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method of characteristics – I
One wishes to solve

ρt + c(ρ)ρx = 0 , (1)

i.e., to determine ρ(x , t) for a given ρ(x , 0) ≡ ρ0(x).

If c(ρ) = c0 is a constant, the solution is clearly ρ(x , t) = ρ0(x − c0t). It means
that in the (x , t) plane, the initial profile is parallel transported along straight
lines of slope c−10 .
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method of characteristics – II
For non constant c(ρ), trick: define ψ(t) ≡ ρ(x(t), t), where x(t) is a yet
unknown function. One has

dψ
dt = ρt + dx

dt ρx . (2)

If one chooses x(t) such that dx/dt = c(ψ), then one sees from (1) that
dψ/dt = 0: ψ(t) is conserved along the curve x(t), which is called a
characteristic.

ψ being constant, dx/dt = c(ψ) is constant along the characteristic which is
thus a straight line1. At variance with the example of constant c0, the
characteristics’ slopes are not all the same, because they depend on the initial
distribution ρ0.

1This is not a generic feature, cf. exercices in the first tutorial. 3



wave breaking

In practice, the solution is obtained in an implicit form:

ρ(x , t) = ρ0(x̄) where x = x̄ + c(ρ0(x̄))t

Example of Hopf equation:

ρt + ρ ρx = 0 with ρ0(x) = exp(−x2)

the numerical implementation of the method of characteristic is straightforward:

do i=1,imax
xt(i)=x(i)+rho(i)*t
enddo

then

plot [xt(i),rho(i)]

One gets
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1 simulation at times
t = 0, 0.5, 1, · · · , 3

One observes wave-breaking
at time t & 1

when 2 characteristics cross, the
solution gets multivalued
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do
i=1,imax
xt(i)=x(i)+rho(i)*t
 enddo
plot
[xt(i),rho(i)]


wave breaking

method of characteristics: x = x̄ + f (x̄)t where f (x̄) = c(ρ0(x̄))

two neighboring characteristics (starting at x̄ and x̄ + dx̄) cross when:

x = x̄ + f (x̄)t = x̄ + dx̄ + f (x̄ + dx̄)t

in the limit dx̄ → 0 this implies 0 = 1 + f ′(x̄)t.

Wave breaking occurs first at

tWB = 1
max [−f ′(x̄)]

In the above example of Hopf equation, −f ′ reaches ist maximum at 1/
√
2 and

its value is
√

2/e. Hence tWB =
√

e/2 ' 1.1658

In the following slides we consider “the Riemann problem”:

ρ0(x) =
{
ρ2 if x > 0
ρ1 if x < 0

and thus f (x) =
{

c2 = c(ρ2) if x > 0
c1 = c(ρ1) if x < 0

(3)

if c1 > c2 wave breaking occurs immediately.
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the Riemann problem
Define u(x , t) = c(ρ(x , t)). From (1): u is solution of Hopf equation

ut + u ux = 0 , (4)

Once (4) is solved, ρ(x , t) = c−1(u(x , t))

• case u1 < u2 : rarefaction wave
u0(x)

x

u1

u2

t

x

x = u1 t x = u2 t

One fills the gray region by “smoothing” the distribution (3). Remember that
x = x̄ + u0(x̄) t with, now, u0 interpolating smoothly from u1 to u2 at x̄ ' 0:
this leads to x = u t with u1 < u < u2. Hence

u(x , t) =


u2 if u2 < x/t
x/t if u1 < x/t < u2

u1 if x/t < u1

(5)
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the Riemann problem: u1 < u2: rarefaction wave

︷ ︸︸ ︷u = x/tu(x , t)

xu1 t u2 t

u1

u2
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Exercice: Describe what happens when a traffic light turns green
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Exercice: Describe what happens when a traffic light turns green
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the Riemann problem: u1 > u2

u1

u2

u0(x)

x

x

x = u2 t x = u1 t
t

u(x , t)

xu2 t u1 t

u1

u2

︷ ︸︸ ︷u = x/t
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multivalued solution and shock waves

Multivalued solution not acceptable: Replace by

Correct position of the discontinuity: current conservation
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x
s(t)

same area

•
x1

•
x2

Velocity of the shock:

10



multivalued solution and shock waves

Multivalued solution not acceptable: Replace by

Correct position of the discontinuity: current conservation

�
�
�
�

�
�
�
�

��

ρ(x , t)

x
s(t)

same area

•
x1

•
x2

Velocity of the shock:

10



multivalued solution and shock waves

Multivalued solution not acceptable: Replace by

Correct position of the discontinuity: current conservation

�
�
�
�

�
�
�
�

��

ρ(x , t)

x
s(t)

same area

•
x1

•
x2

Velocity of the shock:

d
dt

∫ x2

x1
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10



multivalued solution and shock waves

Multivalued solution not acceptable: Replace by

Correct position of the discontinuity: current conservation

�
�
�
�

�
�
�
�

��

ρ(x , t)

x
s(t)

same area

•
x1

•
x2

Velocity of the shock:

d
dt

(∫ s(t)

x1

ρ(x , t) dx +
∫ x2

s(t)
ρ(x , t) dx

)
= Q(x1, t)− Q(x2, t)

ρ(s(−)(t), t)ṡ − ρ(s(+)(t), t)ṡ +
∫ x2

x1

ρt dx = Q(x1, t)− Q(x2, t)

Let x1 → s ← x2:
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∫ x2

x1

ρt dx = Q(x1, t)− Q(x2, t)

Let x1 → s ← x2: ṡ = Q(+) − Q(−)

ρ(+) − ρ(−) where Q(±) = Q(s(±)(t), t) (idem ρ)

10


