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d’Alembert equation – I

Assuming that |ux | � 1 (notation: ux = ∂u/∂x = ∂x u), and denoting by µ0
the linear mass density of the string, the dynamics is governed by

utt − c2uxx = 0 , (1)

where c = (T0/µ0)1/2 is the velocity of propagation of a deformation of the
string (see below).
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d’Alembert equation – II : linear, bi-directional and non-dispersive

0 = (∂2
t − c2∂2

x )u = (∂t + c ∂x )(∂t − c ∂x )u Let’s define
{
ξ = x − ct
η = x + ct

∂ •
∂t = ∂ •

∂η

∂η

∂t + ∂ •
∂ξ

∂ξ

∂t = c ∂η − c ∂ξ

∂ •
∂x = ∂ •

∂η

∂η

∂x + ∂ •
∂ξ

∂ξ

∂x = ∂η + ∂ξ

;

∂t + c ∂x = 2 c ∂η

∂t − c ∂x = −2 c ∂ξ
(2)

and d’Alembert equation reads ∂ξηu = 0.

General solution:
u = f (η) + g(ξ) = f (x + ct) + g(x − ct). The first component propagates to
the left, the second to the right, both with velocity c, without deformation.

f and g can be expressed in terms of u(x , 0) and ut(x , 0). In the simple case
ut(x , 0) = 0 and u(x , 0) ≡ u0(x) one gets f = g = 1

2 u0, cf. sketch below:
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nonlinear, uni-direction and non-dispersive

How to include nonlinear effects in a simplified version of d’Alembert equation?

ut + c(u)ux = 0 , (3)

where c(u): nonlinear velocity specified by the problem under consideration.
One speaks of advection equation.

Example: simplified model of traffic flow. ρ(x , t) : linear car density. Q(x , t) :
flow rate (number of car per unit time). Car number conservation:

∂tρ+ ∂x Q = 0 . (4)

the rate of change of the number of cars in a section [x , x + ∆x ] is
balanced by the net inflow accross x and x + ∆x :

d
dt

∫ x+∆x

x
ρ(x ′, t) dx ′ = Q(x , t)− Q(x + ∆x , t) .

Taking the limit ∆x → 0 yields Eq. (4).

Assume that the Q depends on ρ only: Q(x , t) = Q(ρ(x , t)), then (4) reads
ρt + c(ρ)ρx = 0 where c(ρ) = dQ/dρ can be > 0 or < 0.
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Q(ρ) for traffic flow

According to our assumption, the velocity of the flow V = Q/ρ depends only
on ρ. Empirical facts: it is a decreasing function, which starts at a maximum
value at ρ = 0 and reaches 0 at some ρj , with ρj ' (length of a car)−1 (j
stands for “jam”). Typical behavior of Q, V and c :

ρj ' 140 car/km

ρm ' 50 car/km

Qm/ρm ' 30 km/h

c = dQ/dρ is the velocity of propagation of a deformation of ρ. On physical
grounds, it is clear that c = V at ρ = 0. Mathematically:
c = dQ/dρ = d(ρV )/dρ = V + ρ (dV /dρ): since V is a decreasing function,
one has c ≤ V and, indeed, c = V at ρ = 0.
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