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Viscous shock I

does wave breaking always leads to �
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?
Answer is no in general. In the presence of viscosity this is indeed ' the case.

Modify traffic flow model: Q(ρ)→ Q̃[ρ] = Q(ρ)− νρx (with ν > 0)

The conservation equation ρt + Q̃x = 0 now reads

ρt + c(ρ)ρx = νρxx advection-diffusion equation (1)

The diffusive term induces damping:

ρ(x , t) = ρ0 + ρ1(x , t) (|ρ1| � ρ0)

linearization of (1) ρ1t + c0ρ1x = νρ1xx where c0 = c(ρ0)

Look for ρ1(x , t) = A exp[i(kx − ωt)]

this leads to −iω + c0ik = −νk2 (ω = c0k − iνk2)

The imaginary part of the frequency leads to a damping exp(−νk2t).
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Viscous shock II

Within model (1), for a Riemann initial condition, one looks for a shock-like

solution moving at constant velocity U.
Here: case c increasing function of ρ

Denote as ξ = x − Ut and look for ρ(x , t) = ρ(ξ).

ρx = ρ′ and ρt = −U ρ′ where ρ′ = dρ
dξ

(1) reads [−U + c(ρ)] ρ′ = νρ′′ 1st integral: −Uρ+ Q(ρ) + A = νρ′

at ξ → ±∞: −Uρ1 + Q(ρ1) + A = 0 = −Uρ2 + Q(ρ2) + A

Hence U = Q(ρ2)− Q(ρ1)
ρ2 − ρ1

as for the schematic solution of the
previous lecture
(indeed: independent of ν)
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Viscous shock III : −Uρ+ Q(ρ) + A = νρ′

Profile of the shock
Usual technique:

dξ = dρ
ρ′

;
ξ

ν
=
∫ ρ d%

Q(%)− U%+ A ≡ F (ρ) ; ρ = F−1(ξ/ν)

ρ1 and ρ2 : zeros of the denominator, hence when ρ→ ρ1/2, ξ diverges and
tends to ±∞ as it should.

F−1(ξ/ν) ' F−1(+∞) = ρ2 when ξ/ν � sthg
F−1(ξ/ν) ' F−1(−∞) = ρ1 when ξ/ν � sthg else

}
; width of shock ∝ ν

Here d2Q/dρ2 = dc/dρ > 0 and one has:

Q(ρ)− Uρ+ A < 0 between roots:
ρ′ < 0 as it should
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Exercice
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dispersion vs viscosity I

In some situations viscosity is negligeable, and realistic shocks involve
dispersive effets. This is the case if (1) is replaced by

ρt + c(ρ)ρx = νρxxx (2)

The new term induces dispersion:

ρ(x , t) = ρ0 + ρ1(x , t) linearize: ρ1t + c0 ρ1x = νρ1xxx

look for plane wave solution: ρ1(x , t) = A exp[i(kx − ωt)]

this leads to −iω + c0(ik) = ν(ik)3

ω = c0k + νk3 (3)

plot for positive ν
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dispersion vs viscosity II: different scenarii

ρ(x , t = 0)

x

model equations, c(ρ) = ρ

ρt + ρρx =



0 Hopf

ε ρxx Burgers

ε ρxxx KdV
t

steepening then
breaking

Taylor profile

dispersive shock
wave
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weakly dispersion and weak nonlinearty: KdV equation

Eq. (2): ρt + c(ρ)ρx = νρxxx is the simplest way to include dispersion in the
advection equation.

For weak nonlinearity c(ρ) ' c0 + c1ρ by the way c1 ≶ 0 and ν ≶ 0

ξ = x − c0t, τ = t (∂x = ∂ξ, ∂t = −c0∂ξ + ∂τ ): ρτ + c1ρρξ − νρξξξ = 0

Define


t = ατ

x = βξ

ρ = γu
; αγut + c1γ2βuux − νγβ3uxxx = 0

Choose


α = 1
c1βγ = 1
−νβ3 = 1

; ut + uux + uxxx = 0

Korteweg-de Vries equation (shallow water waves, 1895)
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soliton solution of KdV equation: ut + uux + uxxx = 0
Solution propagating without deformation u(x , t) = u(ξ) with ξ = x − Vt
(V > 0).

−Vu′ + uu′ + u′′′ = 0 first integral −Vu + 1
2u2 + u′′ = c1.

multiply by u′ and integrate again − 1
2Vu2 + 1

6u3 + 1
2 (u′)2 = c1u + c2.

This is of the form
1
2 (u′)2 + W (u) = c2 with W (u) = 1

6u3 − 1
2Vu2 − c1u (4)

formally equivalent to 1
2mẋ2 + V (x) = Etot . The effective potential W (u) is a

3rd order polynomial. If one wants a bounded solution, W (u) should not be
monotonous. W ′(u) has real zeros if V 2 + 2c1 > 0, and then cancels for
u = V ±

√
V 2 + 2c1 (sketch below for c1 < 0)
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soliton solution of KdV

Define u0 = V −
√

V 2 + 2c1.
Situation where c2 = W (u0):

Eq. (5) reads 1
2 (u′)2 = W (u0)−W (u) = 1

6 (u − u0)2(uM − u).

u(ξ) = u0 + v(ξ) ; (v ′)2 = 1
3v 2(vM − v) where vM = uM − u0 = 3(V − u0)

dξ√
3

= ± dv
v
√

vM − v change of variable: v = vM
cosh2 θ

; θ = 1
2ξ
√

vM/3

u(ξ) = u0 + 3(V − u0)
cosh2

( 1
2
√

V − u0 ξ
) where ξ = x − Vt (5)

works also when u0 < 0 (which is equiv. to c1 > 0)
Unique condition V > u0 (which is satisfied when V 2 + 2c1 > 0)
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KdV soliton : hand-waving arguments
linear dispersion relation (3): ω = u0k − k3 ; Vϕ = ω

k = u0 − k2

Vϕ is k-dependent: spreading. This spreading is compensated by non-linearity.
Had hoc description: Vϕ ∼ u0 + vM − k2|typ

6
?

vM

k|typ ∼ 1/L
nonlinearity and dispersion compensate:

vM ∼ 1/L2

The outskirt of the solitary wave: small perturbation. linear expansion similar
to what is done for exp[i(kx − ωt)]. dispersion relation: ω = fct(k)

clearly k̃ ∼ 1/L

{
k̃ ↔ −ik
k̃V ↔ −iω

i k̃V = fct(i k̃) ; k̃V = u0k̃ + k̃3

one gets

V ∼ u0 + 1/L2

Both estimates are in agreement with the exact result (5)
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