x) for x ≥ 0.

(S2)
where

χu(x) = cos θ tanh(x cos θ/ξu)− i sin θ. (S3)

In these equations nu and nd are the asymptotic up-
stream and downstream densities, ξu = ~(mgnu)−1/2 is
the upstream healing length and sin θ = Vu/cu where Vu
and cu = ~/(mξu) are the asymptotic flow and sound
velocities. The downstream flow and sound velocity are
Vd = ~kd/m and cd =

√
gnd/m. The chemical potential

µ in Eq. (S1) verifies

µ = 1
2mV

2
u + gnu = 1

2mV
2
d + gnd − U0. (S4)

The matching conditions at x = 0 impose

Vd
Vu

=
nu
nd

=

(
cu
Vu

)2

=
Vd
cd
. (S5)

Hence, in this configuration, which we denote as “wa-
terfall”, the upstream and downstream Mach numbers
(Vu/cu and Vd/cd) are not independent. We chose to
take the same downstream Mach number than in the
experiment [3]: Vd/cd = 2.9. From (S5) this imposes
Vu/cu = 0.59, different from the experimental value
(Vu/cu|exp = 0.44). This difference indicates that the
experiment is not exactly in a waterfall configuration.
This is probably due to the fact that the experimental
external potential is not exactly a Heaviside function.
It could also be that the experimental flow has not yet

reached a fully stationary state. This difference does not
preclude a very good agreement with the experimental
density correlation pattern (as observed in Fig. 3 of the
main text); however, it explains why we cannot repro-
duce with the same accuracy the behavior of the density
correlation function G2(x, x′) in all the quadrants of Fig.
2 of the main text: the d1|out − d2|out correlation line
(upper right quadrant of Fig. 2 of the main text) does
not exactly superimposes with the experimental one. We
take the same value of Vd/cd as in the experiment, be-
cause this is the choice which gives the better account of
experiment in the upper left quadrant of Fig. 2 of the
main text, which is the core of the discussion of Ref. [3].

THE BOGOLIUBOV-DE GENNES EQUATIONS

In this section we present the construction of expan-
sion (3) of the main text. The first part of the section is
devoted to the definition of the usual Bogoliubov modes,
and is an abridged version of a discussion which can be
found in Ref. [1]; the second part concerns the construc-
tion of the zero modes and comprises a general discus-
sion (from Refs. [4–6]) followed by the explicit form of
these modes in the situation we consider [Eqs. (S14) and
(S15)].

The simplest way to set up an eigen-basis set for ex-
panding the quantum fluctuation operator is to treat
ψ̂ as a small classical field, denoted as ψ, with
exp(−iµt/~)(Φ + ψ) solution of the classical version of
Eq. (1) of the main text. One then looks for a normal
mode of the form

ψ(x, t) = u(x, ω)e−iωt + v∗(x, ω)eiωt (S6)

For such a normal mode, the linearization of the Gross-
Pitaevskii equation leads to the so-called Bogoliubov-
de Gennes equation which reads LΞ = ~ω Ξ, where
Ξ(x, ω) = (u(x, ω) , v(x, ω))T and

L =

(
H Φ2(x)

−(Φ∗(x))2 −H

)
, (S7)

with H = ~2

2m∂
2
x + U(x) − 2gn(x) − µ. Far upstream,

the background density being constant, the eigen-modes
behave as plane waves of the form

Ξ(x, ω) =

(
u(x, ω)
v(x, ω)

)
−→

x→−∞
eiqx

(
exp(ikux)Uω

exp(−ikux)Vω

)
(S8)
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where Uω and Vω are complex constants, their explicit
expression can be found in Ref. [1], together with the
general expression of u(x, ω) and v(x, ω). The same type
of behavior is observed downstream. The corresponding
dispersion relations are of the form

(ω − Vαq)2
= ω2

B(q), (S9)

where α = u far upstream and α = d downstream and

ωB(q) = cαq
√

1 + q2ξ2
α/4 (S10)

is the Bogoliubov dispersion relation. The asymptotic
upstream and downstream dispersion relations are rep-
resented in Fig. SF1. One sees in this figure that, for
each value of ω, there exists three incoming channels,
i.e., three plane waves which group velocity is directed
towards the horizon. One of these plane waves lies in the
upstream region, we denote it as u|in, the two others lie
in the downstream region: d1|in and d2|in.

Once the eigen-modes Ξ has been found for all non-
zero frequencies, the eigen-basis needs to be completed
with the addition of zero modes for which ω = 0. First,
it is clear that L admits a simple zero mode:

LP = 0 , where P =

(
Φ(x)
−Φ∗(x)

)
. (S11)

The physical interpretation of the existence of this zero
mode is the following: it results from the U(1) symmetry
breaking of the condensate wave function and it is a col-
lective mode with no restoring force, which is sometimes
denoted as a spurious mode [4, 5]. Indeed, if Φ is a sta-
tionary solution of the Gross-Pitaevskii equation, for any
arbitrary constant θ, Φθ(x) = Φ(x) eiθ is also a station-
ary solution. Φθ tends continuously to Φ when θ → 0,
hence δΦ = Φθ −Φ ' i θΦ is a solution of the linearized
Gross-Pitaevskii equation. This immediately translates
into the fact that (δΦ, δΦ∗)

T
= i θP is a zero mode of L.

Another mode of excitation corresponds to addition of
particles to the system [6]. By differentiating the Gross-
Pitaevskii equation with respect to the number of parti-
cles N , we find the mode Q associated to P:

Q =

(
q(x)
−q∗(x)

)
, with LQ = −i d µ

dN
P, (S12)

where µ is the chemical potential of the condensate. The
two modes Q and P complete the eigen-basis of L, or,
more precisely, make it possible to write L in a Jordan
normal form. The field operator ψ̂ which describes the
quantum fluctuations can be now expanded over the scat-

FIG. SF1: Graphical representation of the dispersion rela-
tion, i.e., of the solutions of Eq. (S9) in the far upstream
(upper plot) and far downstream (lower plot) regions. In the
upstream region, for a given ω (represented by a horizontal
dashed line) one finds two real solutions of Eq. (S9) which
we denote as qu|in and qu|out. The intercept of the horizon-
tal dashed line with the corresponding dispersion relation is
marked with a colored dot labeled u|in or u|out, as appro-
priate. The situation is different downstream: there exists a
threshold energy below which Eq. (S9) admits 4 real solutions
which we denote as qd1|in, qd1|out, qd2|in and qd2|out. Both d2
solutions disappear above the threshold. All these solutions
correspond to the channels identified in the main text. They
are denoted as “in” (“out”) is their group velocity – schemat-
ically represented by an arrow – is directed towards (away
from) the horizon.

tering modes and the zero modes:

ψ̂(x, t) =− iΦ(x)Q̂+ iq(x)P̂ +

∫ ∞
0

dω√
2π

∑
L∈{U,D1}

[uL(x, ω)e−iωt b̂L(ω) + v∗L(x, ω)eiωt b̂†L(ω)]

+

∫ Ω

0

dω√
2π

[uD2(x, ω)e−iωt b̂†D2(ω)

+ v∗D2(x, ω)eiωt b̂D2(ω)].

(S13)



3

In this expression the uL’s and the vL’s are linear combi-
nations of terms of the form (S8) involving the S-matrix
(see Refs. [1, 7]), and Q̂ is the phase operator of the con-
densate, while P̂ corresponds to the fluctuations of the
number of particles. The quadratic Hamiltonian Ĥquad

describing the linear dynamics of the elementary exci-
tations of the system contains a term P̂2/2Meff , where
1/Meff = dµ/dN [4–6]. Thus, the operator P̂ can be
identified with a momentum operator and Meff with an
effective mass. In addition, the commutation relation
[Q̂, Ĥquad] = i P̂/Meff indicates that the phase operator

Q̂(t) is not stationary and deviates from its initial value
Q̂(t = 0). This is the phenomenon of phase diffusion,
see, e.g, Ref. [8].

In our case, the system is infinite: no phase diffusion
can occur and Meff → ∞. The physical interpretation
of this phenomenon is that the inertia associated to the
change of the global phase of a system of infinite num-

ber of particles is infinite. Therefore, the mode Q is also
solution of LQ = 0 [see Eq. (S12) with dµ/dN → 0].
Moreover, the operator L has a different expression for
x < 0 and x > 0, just because Φ does [see Eq. (S2)]. As
a result, L admits zero energy eigen-states (ω = 0) which
have different forms in the upstream and the downstream
region. The modes P and Q should be written as linear
combinations of these zero modes. In particular, in the
upstream region the density profile is a portion of dark
soliton [see Eq. (S2)], and the expression of the corre-
sponding zero modes can be found, e.g., in Ref. [9]. One
obtains

P(x < 0) =

(
Φu(x)
−Φ∗u(x)

)
and P(x > 0) =

(
Φd(x)
−Φ∗d(x)

)
,

(S14)
while

Q(x < 0) = i
√
nuA

[
cos θ tanh(x cos θ/ξu)− Λu

2

]2

eΛu x/ξu

(
ei ku x

e−i ku x

)
and

Q(x > 0) = B

(
Φd(x)
−Φ∗d(x)

)
+ C eiK0 x/ξd

(
[K0/2−Md] Φd(x)
[K0/2 +Md] Φ∗d(x)

)
+ C e−iK0 x/ξd

(
[−K0/2−Md] Φd(x)
[−K0/2 +Md] Φ∗d(x)

)
,

(S15)

with Λu = 2
√

1−M2
u = 2 cos θ and K0 = 2

√
M2
d − 1,

where Mu and Md are the upstream and downstream
Mach numbers (Mα = Vα/cα). In expression (S15), the
normalization factors A, B and C are dimensionless real
numbers which are determined by imposing the matching
conditions at x = 0 and the commutation relation be-
tween Q̂ and P̂: [Q̂, P̂] = i, or equivalently, Q† σz P = i,
where σz is the third Pauli matrix.

FOURIER TRANSFORM OF THE DENSITY
CORRELATION FUNCTION

The computation of the Fourier transform of the G2

function gives access to the correlation signal between
the Hawking pair [kH(ω), kP(ω)] in momentum space for
a fixed energy ~ω in the lab frame, see Eq. (5) of
the main text. The wave vectors kH = qu|out(ω) and
kP = −qd2|out(ω) are the momenta relative to the con-
densate of the Hawking quantum and of its partner (see
the discussion in Ref. [7]). We define

I(ω) =
1√

nu nd Lu Ld
×∫ 0

−Lu

dx

∫ Ld

0

dx′ e−i(kH(ω) x+kP(ω) x′)G2(x, x′),

(S16)

where G2 is the density correlation function [Eq. (4)
of the main text]. The quantities nu and nd are the
asymptotic densities in both regions (when x→ −∞ and
x′ → +∞).

As proved in Refs. [7, 10], the integration in Eq. (S16)
should be performed over a domain [−Lu, 0] × [0, Ld]
which is adapted to each Hawking pair [kH(ω), kP(ω)]:
one should verify

Lu Vg,P(ω) = Ld |Vg,H(ω)| , (S17)

where

Vg,I(ω) ≡ ∂ω

∂k

∣∣∣∣
kI

, I ∈ {H, P}. (S18)

This condition has a physical interpretation: the time
taken by an elementary excitation pertaining to the
Hawking channel to go from the horizon to the center
of the upstream window [−Lu, 0] has to be the same
as the time taken by its partner to go from the hori-
zon to the center of the downstream window [0, Ld].
The Fourier transform can be calculated theoretically for
Lu, Ld → +∞ [still verifying (S17)] and this leads to Eq.
(5) of the main text, i.e.:

I(ω) = S0 Sud2(ω)S∗d2d2(ω). (S19)

Fig. SF2 compares the numerical computation of the
Fourier transform (S16) (black dots), when the choice of
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the window [−Lu, 0] × [0, Ld] respects condition (S17),
with the theoretical expectation [left hand side of Eq.
(S19), red curve in the figure]. We observe a nice agree-
ment, except, of course, for long wavelengths where the
validity condition of Eq. (S19): kHLu and kPLd � 1 is
violated.

The choice of the window is crucial; for example, the
orange triangles in Fig. SF2 are obtained for another
prescription which corresponds to the long wavelength
limit of Eq. (S17):

Lu Vg,H(0) = Ld |Vg,P(0)| , (S20)

where Vg,H(0) = Vu − cu and Vg,P(0) = Vd − cd are the
group velocities of the Hawking quantum kH and its part-
ner kP in the long wavelength limit. As expected, the re-
sult deviates from the evaluation which uses the correct
condition (S17).

To recover the numerical result obtained by using the
prescription (S20), we use the following approximations:
(i) we assume that kH(ω) = ω/(Vu − cu) and kP(ω) =
ω/(Vd− cd), as if we were in the dispersionless regime for
all frequencies ω, and (ii) we also assume that Sud2(ω) '
nTH(ω), with nTH(ω) (the Bose thermal distribution at
the Hawking temperature) and that |Sud2|2 |S∗d2d2|2 '
nTH

(ω)(1 + nTH
(ω)) [Eq. (8) of the main text]. Then,

we compute expression (S19) using both approximations
(i) and (ii): we obtain the dark blue curve in Fig. SF2
which agrees well with the orange triangles.

In conclusion, one may numerically analyse the infor-
mation contained in the density distribution G2 by using
Eq. (S16) within the oversimplified long wavelength pre-
scription (S20) and still get an equality between the two
terms of Eq. (S19). However, this approach could lead
to the erroneous conclusion that the analogous Hawking
radiation is thermal for all frequencies ω. In our sys-
tem, where dispersion plays an important role, only the
result represented by the red curve in Fig. SF2 should
be considered as correct, and it clearly deviates from the
thermal result (dark blue curve in Fig. SF2).

EFFECT OF TEMPERATURE ON THE
DENSITY CORRELATION FUNCTION

In this section, we discuss how to account for temper-
ature effects in our system. We first note that the sta-
tionary configuration we consider is thermodynamically
unstable, and cannot support a thermal state. However,
a thermal-like occupation of the states can be defined
as detailed for instance in Ref. [7]. Previous studies
[11] have already highlighted the robustness of the cor-
relation signal, even if the temperature of the system is
greater than the Hawking temperature. Our results con-
firm this point, as shown in Fig. 3 of the main text
(the orange solid line is the finite temperature result for
kB T = 0.2 gnu ' 1.9TH). At finite temperature, the

0.0 0.5 1.0
h̄ ω/g nu

0.00

0.01

|I
(ω

)|2

FIG. SF2: Fourier transform of the G2 function, denoted as
I(ω) and given by expression (S16), plotted as a function of
ω. The red curve indicates the theoretical expectation: right
hand side of Eq. (S19). The black dots are obtained by the
numerical computation of the Fourier transform (S16) with
condition (S17). The orange triangles are also obtained nu-
merically, but for a different choice of window corresponding
to prescription (S20). The dark blue curve is obtained from
(S19) but in the long wavelength approximation, where the
analogous Hawking signal is thermal.

density correlation function G2(x, x′) splits in two parts
[1, 11]:

G2(x, x′) = G0
2(x, x′) +GT2 (x, x′), (S21)

where G0
2 is the zero temperature contribution and GT2

accounts for the additional temperature effects. As al-
ready mentioned in Refs. [11, 12], GT2 contains a term
which corresponds to a thermal enhancement of zero tem-
perature correlations, together with additional contribu-
tions involving scattering processes specific to the T 6= 0
case. This results in a practical disappearance of the
u|out − d1|out correlation for kB T ' 0.2 gnu, while the
u|out−d2|out Hawking signal is robust up to kB T ' gnu,
see the discussion in Ref. [11]. This confirms the interest
of using analog system to investigate analog Hawking ra-
diation: the non-local correlation pattern in G2 is weakly
affected by temperature and a noticeable signal can be
recorded even if T is larger than TH.

The finite T result presented in the main text is ob-
tained by computing the two contributions in (S21) sepa-
rately, in a regime which has been denoted as the “weakly
interacting quasicondensate regime” in Ref. [13], and
which holds when the following conditions are met:

4 τ2
α

(ξα nα)4
� 1

(ξα nα)2
� 1, (S22)

where α ∈ {u, d} and τα = kB T/(g nα) is the reduced
temperature. We use typical experimental parameters
of Ref. [3] to evaluate the order of magnitude of the
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different terms in the inequalities (S22): ξu = 1.4µm,
ξd = 2.38µm, nu ' 70−90µm−1 and nd ' 20µm−1. We
obtain (ξu nu)−2 ' 6.3 × 10−5 − 10−4 � 1, (ξd nd)

−2 '
4.4 × 10−4 � 1. By computing the left hand part of
(S22) in the upstream and downstream regions, we find
that the more stringent condition reads kB T � 8.3 gnu,
i.e., our approach is valid up to kB T ' 0.8−1 gnu � TH.
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