# Advanced Nonlinear Physics international Master « Physics of Complex Systems »

Third Lecture

**Viscous shocks** 

tuesday, september  $22^{\rm nd}\text{,}~2020$ 

website of (the 1st part of) the course: http://lptms.u-psud.fr/nicolas\_pavloff/enseignement/ advanced-nonlinear-physics/

#### Shock velocity

One still wishes to solve  $\rho_t + c(\rho)\rho_x = 0$ , i.e., to determine  $\rho(x, t)$  for a given  $\rho(x, 0) \equiv \rho_0(x)$ .

We saw last time that, when characteristic cross, wave breaking occurs and a shock is formed, with position s(t) verifying



This result is obtained by flux conservation.

#### Shock velocity

One still wishes to solve  $\rho_t + c(\rho)\rho_x = 0$ , i.e., to determine  $\rho(x, t)$  for a given  $\rho(x, 0) \equiv \rho_0(x)$ .

We saw last time that, when characteristic cross, wave breaking occurs and a shock is formed, with position s(t) verifying



This result is obtained by flux conservation. It can be understood this way by writing  $Q^{(+)} = Q^{(-)} + \dot{s} \times (\rho^{(+)} - \rho^{(-)})$ 













Assuming that there is a constant incoming flow of vehicles, density  $\rho_{in}$ , flux  $Q_{in} = Q(\rho_{in})$ , with  $\rho_{in} < \rho_m$ .





Assuming that there is a constant incoming flow of vehicles, density  $\rho_{in}$ , flux  $Q_{in} = Q(\rho_{in})$ , with  $\rho_{in} < \rho_m$ .





 $\dot{s} = -Q_{in}/(
ho_j - 
ho_{in}) = cst$  [remember  $Q(
ho_j) = 0$ ]



Assuming that there is a constant incoming flow of vehicles, density  $\rho_{in}$ , flux  $Q_{in} = Q(\rho_{in})$ , with  $\rho_{in} < \rho_m$ .





 $\dot{s} = -Q_{in}/(
ho_j - 
ho_{in}) = cst$  [remember  $Q(
ho_j) = 0$ ]





Assuming that there is a constant incoming flow of vehicles, density  $\rho_{in}$ , flux  $Q_{in} = Q(\rho_{in})$ , with  $\rho_{in} < \rho_m$ .



 $\dot{s} = -Q_{in}/(\rho_j - \rho_{in}) = cst$  [remember  $Q(\rho_j) = 0$ ]

during dt,  $Q_{in}dt$  cars arrive and pile up with an increase of density  $\rho_j - \rho_{in}$ :

$$\left\{egin{array}{l} Q_{in}dt = (
ho_j - 
ho_{in})|dx| \ ext{with } |dx| = -\dot{s} \ dt \end{array}
ight.$$



Assuming that there is a constant incoming flow of vehicles, density  $\rho_{in}$ , flux  $Q_{in} = Q(\rho_{in})$ , with  $\rho_{in} < \rho_m$ .

