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d'Alembert equation — |

Assuming that |ux| < 1 (notation: u, = du/0x = Oxu), and denoting by po
the linear mass density of the string, the dynamics is governed by

P 0

where ¢ = (To/u0)'/? is the velocity of propagation of a deformation of the
string (see below).



d'Alembert equation — Il : linear, bi-directional and non-dispersive
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and d'Alembert equation reads Jg,u = 0.
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and d'Alembert equation reads J:,u = 0. General solution:

u="Ff(n)+g(§) =f(x+ct) + g(x — ct). The first component propagates to

the left, the second to the right, both with velocity ¢, without deformation.

f and g can be expressed in terms of u(x,0) and u:(x,0). In the simple case

ue(x,0) = 0 and u(x,0) = uo(x) one gets f = g = Lup, cf. sketch below:
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nonlinear, uni-direction and non-dispersive

How to include nonlinear effects in a simplified version of d'Alembert equation?
ur + c(u)ux =01, (3)

where c(u): nonlinear velocity specified by the problem under consideration.
One speaks of advection equation.
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where c(u): nonlinear velocity specified by the problem under consideration.
One speaks of advection equation.

Example: simplified model of traffic flow. p(x, t) : linear car density. Q(x,t) :
flow rate (number of car per unit time). Car number conservation:

the rate of change of the number of cars in a section [x,x + Ax] is
balanced by the net inflow accross x and x + Ax:

d X+Ax

prs p(x',t) dx' = Q(x,t) — Q(x + Ax, t) .

Taking the limit Ax — 0 yields Eq. (4).

Assume that the Q depends on p only: Q(x,t) = Q(p(x, t)), then (4) reads
pt + c(p)px = 0 where c(p) = dQ/dp can be > 0 or < 0.



Q(p) for traffic flow

According to our assumption, the velocity of the flow V = Q/p depends only
on p. Empirical facts: it is a decreasing function, which starts at a maximum
value at p = 0 and reaches 0 at some p;, with p; ~ (length of a car)™" (j
stands for “jam™). Typical behavior of Q, V and c :

QR)

pj ~ 140 car/km
pm =~ 50 car/km
Qm/pm ~ 30 km/h

AN

¢ = dQ/dp is the velocity of propagation of a deformation of p. On physical
grounds, it is clear that ¢ = V at p = 0. Mathematically:
c=dQ/dp=d(pV)/dp=V + p(dV/dp): since V is a decreasing function,
one has ¢ < V and, indeed, c = V at p = 0.



