Advanced Nonlinear Physics international Master « Physics of Complex Systems »

Third Lecture

Viscous shocks

tuesday, september $22^{\text {nd }}, 2020$
website of (the 1st part of) the course:
http://lptms.u-psud.fr/nicolas_pavloff/enseignement/
advanced-nonlinear-physics/

One still wishes to solve $\rho_{t}+c(\rho) \rho_{x}=0$, i.e., to determine $\rho(x, t)$ for a given $\rho(x, 0) \equiv \rho_{0}(x)$.
We saw last time that, when characteristic cross, wave breaking occurs and a shock is formed, with position $s(t)$ verifying

$$
\begin{equation*}
\dot{s}=\frac{Q^{(+)}-Q^{(-)}}{\rho^{(+)}-\rho^{(-)}} \tag{1}
\end{equation*}
$$

This result is obtained by flux conservation.

Shock velocity

One still wishes to solve $\rho_{t}+c(\rho) \rho_{x}=0$, ie., to determine $\rho(x, t)$ for a given $\rho(x, 0) \equiv \rho_{0}(x)$.

We saw last time that, when characteristic cross, wave breaking occurs and a shock is formed, with position $s(t)$ verifying

$$
\begin{equation*}
\dot{s}=\frac{Q^{(+)}-Q^{(-)}}{\rho^{(+)}-\rho^{(-)}} \tag{1}
\end{equation*}
$$

This result is obtained by flux conservation. It can be understood this way by writing $Q^{(+)}=Q^{(-)}+\dot{s} \times\left(\rho^{(+)}-\rho^{(-)}\right)$

$$
\begin{array}{ll}
& \\
\begin{array}{l}
\text { velocity } \dot{S} \\
\rho=\rho^{(-)}
\end{array} & \rho=\rho^{(t)} \\
Q=Q^{(-)} &
\end{array}>Q=Q^{(+)}
$$

the Riemann problem

Case where c is an increasing function of $\rho . c_{1}=c\left(\rho_{1}\right)>c_{2}=c\left(\rho_{2}\right)$.

the Riemann problem

Case where c is an increasing function of $\rho . c_{1}=c\left(\rho_{1}\right)>c_{2}=c\left(\rho_{2}\right)$.

the Riemann problem

Case where c is an increasing function of $\rho . c_{1}=c\left(\rho_{1}\right)>c_{2}=c\left(\rho_{2}\right)$.

the Riemann problem

Case where c is an increasing function of $\rho . c_{1}=c\left(\rho_{1}\right)>c_{2}=c\left(\rho_{2}\right)$.

the Riemann problem

Case where c is an increasing function of $\rho . c_{1}=c\left(\rho_{1}\right)>c_{2}=c\left(\rho_{2}\right)$.

Describe the motion of the end of a traffic jam

Assuming that there is a constant incoming flow of vehicles, density $\rho_{i n}$, flux $Q_{i n}=Q\left(\rho_{\text {in }}\right)$, with $\rho_{i n}<\rho_{m}$.

Describe the motion of the end of a traffic jam

Assuming that there is a constant incoming flow of vehicles, density $\rho_{i n}$, flux $Q_{i n}=Q\left(\rho_{i n}\right)$, with $\rho_{i n}<\rho_{m}$.

$\dot{s}=-Q_{\text {in }} /\left(\rho_{j}-\rho_{\text {in }}\right)=\operatorname{cst} \quad$ [remember $\left.Q\left(\rho_{j}\right)=0\right]$

Describe the motion of the end of a traffic jam
Assuming that there is a constant incoming flow of vehicles, density $\rho_{i n}$, flux $Q_{i n}=Q\left(\rho_{i n}\right)$, with $\rho_{i n}<\rho_{m}$.

$$
\dot{s}=-Q_{\text {in }} /\left(\rho_{j}-\rho_{i n}\right)=\operatorname{cst} \quad\left[\text { remember } Q\left(\rho_{j}\right)=0\right]
$$

Describe the motion of the end of a traffic jam

Assuming that there is a constant incoming flow of vehicles, density $\rho_{i n}$, flux $Q_{i n}=Q\left(\rho_{\text {in }}\right)$, with $\rho_{i n}<\rho_{m}$.

$\dot{s}=-Q_{\text {in }} /\left(\rho_{j}-\rho_{\text {in }}\right)=\operatorname{cst} \quad\left[\right.$ remember $\left.Q\left(\rho_{j}\right)=0\right]$
during $d t, Q_{i n} d t$ cars arrive and pile up with an increase of density $\rho_{j}-\rho_{i n}$:
$\left\{\begin{array}{l}Q_{\text {in }} d t=\left(\rho_{j}-\rho_{\text {in }}\right)|d x| \\ \text { with }|d x|=-\dot{s} d t\end{array}\right.$

Describe the motion of the end of a traffic jam

Assuming that there is a constant incoming flow of vehicles, density $\rho_{i n}$, flux $Q_{\text {in }}=Q\left(\rho_{\text {in }}\right)$, with $\rho_{\text {in }}<\rho_{m}$.

