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Viscous shock |

does wave breaking always leads to :& ?

Answer is no in general. In the presence of viscosity this is indeed ~ the case.
Modify traffic flow model: Q(p) — Q[p] = Q(p) — vpx (with v > 0)
The conservation equation p: + Q« = 0 now reads

pe + c(p)px = Vpsx advection-diffusion equation (1)



Viscous shock |

does wave breaking always leads to :& ?

Answer is no in general. In the presence of viscosity this is indeed ~ the case.
Modify traffic flow model: Q(p) — Q[p] = Q(p) — vpx (with v > 0)

The conservation equation p: + Q« = 0 now reads

pe + c(p)px = Vpsx advection-diffusion equation (1)
The diffusive term induces damping:

p(x,t) = po+ pi(x,t)  (lp1| < po)

linearization of (1)  p1t + copix = Vpixx  Where co = c(po)
Look for p1(x, t) = Aexp[i(kx — wt)]

this leads to —iw + coik = —vk®  (w = cok — ivk?)

The imaginary part of the frequency leads to a damping exp(—vk>t).



Viscous shock Il

Within model (1), for a Riemann initial condition, one looks for a shock-like

g

N

solution — —§) moving at constant velocity U.

Here: case c increasing function of p

— 20 FrNge 4

Denote as £ = x — Ut and look for p(x, t) = p(&).
px = p and p; = —U p’ where p' = Z—g

(Dreads [-U+c(p)]p =vp” 1% integral: |—Up+ Q(p) + A=y’

at & = too: —Upi+ Q(p1) +A=0=—-Up2+ Q(p2) + A

as for the schematic solution of the
= Qp2) — Q1) previous lecture
(indeed: independent of 1)

Hence U

p2— p1




Viscous shock I : —Up+ Qp) +A=vp

Profile of the shock

Usual technique:

dp -1
a=9 [ = F )~ = F )

p1 and p> : zeros of the denominator, hence when p — p;,, £ diverges and
tends to £oo as it should.



Viscous shock I : —Up+ Qp) +A=vp

Profile of the shock
Usual technique:
dp -1
d = — ~> = F
A e e S I R O
p1 and p> : zeros of the denominator, hence when p — p;,, £ diverges and
tends to £oo as it should.

“¢/v) ~ F7Y(+00) = p2 when &/v>> sthg

~» width of shock o v
F7Y1(¢/v) ~ F7'(—c0) = p1 when ¢&/v < sthg else



Viscous shock I : —Up+ Qp) +A=vp

Profile of the shock
Usual technique:
dP -1
d - ~> = F
A e e S I R O
p1 and p> : zeros of the denominator, hence when p — p;,, £ diverges and
tends to oo as it should.
F7Y(¢/v) ~ F7}(+00) = p» when &/v>> sthg
~> width of shock < v
F7Y1(¢/v) ~ F7'(—c0) = p1 when ¢&/v < sthg else
= K%
Here d’Q/dp? = dc/dp > 0 and one has:

Q(p) — Up+ A < 0 between roots: K /

p <0 as it should
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dispersion vs viscosity |

In some situations viscosity is negligeable, and realistic shocks involve
dispersive effets. This is the case if (1) is replaced by

pt + c(p)px = VP (2)



dispersion vs viscosity |

In some situations viscosity is negligeable, and realistic shocks involve
dispersive effets. This is the case if (1) is replaced by

Pt + C(p)/)x = VPxxx

(2)
The new term induces dispersion:
p(x,t) = po + pi(x,t) linearize: p1r + co pix = VP1oex
look for plane wave solution: p1(x, t) = Aexp[i(kx — wt)]
this leads to —iw + co(ik) = v(ik)? W
w=ck+vk (3) dope &
| (S

plot for positive v



dispersion vs viscosity Il: different scenarii

p(x,t =0) 1

- X

model equations, c(p) = p

1 steepening then
0 Hopf breaking
[ 1 Taylor profile
l
I
} | dispersive shock
I

€ Proxx KdV : - wave

pr+ ppx = €pxx  Burgers




weakly dispersion and weak nonlinearty: KdV equation

Eq. (2): pt + c(p)px = Vps is the simplest way to include dispersion in the
advection equation.

For weak nonlinearity c(p) ~ co + c1p by the way c; <0 and v <0

E=x—cat, 7=t (0« =0 O = —0 + 07): pr + cLppe — Vpeee =0

t = ot
Define { x = B¢~ ayu + ay?Buu, — vy uUex = 0
p=nu
a=1
Choose ¢ 18y =1 ~ ‘ Ut + Uy + U =0 ‘
-3 =1

Korteweg-de Vries equation (shallow water waves, 1895)



soliton solution of KdV equation: u; 4+ uuy + Uxxx =0

Solution propagating without deformation u(x, t) = u(§) with § = x — V&t
(V>0).
—WVu' 4+ ud + 0" =0 first integral  —Vu+ %uz +u' =q.
multiply by u’ and integrate again  —1Vu’ + 1’ + L(u')’ = qu+ c.
This is of the form

WP+ W) =c with W) =1LV’ —qu (4)

1
6 2

formally equivalent to mx® + V/(x) = Ecor. The effective potential W(u) is a
3" order polynomial. If one wants a bounded solution, W(u) should not be

monotonous. W’(u) has real zeros if V? 4+ 2¢; > 0, and then cancels for
u=VEVV24+2q (sketch below for ¢; < 0)
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soliton solution of KdV
Define ug = V — vV'V2 + 2¢;.

Situation where co = W(uwo):

W(w )

_ L{M . ':‘(’«ZL(()

N-U,

Eq. (5) reads 3(u')> = W(uo) — W(u) = (u— wo)*(um — u).

u(€) = o+ v(&) ~ (V')> = 1v?(vm — v) where vy = um — uo = 3(V — up)

% = :tv\/% change of variable: v = cogl@g ~ 0 =1¢\/vm/3
uY=w+ — 2 where e=x-Ve ()

cosh

works also when up < 0
Unique condition V > wu

which is equiv. to ¢ > 0)
which is satisfied when V2 +2¢; > 0)

(
(V- we)
(
(



KdV soliton : hand-waving arguments

linear dispersion relation (3): w = uok — k*> ~ Vi, = & = g — k?
V, is k-dependent: spreading. This spreading is compensated by non-linearity.

Had hoc description: Vi ~ tio + v — K?|oyp
"L(‘g) "LLM k|typ ~ 1/L
VAﬁI \ nonlinearity and dispersion compensate:

g VMN]./L2

— L —>



KdV soliton : hand-waving arguments

linear dispersion relation (3): w = uok — k*> ~ Vi, = & = g — k?
V, is k-dependent: spreading. This spreading is compensated by non-linearity.
Had hoc description: Vi ~ tio + v — K?|oyp

"LLM k|tyPN1/L
VAﬁI \ nonlinearity and dispersion compensate:

~1/12
== % m~Y

The outskirt of the solitary wave: small perturbation. linear expansion similar

to what is done for exp[i(kx — wt)]. dispersion relation: w = fct(k)
u(f) ~ k < —ik
@—P(x’\/b) {/~<V > —iw

o iRV = fet(iF) ~ KV = ok + &
—L— x one gets
clearly k ~ 1/L V ~up+1/L2

Both estimates are in agreement with the exact result (5) J




