Advanced Nonlinear Physics international Master « Physics of Complex Systems »

Fourth Lecture

Beyond advection equations: advection-diffusion and KdV

tuesday, september $29^{\text {th }}, 2020$
website of (the 1st part of) the course:
http://lptms.u-psud.fr/nicolas_pavloff/enseignement/
advanced-nonlinear-physics/
does wave breaking always leads to
 ?
Answer is no in general. In the presence of viscosity this is indeed \simeq the case.
Modify traffic flow model: $Q(\rho) \rightarrow \tilde{Q}[\rho]=Q(\rho)-\nu \rho_{\times}($with $\nu>0)$
The conservation equation $\rho_{t}+\tilde{Q}_{x}=0$ now reads

$$
\begin{equation*}
\rho_{t}+c(\rho) \rho_{x}=\nu \rho_{x x} \quad \text { advection-diffusion equation } \tag{1}
\end{equation*}
$$

does wave breaking always leads to
 ?
Answer is no in general. In the presence of viscosity this is indeed \simeq the case.
Modify traffic flow model: $Q(\rho) \rightarrow \tilde{Q}[\rho]=Q(\rho)-\nu \rho_{x}($ with $\nu>0)$
The conservation equation $\rho_{t}+\tilde{Q}_{x}=0$ now reads

$$
\begin{equation*}
\rho_{t}+c(\rho) \rho_{x}=\nu \rho_{x x} \quad \text { advection-diffusion equation } \tag{1}
\end{equation*}
$$

The diffusive term induces damping:

$$
\rho(x, t)=\rho_{0}+\rho_{1}(x, t) \quad\left(\left|\rho_{1}\right| \ll \rho_{0}\right)
$$

linearization of (1) $\quad \rho_{1 t}+c_{0} \rho_{1 x}=\nu \rho_{1 x x} \quad$ where $c_{0}=c\left(\rho_{0}\right)$
Look for $\rho_{1}(x, t)=A \exp [i(k x-\omega t)]$
this leads to $-i \omega+c_{0} i k=-\nu k^{2} \quad\left(\omega=c_{0} k-i \nu k^{2}\right)$
The imaginary part of the frequency leads to a damping $\exp \left(-\nu k^{2} t\right)$.

Within model (1), for a Riemann initial condition, one looks for a shock-like
solution

Denote as $\xi=x-U t$ and look for $\rho(x, t)=\rho(\xi)$.
$\rho_{x}=\rho^{\prime}$ and $\rho_{t}=-U \rho^{\prime}$ where $\rho^{\prime}=\frac{d \rho}{d \xi}$
(1) reads

$$
[-U+c(\rho)] \rho^{\prime}=\nu \rho^{\prime \prime}
$$

$1^{\text {st }}$ integral:

$$
-U \rho+Q(\rho)+A=\nu \rho^{\prime}
$$

at $\xi \rightarrow \pm \infty: \quad-U \rho_{1}+Q\left(\rho_{1}\right)+A=0=-U \rho_{2}+Q\left(\rho_{2}\right)+A$
Hence $\quad U=\frac{Q\left(\rho_{2}\right)-Q\left(\rho_{1}\right)}{\rho_{2}-\rho_{1}}$
as for the schematic solution of the previous lecture (indeed: independent of ν)

Profile of the shock

Usual technique:

$$
d \xi=\frac{d \rho}{\rho^{\prime}} \leadsto \frac{\xi}{\nu}=\int^{\rho} \frac{d \varrho}{Q(\varrho)-U \varrho+A} \equiv F(\rho) \quad \leadsto \quad \rho=F^{-1}(\xi / \nu)
$$

ρ_{1} and ρ_{2} : zeros of the denominator, hence when $\rho \rightarrow \rho_{1 / 2}, \xi$ diverges and tends to $\pm \infty$ as it should.

Profile of the shock

Usual technique:

$$
d \xi=\frac{d \rho}{\rho^{\prime}} \leadsto \frac{\xi}{\nu}=\int^{\rho} \frac{d \varrho}{Q(\varrho)-U \varrho+A} \equiv F(\rho) \quad \leadsto \quad \rho=F^{-1}(\xi / \nu)
$$

ρ_{1} and ρ_{2} : zeros of the denominator, hence when $\rho \rightarrow \rho_{1 / 2}, \xi$ diverges and tends to $\pm \infty$ as it should.

$$
\left.\begin{array}{ll}
F^{-1}(\xi / \nu) \simeq F^{-1}(+\infty)=\rho_{2} & \text { when } \quad \xi / \nu \gg \text { sthg } \\
F^{-1}(\xi / \nu) \simeq F^{-1}(-\infty)=\rho_{1} & \text { when } \\
\xi / \nu \ll \text { sthg else }
\end{array}\right\} \sim \text { width of shock } \propto \nu
$$

Profile of the shock

Usual technique:

$$
d \xi=\frac{d \rho}{\rho^{\prime}} \leadsto \frac{\xi}{\nu}=\int^{\rho} \frac{d \varrho}{Q(\varrho)-U \varrho+A} \equiv F(\rho) \quad \leadsto \quad \rho=F^{-1}(\xi / \nu)
$$

ρ_{1} and ρ_{2} : zeros of the denominator, hence when $\rho \rightarrow \rho_{1 / 2}, \xi$ diverges and tends to $\pm \infty$ as it should.
$\left.\begin{array}{ll}F^{-1}(\xi / \nu) \simeq F^{-1}(+\infty)=\rho_{2} & \text { when } \\ F^{-1}(\xi / \nu) \simeq F^{-1}(-\infty)=\rho_{1} & \text { when } \\ \xi / \nu \ll \text { sthg } \\ F^{-1}\end{array}\right\} \sim$ width else shock $\propto \nu$

Here $d^{2} Q / d \rho^{2}=d c / d \rho>0$ and one has:
$Q(\rho)-U \rho+A<0$ between roots: $\rho^{\prime}<0$ as it should

Exercise
assume that $Q^{\prime \prime}(g)<0$ (as in taffre flow) and that Q is quadratic. solve exactly $\Xi / \nu=\int \frac{d \rho}{Q(\rho)-U \rho+A}$
solution: ore has here $\rho(\rho)-\cup_{\rho}+A=\alpha\left(\rho-\rho_{1}\right)\left(\rho_{2}-\rho\right)$ with $\alpha=$ positive $c^{s t}$

$$
\text { wiling } \frac{1}{\left(\rho-\rho_{1}\right)\left(\rho_{2}-\rho\right)}=\frac{1}{\rho_{2}-\rho_{1}}\left(\frac{1}{\rho_{-}-\rho_{1}}+\frac{1}{\rho_{2}-\rho}\right) \leadsto \int \frac{d \rho}{\left(\rho-\rho_{1}\right)\left(\rho_{2}-\rho_{1}\right)}=\frac{1}{\rho_{2}-\rho_{1}}\left(\ln \left(\rho-\rho_{1}\right)-\ln \left(\rho_{2}-\rho_{1}\right)\right)
$$

I choose to fir $\xi=0$ at $\rho=\frac{\rho_{1}+\rho_{2}}{2}$

$$
=\frac{1}{\rho_{2}-\rho_{1}} \ln \frac{\rho-\rho_{1}}{\rho_{2}-\rho_{1}}
$$

then $\frac{\alpha}{\nu} \xi=\int_{\frac{\rho_{1}+\rho_{2}}{2}}^{\rho} \frac{d \rho}{\left(\rho-\rho_{1}\right)\left(\rho_{2}-\rho\right)}=\frac{1}{\rho_{2}-\rho_{1}}\left[\ln \rho-\rho_{1}\right]_{\rho_{2}-\rho}^{\frac{\rho_{1}+\rho_{2}}{2}} \rho^{\rho}=\frac{1}{\rho_{2}-\rho_{1}} \ln \frac{\rho-\rho_{1}}{\rho_{2}-\rho}$
invert the above expression:

$$
\begin{aligned}
& \text { above expression }= \\
& \rho\left(c_{\xi}\right)=\frac{\rho_{1}+\rho_{2} \exp \left[\left(\rho_{2}-\rho_{1}\right) \alpha \cdot \xi / \nu\right]}{1+\exp \left[\left(\rho_{2}-\rho_{1}\right) \alpha \xi / \nu\right]}
\end{aligned}
$$

In some situations viscosity is negligeable, and realistic shocks involve dispersive effets. This is the case if (1) is replaced by

$$
\begin{equation*}
\rho_{t}+c(\rho) \rho_{x}=\nu \rho_{x x x} \tag{2}
\end{equation*}
$$

In some situations viscosity is negligeable, and realistic shocks involve dispersive effets. This is the case if (1) is replaced by

$$
\begin{equation*}
\rho_{t}+c(\rho) \rho_{x}=\nu \rho_{x x x} \tag{2}
\end{equation*}
$$

The new term induces dispersion:

$$
\begin{align*}
& \rho(x, t)=\rho_{0}+\rho_{1}(x, t) \quad \text { linearize: } \rho_{1 t}+c_{0} \rho_{1 x}=\nu \rho_{1 x x x} \\
& \text { look for plane wave solution: } \rho_{1}(x, t)=A \exp [i(k x-\omega t)] \\
& \text { this leads to }-i \omega+c_{0}(i k)=\nu(i k)^{3} \\
& \qquad \omega=c_{0} k+\nu k^{3} \quad \text { (3) } \\
& \text { plot for positive } \nu \tag{3}
\end{align*}
$$

model equations, $c(\rho)=\rho$

Eq. (2): $\rho_{t}+c(\rho) \rho_{x}=\nu \rho_{x x x}$ is the simplest way to include dispersion in the advection equation.

For weak nonlinearity $c(\rho) \simeq c_{0}+c_{1} \rho \quad$ by the way $c_{1} \lessgtr 0$ and $\nu \lessgtr 0$
$\xi=x-c_{0} t, \tau=t\left(\partial_{x}=\partial_{\xi}, \partial_{t}=-c_{0} \partial_{\xi}+\partial_{\tau}\right): \rho_{\tau}+c_{1} \rho \rho_{\xi}-\nu \rho_{\xi \xi \xi}=0$

Define $\left\{\begin{array}{l}t=\alpha \tau \\ x=\beta \xi \\ \rho=\gamma u\end{array} \quad \leadsto \alpha \gamma u_{t}+c_{1} \gamma^{2} \beta u u_{x}-\nu \gamma \beta^{3} u_{x x x}=0\right.$

Choose $\left\{\begin{array}{l}\alpha=1 \\ c_{1} \beta \gamma=1 \\ -\nu \beta^{3}=1\end{array} \leadsto u_{t}+u u_{x}+u_{x x x}=0\right.$

Korteweg-de Vries equation (shallow water waves, 1895)

Solution propagating without deformation $u(x, t)=u(\xi)$ with $\xi=x-V t$ $(V>0)$.
$-V u^{\prime}+u u^{\prime}+u^{\prime \prime \prime}=0 \quad$ first integral $\quad-V u+\frac{1}{2} u^{2}+u^{\prime \prime}=c_{1}$.
multiply by u^{\prime} and integrate again $\quad-\frac{1}{2} V u^{2}+\frac{1}{6} u^{3}+\frac{1}{2}\left(u^{\prime}\right)^{2}=c_{1} u+c_{2}$.
This is of the form

$$
\begin{equation*}
\frac{1}{2}\left(u^{\prime}\right)^{2}+W(u)=c_{2} \quad \text { with } \quad W(u)=\frac{1}{6} u^{3}-\frac{1}{2} V u^{2}-c_{1} u \tag{4}
\end{equation*}
$$

formally equivalent to $\frac{1}{2} m \dot{x}^{2}+V(x)=E_{\text {tot }}$. The effective potential $W(u)$ is a $3^{\text {rd }}$ order polynomial. If one wants a bounded solution, $W(u)$ should not be monotonous. $W^{\prime}(u)$ has real zeros if $V^{2}+2 c_{1}>0$, and then cancels for $u=V \pm \sqrt{V^{2}+2 c_{1}} \quad$ (sketch below for $c_{1}<0$)

Define $u_{0}=V-\sqrt{V^{2}+2 c_{1}}$.
Situation where $c_{2}=W\left(u_{0}\right)$:

Eq. (5) reads $\frac{1}{2}\left(u^{\prime}\right)^{2}=W\left(u_{0}\right)-W(u)=\frac{1}{6}\left(u-u_{0}\right)^{2}\left(u_{M}-u\right)$.
$u(\xi)=u_{0}+v(\xi) \sim\left(v^{\prime}\right)^{2}=\frac{1}{3} v^{2}\left(v_{M}-v\right)$ where $v_{M}=u_{M}-u_{0}=3\left(V-u_{0}\right)$ $\frac{d \xi}{\sqrt{3}}= \pm \frac{d v}{v \sqrt{v_{M}-v}}$ change of variable: $v=\frac{v_{M}}{\cosh ^{2} \theta} \leadsto \theta=\frac{1}{2} \xi \sqrt{v_{M} / 3}$

$$
\begin{equation*}
u(\xi)=u_{0}+\frac{3\left(V-u_{0}\right)}{\cosh ^{2}\left(\frac{1}{2} \sqrt{V-u_{0}} \xi\right)} \quad \text { where } \quad \xi=x-V t \tag{5}
\end{equation*}
$$

works also when $u_{0}<0$
Unique condition $V>u_{0}$
(which is equiv. to $c_{1}>0$)
(which is satisfied when $V^{2}+2 c_{1}>0$)

KdV soliton : hand-waving arguments

linear dispersion relation (3): $\omega=u_{0} k-k^{3} \sim V_{\varphi}=\frac{\omega}{k}=u_{0}-k^{2}$
V_{φ} is k-dependent: spreading. This spreading is compensated by non-linearity. Had hoc description: $\quad V_{\varphi} \sim u_{0}+v_{M}-\left.k^{2}\right|_{\text {typ }}$

$\left.k\right|_{\text {typ }} \sim 1 / L$
nonlinearity and dispersion compensate:

$$
v_{M} \sim 1 / L^{2}
$$

KdV soliton : hand-waving arguments

linear dispersion relation (3): $\omega=u_{0} k-k^{3} \sim V_{\varphi}=\frac{\omega}{k}=u_{0}-k^{2}$
V_{φ} is k-dependent: spreading. This spreading is compensated by non-linearity. Had hoc description: $\quad V_{\varphi} \sim u_{0}+v_{M}-\left.k^{2}\right|_{\text {typ }}$

$$
\left.k\right|_{\text {typ }} \sim 1 / L
$$

nonlinearity and dispersion compensate:

$$
v_{M} \sim 1 / L^{2}
$$

The outskirt of the solitary wave: small perturbation. linear expansion similar to what is done for $\exp [i(k x-\omega t)]$. dispersion relation: $\omega=f c t(k)$

clearly $\tilde{k} \sim 1 / L$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tilde{k} \leftrightarrow-i k \\
\tilde{k} V \leftrightarrow-i \omega
\end{array}\right. \\
& i \tilde{k} V=f c t(i \tilde{k}) \sim \tilde{k} V=u_{0} \tilde{k}+\tilde{k}^{3} \\
& \text { one gets } \\
& V \sim u_{0}+1 / L^{2}
\end{aligned}
$$

Both estimates are in agreement with the exact result (5)

