Advanced Nonlinear Physics international Master « Physics of Complex Systems »

Second Lecture

Traffic flow and the method of characteristics

tuesday, september 15^{th} , 2020

website of (the 1st part of) the course: http://lptms.u-psud.fr/nicolas_pavloff/enseignement/ advanced-nonlinear-physics/ One wishes to solve

$$\rho_t + c(\rho)\rho_x = 0 \, , \qquad (1)$$

i.e., to determine $\rho(x, t)$ for a given $\rho(x, 0) \equiv \rho_0(x)$.

If $c(\rho) = c_0$ is a constant, the solution is clearly $\rho(x, t) = \rho_0(x - c_0 t)$. It means that in the (x, t) plane, the initial profile is parallel transported along straight lines of slope c_0^{-1} .

method of characteristics - II

For non constant $c(\rho)$, trick: define $\psi(t) \equiv \rho(x(t), t)$, where x(t) is a yet unknown function. One has

$$\frac{d\psi}{dt} = \rho_t + \frac{dx}{dt} \,\rho_x \,. \tag{2}$$

If one chooses x(t) such that $dx/dt = c(\psi)$, then one sees from (1) that $d\psi/dt = 0$: $\psi(t)$ is conserved along the curve x(t), which is called a characteristic.

 ψ being constant, $dx/dt = c(\psi)$ is constant along the characteristic which is thus a straight line¹. At variance with the example of constant c_0 , the characteristics' slopes are not all the same, because they depend on the initial distribution ρ_0 .

 $\varphi(x,t) = \varphi(\bar{x})$

¹This is not a generic feature, cf. exercices in the first tutorial.

In practice, the solution is obtained in an implicit form:

$$\rho(x,t) = \rho_0(\bar{x}) \quad \text{where} \quad x = \bar{x} + c(\rho_0(\bar{x}))t$$

Example of Hopf equation:

$$\rho_t + \rho \rho_x = 0 \quad \text{with} \quad \rho_0(x) = \exp(-x^2)$$

the numerical implementation of the method of characteristic is straightforward:

One gets

then

simulation at times $t = 0, 0.5, 1, \cdots, 3$

One observes wave-breaking at time $t\gtrsim 1$

when 2 characteristics cross, the solution gets **multivalued**

wave breaking

method of characteristics: $x = \bar{x} + f(\bar{x})t$ where $f(\bar{x}) = c(\rho_0(\bar{x}))$

two neighboring characteristics (starting at \bar{x} and $\bar{x} + d\bar{x}$) cross when:

$$x = \bar{x} + f(\bar{x})t = \bar{x} + d\bar{x} + f(\bar{x} + d\bar{x})t$$

in the limit $d\bar{x} \rightarrow 0$ this implies $0 = 1 + f'(\bar{x})t$.

Wave breaking occurs first at

$$t_{WB} = \frac{1}{\max[-f'(\bar{x})]}$$

In the above example of Hopf equation, -f' reaches ist maximum at $1/\sqrt{2}$ and its value is $\sqrt{2/e}$. Hence $t_{WB} = \sqrt{e/2} \simeq 1.1658$

In the following slides we consider "the Riemann problem":

$$\rho_0(x) = \begin{cases} \rho_2 & \text{if } x > 0\\ \rho_1 & \text{if } x < 0 \end{cases} \quad \text{and thus} \quad f(x) = \begin{cases} c_2 = c(\rho_2) & \text{if } x > 0\\ c_1 = c(\rho_1) & \text{if } x < 0 \end{cases}$$
(3)

if $c_1 > c_2$ wave breaking occurs immediately.

the Riemann problem

Define $u(x, t) = c(\rho(x, t))$. From (1): *u* is solution of Hopf equation

$$u_t + u u_x = 0 \, | \, , \tag{4}$$

Once (4) is solved, $\rho(x,t) = c^{-1}(u(x,t))$

• case $u_1 < u_2$: rarefaction wave

the Riemann problem

Define $u(x, t) = c(\rho(x, t))$. From (1): *u* is solution of Hopf equation

$$u_t + u u_x = 0 \, | \, , \qquad (4)$$

Once (4) is solved, $\rho(x,t) = c^{-1}(u(x,t))$

• case $u_1 < u_2$: rarefaction wave

the Riemann problem

Define $u(x, t) = c(\rho(x, t))$. From (1): *u* is solution of Hopf equation

$$u_t + u u_x = 0 \, | \, , \tag{4}$$

Once (4) is solved, $\rho(x, t) = c^{-1}(u(x, t))$

• case $u_1 < u_2$: rarefaction wave

One fills the gray region by "smoothing" the distribution (3). Remember that $x = \bar{x} + u_0(\bar{x}) t$ with, now, u_0 interpolating smoothly from u_1 to u_2 at $\bar{x} \simeq 0$: this leads to x = u t with $u_1 < u < u_2$. Hence

$$u(x,t) = \begin{cases} u_2 & \text{if } u_2 < x/t \\ x/t & \text{if } u_1 < x/t < u_2 \\ u_1 & \text{if } x/t < u_1 \end{cases}$$
(5)

the Riemann problem: $u_1 < u_2$: rarefaction wave

1 fo(x)

Exercice: Describe what happens when a traffic light turns green

Exercice: Describe what happens when a traffic light turns green

Exercice: Describe what happens when a traffic light turns green

the Riemann problem: $u_1 > u_2$

the Riemann problem: $u_1 > u_2$

the Riemann problem: $u_1 > u_2$

Multivalued solution not acceptable: Replace _____ by

Correct position of the discontinuity: current conservation

Multivalued solution not acceptable: Replace _____ by

Correct position of the discontinuity: current conservation

Velocity of the shock:

Multivalued solution not acceptable: Replace _____ by

Correct position of the discontinuity: current conservation

Velocity of the shock:

$$\frac{d}{dt}\int_{x_1}^{x_2}\rho(x,t)\,dx=Q(x_1,t)-Q(x_2,t)$$

Multivalued solution not acceptable: Replace _____ by ____

Correct position of the discontinuity: current conservation

Velocity of the shock:

$$\frac{d}{dt}\left(\int_{x_1}^{s(t)} \rho(x,t) \, dx + \int_{s(t)}^{x_2} \rho(x,t) \, dx\right) = Q(x_1,t) - Q(x_2,t)$$
$$\rho(s^{(-)}(t),t)\dot{s} - \rho(s^{(+)}(t),t)\dot{s} + \int_{x_1}^{x_2} \rho_t \, dx = Q(x_1,t) - Q(x_2,t)$$

Let $x_1 \rightarrow s \leftarrow x_2$:

Multivalued solution not acceptable: Replace _____ by ____

Correct position of the discontinuity: current conservation

Velocity of the shock:

$$\frac{d}{dt} \left(\int_{x_1}^{s(t)} \rho(x,t) \, dx + \int_{s(t)}^{x_2} \rho(x,t) \, dx \right) = Q(x_1,t) - Q(x_2,t)$$

$$\rho(s^{(-)}(t),t) \dot{s} - \rho(s^{(+)}(t),t) \dot{s} + \int_{x_1}^{x_2} \rho_t \, dx = Q(x_1,t) - Q(x_2,t)$$
Let $x_1 \to s \leftarrow x_2$: $\dot{s} = \frac{Q^{(+)} - Q^{(-)}}{\rho^{(+)} - \rho^{(-)}}$ where $Q^{(\pm)} = Q(s^{(\pm)}(t),t)$ (idem ρ)