Advanced Nonlinear Physics

 international Master « Physics of Complex Systems »
Second Lecture

Traffic flow and the method of characteristics

 tuesday, september $15^{\text {th }}, 2020$website of (the 1st part of) the course:
http://lptms.u-psud.fr/nicolas_pavloff/enseignement/ advanced-nonlinear-physics/
method of characteristics - I
One wishes to solve

$$
\begin{equation*}
\rho_{t}+c(\rho) \rho_{x}=0 \tag{1}
\end{equation*}
$$

ie., to determine $\rho(x, t)$ for a given $\rho(x, 0) \equiv \rho_{0}(x)$.
If $c(\rho)=c_{0}$ is a constant, the solution is clearly $\rho(x, t)=\rho_{0}\left(x-c_{0} t\right)$. It means that in the (x, t) plane, the initial profile is parallel transported along straight lines of slope c_{0}^{-1}.

For non constant $c(\rho)$, trick: define $\psi(t) \equiv \rho(x(t), t)$, where $x(t)$ is a yet unknown function. One has

$$
\begin{equation*}
\frac{d \psi}{d t}=\rho_{t}+\frac{d x}{d t} \rho_{x} \tag{2}
\end{equation*}
$$

If one chooses $x(t)$ such that $d x / d t=c(\psi)$, then one sees from (1) that $d \psi / d t=0: \psi(t)$ is conserved along the curve $x(t)$, which is called a characteristic.
ψ being constant, $d x / d t=c(\psi)$ is constant along the characteristic which is thus a straight line ${ }^{1}$. At variance with the example of constant c_{0}, the characteristics' slopes are not all the same, because they depend on the initial distribution ρ_{0}.

$$
\rho(x, t)=\rho_{0}(\bar{x})
$$

[^0]In practice, the solution is obtained in an implicit form:

$$
\rho(x, t)=\rho_{0}(\bar{x}) \quad \text { where } \quad x=\bar{x}+c\left(\rho_{0}(\bar{x})\right) t
$$

Example of Hopf equation:

$$
\rho_{t}+\rho \rho_{x}=0 \quad \text { with } \quad \rho_{0}(x)=\exp \left(-x^{2}\right)
$$

the numerical implementation of the method of characteristic is straightforward:

```
do i=1,imax
xt(i)=x(i)+rho(i)*t
enddo
``` then
plot [xt(i),rho(i)]

One gets

simulation at times
\[
t=0,0.5,1, \cdots, 3
\]

One observes wave-breaking at time \(t \gtrsim 1\)
when 2 characteristics cross, the solution gets multivalued
method of characteristics: \(x=\bar{x}+f(\bar{x}) t\) where \(f(\bar{x})=c\left(\rho_{0}(\bar{x})\right)\)
two neighboring characteristics (starting at \(\bar{x}\) and \(\bar{x}+d \bar{x}\)) cross when:
\[
x=\bar{x}+f(\bar{x}) t=\bar{x}+d \bar{x}+f(\bar{x}+d \bar{x}) t
\]
in the limit \(d \bar{x} \rightarrow 0\) this implies \(0=1+f^{\prime}(\bar{x}) t\).
Wave breaking occurs first at
\[
t_{W B}=\frac{1}{\max \left[-f^{\prime}(\bar{x})\right]}
\]

In the above example of Hopf equation, \(-f^{\prime}\) reaches ist maximum at \(1 / \sqrt{2}\) and its value is \(\sqrt{2 / e}\). Hence \(t_{W B}=\sqrt{e / 2} \simeq 1.1658\)

In the following slides we consider "the Riemann problem":
\[
\rho_{0}(x)=\left\{\begin{array}{ll}
\rho_{2} & \text { if } x>0 \tag{3}\\
\rho_{1} & \text { if } x<0
\end{array} \quad \text { and thus } f(x)= \begin{cases}c_{2}=c\left(\rho_{2}\right) & \text { if } x>0 \\
c_{1}=c\left(\rho_{1}\right) & \text { if } x<0\end{cases}\right.
\]
if \(c_{1}>c_{2}\) wave breaking occurs immediately.

Define \(u(x, t)=c(\rho(x, t))\). From (1): \(u\) is solution of Hopf equation
\[
\begin{equation*}
u_{t}+u u_{x}=0 \tag{4}
\end{equation*}
\]

Once (4) is solved, \(\rho(x, t)=c^{-1}(u(x, t))\)
- case \(u_{1}<u_{2}\) : rarefaction wave

Define \(u(x, t)=c(\rho(x, t))\). From (1): \(u\) is solution of Hopf equation
\[
\begin{equation*}
u_{t}+u u_{x}=0 \tag{4}
\end{equation*}
\]

Once (4) is solved, \(\rho(x, t)=c^{-1}(u(x, t))\)
- case \(u_{1}<u_{2}\) : rarefaction wave

Define \(u(x, t)=c(\rho(x, t))\). From (1): \(u\) is solution of Hopf equation
\[
\begin{equation*}
u_{t}+u u_{x}=0 \tag{4}
\end{equation*}
\]

Once (4) is solved, \(\rho(x, t)=c^{-1}(u(x, t))\)
- case \(u_{1}<u_{2}\) : rarefaction wave

One fills the gray region by "smoothing" the distribution (3). Remember that \(x=\bar{x}+u_{0}(\bar{x}) t\) with, now, \(u_{0}\) interpolating smoothly from \(u_{1}\) to \(u_{2}\) at \(\bar{x} \simeq 0\) : this leads to \(x=u t\) with \(u_{1}<u<u_{2}\). Hence
\[
u(x, t)= \begin{cases}u_{2} & \text { if } u_{2}<x / t \tag{5}\\ x / t & \text { if } u_{1}<x / t<u_{2} \\ u_{1} & \text { if } x / t<u_{1}\end{cases}
\]

Exercise: Describe what happens when a traffic light turns green

Exercise: Describe what happens when a traffic light turns green

Exercise: Describe what happens when a traffic light turns green

Exercise: Describe what happens when a traffic light turns green

the Riemann problem: \(u_{1}>u_{2}\)

Multivalued solution not acceptable: Replace
 by R

Correct position of the discontinuity: current conservation

Multivalued solution not acceptable: Replace
 by

Correct position of the discontinuity: current conservation

Velocity of the shock:

Multivalued solution not acceptable: Replace
 by

Correct position of the discontinuity: current conservation

Velocity of the shock:
\[
\frac{d}{d t} \int_{x_{1}}^{x_{2}} \rho(x, t) d x=Q\left(x_{1}, t\right)-Q\left(x_{2}, t\right)
\]

Multivalued solution not acceptable: Replace
 by

Correct position of the discontinuity: current conservation

Velocity of the shock:
\[
\begin{aligned}
& \frac{d}{d t}\left(\int_{x_{1}}^{s(t)} \rho(x, t) d x+\int_{s(t)}^{x_{2}} \rho(x, t) d x\right)=Q\left(x_{1}, t\right)-Q\left(x_{2}, t\right) \\
& \rho\left(s^{(-)}(t), t\right) \dot{s}-\rho\left(s^{(+)}(t), t\right) \dot{s}+\int_{x_{1}}^{x_{2}} \rho_{t} d x=Q\left(x_{1}, t\right)-Q\left(x_{2}, t\right)
\end{aligned}
\]

Let \(x_{1} \rightarrow s \leftarrow x_{2}\) :

Multivalued solution not acceptable: Replace
 by

Correct position of the discontinuity: current conservation

Velocity of the shock:
\[
\begin{aligned}
& \frac{d}{d t}\left(\int_{x_{1}}^{s(t)} \rho(x, t) d x+\int_{s(t)}^{x_{2}} \rho(x, t) d x\right)=Q\left(x_{1}, t\right)-Q\left(x_{2}, t\right) \\
& \rho\left(s^{(-)}(t), t\right) \dot{s}-\rho\left(s^{(+)}(t), t\right) \dot{s}+\int_{x_{1}}^{x_{2}} \rho_{t} d x=Q\left(x_{1}, t\right)-Q\left(x_{2}, t\right)
\end{aligned}
\]

Let \(x_{1} \rightarrow s \leftarrow x_{2}\) :
\[
\dot{s}=\frac{Q^{(+)}-Q^{(-)}}{\rho^{(+)}-\rho^{(-)}}
\]
\[
\text { where } Q^{(\pm)}=Q\left(s^{(\pm)}(t), t\right) \quad(\text { idem } \rho)
\]```

[^0]: ${ }^{1}$ This is not a generic feature, cf. exercises in the first tutorial.

