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method of characteristics — |

One wishes to solve
pe+c(p)px =01, (1)

i.e., to determine p(x, t) for a given p(x,0) = po(x).

If ¢(p) = co is a constant, the solution is clearly p(x, t) = po(x — cot). It means

that in the (x, t) plane, the initial profile is parallel transported along straight
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lines of slope ¢, *.
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method of characteristics — |l

For non constant c¢(p), trick: define ¥(t) = p(x(t), t), where x(t) is a yet
unknown function. One has

dib dx
E =pt+ dt Px -
If one chooses x(t) such that dx/dt = c(1), then one sees from (1) that
diy/dt = 0: 1(t) is conserved along the curve x(t), which is called a

characteristic.

(2)

1) being constant, dx/dt = c(v) is constant along the characteristic which is
thus a straight line!. At variance with the example of constant ¢, the
characteristics’ slopes are not all the same, because they depend on the initial
distribution po.
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 This is not a generic feature, cf. exercices in the first tutorial.



In practice, the solution is obtained in an implicit form:

p(x,t) = po(X) where x =X+ c(po(Xx))t

Example of Hopf equation:
pe+ppx =0 with po(x) = exp(—x?)

the numerical implementation of the method of characteristic is straightforward:

then

do i=1, imax

xt (1)=x(i)+rho (i) *t plot [xt(i),rho(i)] J

enddo
One gets

1~ simulation at times
0.8 ‘ t=0,051,-,3
\

0.6 — A One observes wave-breaking
04 at time t 2>
02~ when 2 characteristics cross, the

0 : solution gets multivalued


do
i=1,imax
xt(i)=x(i)+rho(i)*t
 enddo
plot
[xt(i),rho(i)]

method of characteristics: x = X + f(X)t where f(X) = c(po(X))

two neighboring characteristics (starting at x and X 4+ dX) cross when:
x =X+ f(X)t = X + d% + f(X + dX)t
in the limit dx — 0 this implies 0 = 1 + f'(X)t.

Wave breaking occurs first at

1

twe = X[ ()]

In the above example of Hopf equation, —f' reaches ist maximum at 1//2 and

its value is \/2/:. Hence twg = {/€/2 ~ 1.1658

In the following slides we consider “the Riemann problem":

po(x) = p2 I x>0 and thus f(x) = @ = c(p2) I x>0 3)
m ifx<O0 a=c(p1) ifx<O0

if c1 > ¢ wave breaking occurs immediately.



the Riemann problem

Define u(x, t) = c(p(x, t)). From (1): u is solution of Hopf equation

prere| @

Once (4) is solved, p(x, t) = ¢~ (u(x, t))
e case u; < up : rarefaction wave
to(x)
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the Riemann problem

Define u(x, t) = c(p(x, t)). From (1): u is solution of Hopf equation

prere| @

Once (4) is solved, p(x, t) = ¢~ (u(x, t))

e case u; < up : rarefaction wave
t

X

One fills the gray region by “smoothing” the distribution (3). Remember that
x = X + up(X) t with, now, ug interpolating smoothly from u; to u, at X ~ 0:
this leads to x = ut with u1 < u < . Hence

w ifu < x/t
ulx,t) =< x/t ifu <x/t<u (5)
Uy ifx/t< uy



the Riemann problem: u; < up: rarefaction wave

u(x, t) — X/t

u2

u




Exercice: Describe what happens when a traffic light turns green
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the Riemann problem: u; > up

up(x)
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the Riemann problem: u; > up
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the Riemann problem: u; > up

uo(x)
n
up
X
t
X = Uy t X = U t
X
u(x, t) u=x/t
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multivalued solution and shock waves
Multivalued solution not acceptable: Replace /a by —/—L

Correct position of the discontinuity: current conservation

p(x,t)

Same area

~ O -
X



multivalued solution and shock waves
Multivalued solution not acceptable: Replace /a by —/—L

Correct position of the discontinuity: current conservation

p(x,t)

Same area

—

>

~ @O -
>
X

X1 s

Velocity of the shock:



multivalued solution and shock waves
Multivalued solution not acceptable: Replace /a by —/—L

Correct position of the discontinuity: current conservation

p(x,t)

Same area

>

~ @O -
>
X

X1 5(

Velocity of the shock:

%/ p(x, £) dx = Q(x1, t) — QQe, )



multivalued solution and shock waves
Multivalued solution not acceptable: Replace /a by —/—L

Correct position of the discontinuity: current conservation

p(x,t)

Same area

>

~ @O -
>
X

X1 5( ) X2

Velocity of the shock:

s(t) Xo
([ smnas [ pnac) = ot~ s
X1 s(t)

X2

p(s' (1), £)8 — p(s(1), £)5 + / prdx = Q(x1,t) = Qle, t)

X1

Let x1 — s + xo:



multivalued solution and shock waves
Multivalued solution not acceptable: Replace /a by —/—L

Correct position of the discontinuity: current conservation

p(x,t)

Same area

Velocity of the shock:

s(t) Xo
% (/Xl p(x,t) dx+/ p(x,t) dx) = Q(x1,t) — Qlx, t)

X1

s(t)
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>
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X2

p(s' (1), £)8 — p(s(1), £)5 + / prdx = Q(x1,t) = Qle, t)

Let x1 — 5 < x2:

p(*) — p(*)

Q(+) _ Q(*)

5=

X1

where Q) = Q(s™)(t),t) (idem p)



