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Formation of dispersive shock waves in a saturable nonlinear medium
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We use the Gurevich-Pitaevskii approach based on the Whitham averaging method for studying the formation
of dispersive shock waves in an intense light pulse propagating through a saturable nonlinear medium. Although
the Whitham modulation equations cannot be diagonalized in this case, the main characteristics of the dispersive
shock can be derived by means of an analysis of the properties of these equations at the boundaries of the shock.
Our approach generalizes a previous analysis of steplike initial intensity distributions to a more realistic type of
initial light pulse and makes it possible to determine, in a setting of experimental interest, the value of measurable
quantities such as the wave-breaking time or the position and light intensity of the shock edges.
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I. INTRODUCTION

The propagation of nonlinear waves in dispersive media
has attracted much attention in various fields of research
such as water waves, plasma physics, nonlinear optics, Bose-
Einstein condensates, and others. In particular, the expansion
of an initial state with a fairly smooth and large profile is
accompanied by gradual steepening followed by wave break-
ing resulting in the formation of a dispersive shock wave
(DSW), and this phenomenon was experimentally observed,
for example, in Bose-Einstein condensates [1–3] and non-
linear optics [4–9]. In these systems, the dynamics of the
pulse is well described by the nonlinear Schrödinger (NLS)
or Gross-Pitaevskii equation and the initial stage of evolution
admits a purely hydrodynamic description in terms of the
classical Riemann method (see, e.g., Refs. [10–14]). After the
wave-breaking moment, when DSWs are formed, the evolu-
tion of the wave structure can be described by the Whitham
method [15–18]. In the case of cubic Kerr-like nonlinearity the
NLS equation is completely integrable, hence the Whitham
modulation equations can be put in a diagonal Riemann form
[19,20], and, with the use of the Gurevich-Pitaevskii approach
[21], it has been possible to develop a detailed analytic theory
of the evolution of DSWs [12,22–24]. This produces an ex-
cellent description of experiments [6,7] on evolution of initial
discontinuities in the intensity distribution of optical pulses
propagating in optical fibers.

As first understood by Sagdeev [25] in the context of vis-
cous stationary shocks the widths of which are much greater
than a typical soliton width, the formation of DSWs is a
universal phenomenon which occurs in a number of systems
demonstrating nonlinear dispersive waves. In particular, the
formation of DSWs has been observed in the propagation
of light beams through a photorefractive medium [26,27].
However, in such a system the nonlinearity is not of the Kerr
type, and the theory of Refs. [12,22–24] thus needs to be

modified. Of course, the validity of the Whitham averaging
approach for the description of the modulations of a nonlin-
ear wave does not depend on the complete integrability of
the wave equation. Nevertheless, it is difficult to put it into
practice for noncompletely integrable equations because of
the lack of a diagonalized form of the Whitham modulation
equations.

The first general statement about the properties of DSWs
applicable to a nonintegrable situation was made by Gure-
vich and Meshcherkin in Ref. [28]. In this work the authors
claimed that, when a DSW is formed after wave breaking of a
“simple wave,” that is, of a wave for which one of the nondis-
persive Riemann invariants is constant, then the value of this
constant Riemann invariant remains the same at both extrem-
ities of the DSW. In other words, this means that such a wave
breaking leads to the formation of a single DSW, at variance
with the situation with viscous shocks where more compli-
cated wave structures are generated (see, e.g., Ref. [29]). The
next important step was made by El [30], who showed that,
in situations of the Gurevich-Meshcherkin type, when the
Whitham equations at the small-amplitude edge include the
linear “number of waves” conservation law, this equation can
be reduced to an ordinary differential equation the solution of
which provides the wave number of a linear wave at this edge.
Under some reservations, a similar approach can be developed
for the soliton edge of the DSW. As a result, one can calculate
the speeds of both edges (solitonic, the large amplitude one,
and linear, the small amplitude one) in the important case
of a steplike initial condition. In particular, the method can
be applied to boxlike initial distributions of intensity when
the two sharp edges are considered as perfect steps. In this
case two DSWs propagate in opposite directions until they
collide at the center of the distribution with formation of more
complicated multiphase quasiperiodic waves. This idealized
form of a pulse explains qualitatively the nonlinear evolution
of pulses from piecewise smooth initial distributions to DSWs
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and eventually to dark soliton trains in a defocusing nonlin-
ear medium. As a result, this approach was applied to many
concrete physical situations [30–38]. However, it often occurs
that an initial pulse more realistic than a steplike distribution
is essential for a correct account of the experimental setup.
Such a generalization of the theory was suggested in Ref. [39]
in the case of a simple-wave-breaking event, leading to the
formation of so-called quasisimple DSWs. This approach was
then successfully applied to shallow water waves described by
the Serre equation [40]. In the present paper, we use the same
approach to study the propagation of optical pulses and beams
through a saturable nonlinear medium. This makes it possible
to considerably extend the theory of Ref. [32] and provides
a more realistic explanation of the results of Ref. [27] and of
future experimental studies in nonlinear optics [41].

II. FORMULATION OF THE PROBLEM

The formation of DSWs has been observed in the spatial
evolution of light beams propagating through self-defocusing
photorefractive crystals in Refs. [26,27]. Initial nonuniformi-
ties of the beam give rise to breaking singularities resulting
in the formation of dispersive shocks. As is well known [42],
in the paraxial approximation, the propagation of the complex
amplitude A = A(X,Y, Z ) of the electric field of a monochro-
matic beam is described by the equation

i
∂A

∂Z
+ 1

2k0n0
�⊥A + k0δn(I )A = 0, (1)

where k0 = 2π/λ is the carrier wave number, Z is the coor-
dinate along the beam, X and Y are transverse coordinates,
�⊥ = ∂2/∂2X + ∂2/∂2Y is the transverse Laplacian, n0 is the
linear refractive index, and δn is a nonlinear index which
depends on the light intensity I = |A|2. It is often the case
that the nonlinearity is not of pure Kerr type (i.e., not exactly
proportional to I) but saturates at large intensity. We consider
here the case of a defocusing saturable medium where δn is of
the form

δn = −n2
I

I + Isat
, (2)

where n2 is a constant positive coefficient. This situation is en-
countered, for instance, in semiconductor doped glasses [43]
and in photorefractive media [44]. In this latter case n2 linearly
depends on the applied electric field and on the electro-optical
index. A near-resonant laser field propagating inside a hot
atomic vapor is also described by a saturable mixed absorptive
and dispersive susceptibility [45,46]. At negative detuning the
nonlinearity is defocusing, and if the detuning is large enough
absorption effects are small compared to nonlinear ones. As a
result, the propagation of the beam is described by an envelope
equation which can be cast in the form of Eq. (1), with a
nonlinearity of the type (2) (see e.g., Refs. [47,48]).

We define dimensionless units by choosing a reference
intensity Iref which can be chosen, for instance, as the back-
ground intensity in the situation considered in Refs. [26,27]
where the Z = 0 light distribution has the form of a region
of decreased [26] or increased [27] light intensity perturbat-
ing a uniform background. Another natural choice would be

Iref = Isat. We define dimensionless variables

t = k0n2
Iref

Isat
Z, x = k0

√
n0 n2

Iref

Isat
X,

y = k0

√
n0 n2

Iref

Isat
Y, ψ = A√

Iref
. (3)

We consider a geometry where the transverse profile is trans-
lationally invariant and depends on a single coordinate x.
Then, the dimensionless generalized NLS equation (1) takes
the form

iψt + 1

2
ψxx − |ψ |2

1 + γ |ψ |2 ψ = 0, (4)

where γ = Iref/Isat. When the light intensity is small com-
pared to the saturation intensity, i.e., when γ |ψ |2 � 1, Eq. (4)
reduces to the usual defocusing NLS equation, but at large
intensity the nonlinearity saturates.

The transition from the function ψ to the dimensionless in-
tensity ρ and chirp u is performed by means of the Madelung
transform:

ψ (x, t ) =
√

ρ(x, t ) exp

[
i
∫ x

u(x′, t )dx′
]
. (5)

After substitution of this expression into Eq. (4), separation of
the real and imaginary parts, and differentiation of one of the
equations with respect to x, we get the system

ρt + (ρu)x = 0,

ut + uux + ρx

(1 + γ ρ)2
+

(
ρ2

x

8ρ2
− ρxx

4ρ

)
x

= 0. (6)

In the problem of light beam propagation, the last term of the
left-hand side of the second equation accounts for diffractive
effects. It is sometimes referred to as a “dispersive term,” or
“quantum pressure” or “quantum potential” depending on the
context. The Madelung transform reveals that light propagat-
ing in a nonlinear medium behaves as a fluid, amenable to a
hydrodynamic treatment (see Ref. [49]). The light intensity
ρ in the hydrodynamic formulation (6) is interpreted as the
density of this effective fluid and the chirp u is the effective
flow velocity. The coordinate t along the beam plays the role
of time, and in this case the last term in (6) should be referred
to as “dispersive.”

The present paper in organized in two main parts. In the
first one (Sec. III) we describe the dispersionless evolution of
a light pulse in the presence of a background. After a certain
distance, the wave breaks and a DSW is formed. The main
characteristics of this shock wave are studied in the second
part of the paper (Sec. IV).

We consider the case where the initial profile has the form
of an increased parabolic intensity bump over a constant and
stationary background [with u(x, t = 0) = 0]. If this profile
is smooth enough (in a way which will be quantified in
Sec. III B) the separation of the initial bump in two coun-
terpropagating pulses can be described by a dispersionless
approach: this is performed in Sec. III. The difficulty lies
in the fact that the initial profile is not a simple wave in a
hydrodynamic sense of this terminology. This means that the
regions where the initial nondispersive Riemann invariants

032215-2



FORMATION OF DISPERSIVE SHOCK WAVES IN A … PHYSICAL REVIEW E 102, 032215 (2020)

depend on position significantly overlap. Therefore, to study
this problem, we should resort to the Riemann hodograph
method [10–14], on which we focus for the current photore-
fractive system in Sec. III A. Since the initial intensity profile
has a discontinuity in its first derivative, then in the process
of evolution two simple rarefaction waves are formed along
the edges (they are described in Sec. III C), and the central
part is the region where the hodograph transform should be
employed. Due to nonlinearity, the profiles at both extremities
of the pulse gradually steepen and this leads to wave breaking
after some finite sample length, or equivalently some finite
“time” which we denote as the wave-breaking time, tWB. Typi-
cally this occurs in a region where only one Riemann invariant
varies, and the corresponding DSW results from the breaking
of a simple wave, which is the case considered in the second
part of the present paper.

After the wave breaking, the dispersive effects can no
longer be neglected. For their description, we resort in Sec. IV
to Whitham modulation theory [15,16], which is based on the
large difference in spatial and temporal scales between the
rapid nonlinear oscillations and their slow envelope. How-
ever, Eq. (4) being nonintegrable, the Whitham modulation
equations cannot be transformed to a diagonal Riemann form:
the lack of Riemann invariants hinders the application of the
full Whitham modulation theory to our system after wave
breaking. Nonetheless, the method of Refs. [30,39] is based
on the universal applicability of Whitham’s “number of waves
conservation law” as well as on the conjecture of the applica-
bility of its soliton counterpart to the above mentioned class
of initial conditions. Such an approach is substantiated by
comparison with similar situations in the case of completely
integrable wave equations. It makes it possible to calculate the
limiting characteristic velocities of the Whitham modulation
equations at the boundary with the smooth part of the pulse
the evolution of which obeys the dispersionless approxima-
tion equations, even after the wave-breaking time tWB. We
will treat in two separate subsections the case of a positive
(Sec. IV A) and of a negative (Sec. IV B) initial intensity
pulse.

Having formulated the problem, we now proceed to the
study of the dispersionless stage of evolution.

III. DISPERSIONLESS STAGE

For smooth enough wave patterns we can neglect the dis-
persive term in the second equation of the system (6) and the
initial evolution of the system is described by the so-called
dispersionless equations which can be put in a form equivalent
to the equations of inviscid gas dynamics:

ρt + (ρu)x = 0, ut + uux + c2(ρ)

ρ
ρx = 0, (7)

where

c(ρ) =
√

ρ

1 + γ ρ
(8)

is the local sound velocity in the medium. These equations
can be cast into a diagonal form by introducing new variables,

known as the Riemann invariants

r±(x, t ) = u(x, t )

2
± 1

2

∫ ρ(x,t )

0

c(ρ ′)
ρ ′ dρ ′

= u(x, t )

2
± 1√

γ
arctan

√
γ ρ(x, t ), (9)

the evolution of which is described by the following equa-
tions:

∂r+
∂t

+ v+(r+, r−)
∂r+
∂x

= 0, (10a)

∂r−
∂t

+ v−(r+, r−)
∂r−
∂x

= 0, (10b)

with Riemann velocities

v± = u ± c. (11)

In this last equation, the dependence of u and c on r+ and r−
is obtained from Eqs. (9). This yields

u = r+ + r−, (12)

whereas c is computed as follows: one inverts the relation

r+ − r− =
∫ ρ

0

c(ρ ′)
ρ ′ dρ ′, (13)

which yields

ρ = 1

γ
tan2

[√
γ

2
(r+ − r−)

]
, (14)

and then one evaluates c[ρ(r+ − r−)] from (8). Once the so-
lutions of Eqs. (10) are found and the Riemann invariants are
known, then the physical variables are obtained from relations
(12) and (14).

A. Riemann method

The Riemann method which we present now, enables one
to find the solutions of Eqs. (10) in the generic region where
both Riemann invariants are changing. Riemann noticed that
Eqs. (10) become linear with respect to the independent vari-
ables x and t if these are considered as functions of the
Riemann invariants: x = x(r+, r−), t = t (r+, r−). After this
“hodograph transform” from the real space (x, t ) to the hodo-
graph plane (r+, r−) we arrive at the system

∂x

∂r−
− v+(r+, r−)

∂t

∂r−
= 0,

∂x

∂r+
− v−(r+, r−)

∂t

∂r+
= 0. (15)

It should be noticed that the Jacobian of this transformation is
equal to

J =
∣∣∣∣ ∂ (x, t )

∂ (r+, r−)

∣∣∣∣ = ∂t

∂r+

∂t

∂r−
(v− − v+), (16)

thus the hodograph transform breaks down whenever
∂t/∂r+ = 0 (or ∂t/∂r− = 0), which, by virtue of Eqs. (15),
implies ∂x/∂r+ = 0 (or ∂x/∂r− = 0). This means that this
approach makes sense only in a region where both Riemann
invariants are position dependent.
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We look for the solution of the system (15) in the form

x − v+(r+, r−)t = w+(r+, r−), (17a)

x − v−(r+, r−)t = w−(r+, r−). (17b)

Inserting the above expressions in the system (15) yields, with
account of Eqs. (11),

1

w+ − w−

∂w+
∂r−

= 1

v+ − v−

∂v+
∂r−

,

1

w+ − w−

∂w−
∂r+

= 1

v+ − v−

∂v−
∂r+

. (18)

From expressions (11), (12), and (14) one sees that
∂v+/∂r− = ∂v−/∂r+. This implies that ∂w+/∂r− =
∂w−/∂r+; we can thus represent w± in terms of a type
of “potential” function W (r+, r−):

w+ = ∂W

∂r+
, w− = ∂W

∂r−
. (19)

Inserting the expressions (19) into the system (18) shows, with
account of Eqs. (11), (12), and (14), that W is a solution of the
Euler-Poisson equation

∂2W

∂r+∂r−
+ a(r+, r−)

∂W

∂r+
+ b(r+, r−)

∂W

∂r−
= 0, (20)

with

a(r+, r−) = −b(r+, r−)

= − 1

v+ − v−

∂v+
∂r−

= −1 − c′(r+ − r−)

2c(r+ − r−)
, (21)

where c′(r) = dc/dr and c is computed as a function of r =
r+ − r− from expressions (8) and (14).

The characteristics of the second order partial differential
equation (20) are the straight lines r+ = ξ = const and r− =
η = const, parallel to the coordinates axis in the hodograph
plane. The Riemann method is based on the idea that one
can find the solution of the Euler-Poisson equation in a form
similar to the d’Alembert solution of the wave equation, with
explicit account of the initial conditions which fix the value
of W on some curve C in the hodograph plane. These initial
data are transferred along the characteristics into the domain
of interest, so that the function W can be found at any point
P = (ξ, η).

Riemann showed (see, e.g., Refs. [50,51]) that W (P) can
be represented in the form

W (P) = 1

2
(RW )A + 1

2
(RW )B −

∫ B

A
(V dr+ + Udr−), (22)

where the points A and B are projections of the “observation”
point P onto C along the r+ and r− axis, respectively. The
integral in (22) is performed along C, with

U = 1

2

(
R

∂W

∂r−
− W

∂R

∂r−

)
+ aW R,

V = 1

2

(
W

∂R

∂r+
− R

∂W

∂r+

)
− bW R. (23)

R(r+, r−; ξ, η) is the “Riemann function” which satisfies the
equation

∂2R

∂r+∂r−
− a

∂R

∂r+
− b

∂R

∂r−
−

(
∂a

∂r+
+ ∂b

∂r−

)
R = 0, (24)

with the additional conditions
∂R

∂r+
− bR = 0 along the characteristic r− = η,

∂R

∂r−
− aR = 0 along the characteristic r+ = ξ, (25)

and R(ξ, η; ξ, η) = 1.
One might think, looking at Eq. (24), that we did not

progress towards the determination of the solution to Eq. (20).
But we have replaced the initial conditions for Eq. (20) by
standard boundary conditions (25) for Eq. (24), independent
of the initial values of ρ and u. The knowledge of the initial
properties of the flow is encapsulated in the known value of
W along C, which appears in the right-hand side of Eq. (22).

B. General solution

We now consider a specific type of initial condition, for
which u(x, 0) = 0, with an initial parabolic bump profile
ρ(x, 0) = ρ(x) with

ρ(x) =
{
ρ0 + (ρm − ρ0)

(
1 − x2

l2

)
, |x| � l,

ρ0, |x| > l.
(26)

Here ρ0 is the background intensity, and l and ρm are the
width and maximal intensity of the initial bump. This initial
density profile is represented in the left panel on the top row
of Fig. 1; it is an even function of x; generalization to non-
symmetric distributions is straightforward. If l � ρm − ρ0,
then deviations of the exact solution from its hydrodynamic
approximation are negligibly small almost everywhere, except
in small regions at the boundaries of the bump.

We denote the characteristic values of the Riemann invari-
ant as r0 and rm with

r0 = r+(|x| � l, t = 0) = 1√
γ

arctan
√

γ ρ0, (27a)

rm = r+(x = 0, t = 0) = 1√
γ

arctan
√

γ ρm (27b)

(see the left panel in the middle row of Fig. 1). It is convenient
to denote by x(r) the positive branch of the reciprocal function
of r+(x, t = 0):

r+(x, 0) = 1

2

∫ ρ

0

c(ρ ′)
ρ ′ dρ ′. (28)

One gets

ρ(r+) = 1

γ
tan2

(√
γ r+

)
, (29)

and

x(r) = l

√
ρm − ρ(r)

ρm − ρ0
. (30)

For the zero velocity initial profile we consider, Eq. (12)
shows that the curve C which represents the initial condition
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FIG. 1. Behavior of characteristic quantities of the system. Each column corresponds to a given value of t ; each row corresponds to a
different type of quantity. The top row displays the light intensity distribution ρ(x, t ) plotted as a function of x. Both the numerical solution of
Eq. (4) (red thick curves) and the analytic dispersionless solution (blue thin curves) are shown. The initial state is represented in the left panel
and corresponds to Eq. (26) with ρ0 = 0.5, ρm = 2, l = 20. The dynamics of the system is governed by Eq. (4) with γ = 1. The middle row
displays the (analytic result for) the Riemann invariants r+(x, t ) (r+ ∈ [r0, rm]) and r−(x, t ) (r− ∈ [−rm, −r0]) plotted as functions of x. The
set of initial conditions corresponds to r0 = 0.651 and rm = 0.955. Arrows indicate the direction of propagation. In the top and middle row the
dashed lines divide space into several regions according to the behavior of the Riemann invariants. The roman numbers indicate simple-wave
regions; the arabic ones correspond to regions in which both Riemann invariants are position dependent. The bottom row represents the behavior
of Riemann invariants in the hodograph plane. The black dotted lines show the boundaries of the domain [r0, rm] × [−rm, −r0]. Arabic and
roman numbers correspond to the notations of the regions from the top rows of the figure. Here the red curves (first column) correspond to
t = 0, the blue curves (second column) correspond to t = 10, the orange curves (third column) correspond to t = 40, and the green curves
(last column) correspond to t = 100. The red dotted line represents the diagonal coinciding with the initial curve C.

(r+(x, 0), r−(x, 0)) in the hodograph plane is a segment of the
antidiagonal r− = −r+ = −r. Along it Eqs. (17) with t = 0
give

∂W

∂r−

∣∣∣∣
C

= ∂W

∂r+

∣∣∣∣
C

= x, (31)

hence W is constant along C. The value of this constant can be
arbitrarily fixed to zero: W (r,−r) = 0, and expressions (23)
reduce to

U = x

2
R(r,−r; ξ, η), V = −x

2
R(r,−r; ξ, η). (32)

The top row of Fig. 1 shows the light intensity ρ(x, t )
plotted as a function of position for different t . The middle
row represents the corresponding distributions of the Riemann
invariants. At a given time, the x axis can be considered
as divided into several domains, each requiring a specific
treatment. Each domain is characterized by the behavior of
the Riemann invariants and is identified in the upper row

of Fig. 1. The domains in which both Riemann invariants
depend on x are labeled by arabic numbers and the ones in
which only one Riemann invariant depends on x are labeled
by roman numbers. As was noted above, at the initial mo-
ment r+ = −r−, as can be seen, e.g., in the left panel of the
middle row of Fig. 1. Then, one of the Riemann invariants
begins to move in the positive direction of the x axis, and the
other moves in the opposite direction. This behavior initially
leads to the configuration represented in the second column of
Fig. 1, where two simple-wave regions (I and III) and a new
region (labeled “2”) have appeared. At later times (i.e., for
longer sample lengths) region 2 persists while regions 1 and 3
vanish and new simple-wave regions IIl and IIr appear; this is
illustrated in the third columns of Fig. 1. At even larger lengths
(right column of Fig. 1), region 2 also disappears and only
simple-wave regions persist: The initial pulse has completely
split into two pulses propagating in opposite directions.

It is worth noticing that the wave breaking corresponds
to an overlap between different regions, which results in a
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FIG. 2. Distributions of r+ and r− in the four-sheeted hodograph
plane (see the text). The curves are the unfolded versions of the ones
of the bottom row of Fig. 1. The red line corresponds to the input
distribution (t = 0), while other colors correspond to other values of
t , with the same color code as in the bottom row of Fig. 1. Curved
arrows indicate the direction of unfolding of the domain [r0, rm] ×
[−rm, −r0]. The whole region above the red line is unreachable for
the initial distribution which we consider.

multivalued solution. If we consider, for instance, the right
propagating pulse, at the wave-breaking time tWB, region III
starts overlapping with the (unnamed) quiescent region where
both Riemann invariants are constants, at the right of the plot.
Then these two regions both overlap with region IIr . These
two configurations are, respectively, illustrated in the columns
t = 40 and t = 100 of Fig. 1. We will not dwell on this
aspect in detail, since a multivalued solution is nonphysical
and, when dispersion is taken into account, it is replaced by a
dispersive shock wave (considered in Sec. IV).

The bottom row in Fig. 1 represents the behavior of r+ and
r− in the hodograph plane. Here, as before, the simple-wave
regions are indicated by roman numerals while the arabic nu-
merals correspond to regions where both Riemann invariants
depend on x. In each of the three domains 1, 2, and 3, the
solution W of the Euler-Poisson equation has a different ex-
pression. In order to describe these three branches, following
Ludford [52], we introduce several sheets in the characteristic
plane by unfolding the domain [r0, rm] × [−rm,−r0] into a
four times larger region as illustrated in Fig. 2. The potential
W (r+, r−) can now take a different form in each of the re-
gions labeled 1, 2, and 3 in Fig. 2 and still be considered as
single valued. From the relation (22) we can obtain W (ξ, η)
in regions 1 and 3, by computing the right-hand side integral
along the antidiagonal C, between the points A of coordinates
(−η, η) and B of coordinates (ξ,−ξ ):

W (3)(ξ, η) = −W (1)(ξ, η) =
∫ ξ

−η

x(r)R(r,−r; ξ, η)dr. (33)

The difference in signs in the above expressions of W comes
from the fact that x = ∓x(r) depending on if one is in re-
gion 1 or 3. For the region 2, using unfolded surfaces (see
Fig. 2 and also Ref. [14]) and upon integrating by parts one

obtains

W (2)(ξ, η) = (RW (1) )B + (RW (3) )A

+
∫ C

A

(
∂R

∂r−
− aR

)∣∣∣∣
r+=rm

W (3)dr−

−
∫ B

C

(
∂R

∂r+
− bR

)∣∣∣∣
r−=−rm

W (1)dr+, (34)

where the coordinates of the relevant points are A = (rm, η),
B = (ξ,−rm), and C = (rm,−rm).

From the conditions (25) one can find that

R(r+, η; ξ, η) =
√

c(ξ − η)

c(r+ − η)
exp

(
1

2

∫ r+−η

ξ−η

dr

c(r)

)
,

R(ξ, r−; ξ, η) =
√

c(ξ − η)

c(ξ − r−)
exp

(
1

2

∫ ξ−r−

ξ−η

dr

c(r)

)
. (35)

These expressions suggest that R can be looked for in the form

R(r+, r−; ξ, η) =
√

c(ξ − η)

c(r+ − r−)
exp

(
1

2

∫ r+−r−

ξ−η

dr

c(r)

)
× F (r+, r−; ξ, η), (36)

where F (r+, η; ξ, η) = F (ξ, r−; ξ, η) = 1. For small enough
t , when ξ is close to rm and η is close to −rm, the inte-
grand functions in Eq. (34) are small by virtue of Eqs. (25);
accordingly F 	 1 in Eq. (36). Such an approximation has
been already used in Ref. [12] for discarding the integrated
terms in the right-hand side of Eq. (34), and showed good
applicability to the situation when γ = 0. Thus, using this
approximation, we obtain an approximate expression for the
Riemann function (see also Ref. [14]):

R(r+, r−; ξ, η) 	 R(r+ − r−, ξ − η), (37)

where

R(r1, r2) =
√

c(r2)

c(r1)
exp

(
1

2

∫ r1

r2

dr

c(r)

)

=
√

c(r2)ρ(r1)

c(r1)ρ(r2)
, (38)

where ρ is expressed as a function of r1 (or r2) through
Eq. (14). A simple calculation yields

R(r1, r2) =
√√√√ sin

(√
γ

2 r1
)

cos3
(√

γ

2 r2
)

sin
(√

γ

2 r2
)

cos3
(√

γ

2 r1
) . (39)

We can thus adapt expressions (33) for W in regions 1 and 3:

W (1)(r+, r−) = −W (3)(r+, r−)

= −
∫ r+

−r−
x(r)R(2r, r+ − r−)dr, (40)

whereas expression (34) in region 2 now reads

W (2)(r+, r−) = R(rm − r−, r+ − r−)W (3)(rm, r−)

+R(r+ + rm, r+ − r−)W (1)(r+,−rm). (41)
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In expressions (40) and (41) we have made, with respect to
Eqs. (33) and (34), the replacements ξ → r+ and η → r−
so that these expressions can be used in Eq. (19) and then
Eq. (17). The knowledge of the expression of W in the regions
where both Riemann invariants vary (regions 1, 2, and 3)
makes it possible to compute r±(x, t ) in these regions, as
detailed in Ref. [14]. The density and velocity profiles are then
obtained from Eqs. (12) and (14).

C. Simple-wave solution

In the simple-wave regions, where one of the Riemann
invariants is constant, the hodograph transform does not ap-
ply. In such a region, however, the solution of the problem
is relatively easy. For instance, during the initial stages of
evolution, when the regions I and III still exist, we can solve
the problem by means of the method of characteristics. We
look for a solution in the form

x − v+(r+,−r0)t = hIII(r+), for region III,

x − v−(r0, r−)t = hI(r−), for region I, (42)

where the functions hIII and hI are determined by boundary
conditions: the simple-wave solution should match with the
solution in regions where both Riemann invariants vary at the
interface between the two regions (III and 3 or I and 1). This
yields from Eqs. (17)

x − v+(r+,−r0)t = ∂W (3)(r+,−r0)

∂r+
, (43)

for the simple-wave region III, and

x − v−(r0, r−)t = ∂W (1)(r0, r−)

∂r−
, (44)

for region I.
After a certain time, two new simple-wave regions appear,

which are denoted as IIl and IIr in Fig. 1. Similarly, we get

x − v+(r+,−r0)t = ∂W (2)(r+,−r0)

∂r+
, (45)

for region IIr , and for region IIl

x − v−(r0, r−)t = ∂W (2)(r0, r−)

∂r−
. (46)

From the results presented in Secs. III B and III C we
obtain a complete description of the dispersionless stage of
evolution of the system. The top row of Fig. 1 displays a
comparison of the results of this approach with the numerical
solution of Eq. (4). There is a very good agreement up to
the wave-breaking moment. For subsequent time (t > tWB) the
dispersionless evolution becomes multivalued in some regions
of space (indicating a breakdown of the approach and the
occurrence of a DSW), but remains accurate in others which
we denote as “dispersionless regions” below. Note that these
regions can be precisely defined only after the extension of
the DSW has been properly determined. This question is ad-
dressed in the following section.

IV. DISPERSIVE SHOCK WAVES

The basic mathematical approach for the description of
DSWs is based on the Whitham modulation theory [15,16].
This treatment relies on the large difference between the
fast oscillations within the wave and the slow evolution of
its envelope. It results in the so-called Whitham modula-
tion equations which constitute a very complex system of
nonlinear first order differential equations. Whitham’s great
achievement was to be able to transform such a system—in the
very important and universal case of the Korteweg–de Vries
(KdV) equation—into a diagonal (Riemann) form analogous
to the system (10). This achievement enabled Gurevich and
Pitaevskii [21] to successfully apply the Whitham theory to
the description of DSWs dynamics for the KdV equation in
a system experiencing simple-wave breaking. It became clear
later that the possibility to diagonalize the system of Whitham
equations is closely related with the complete integrability of
the KdV equation, and Whitham theory was extended to many
completely integrable equations, as described, for example, in
the reviews [53,54].

However, a large number of equations are not completely
integrable—among which is Eq. (4)—and require the devel-
opment of a more general theory for describing DSWs. An
important success in this direction was obtained by El, who
developed in Ref. [30] a method that made it possible to find
the main parameters of a DSW arising from the evolution of
an initial discontinuity. Recently, it was shown in Ref. [39]
that El’s method can be generalized to a substantial class of
initial conditions, such as simple waves, for which the limiting
expressions for the characteristic velocities of the Whitham
system at the edges of the DSW are known from general
considerations as being equal to either the group velocity of
the wave at the boundary with a smooth solution or the soliton
velocity at the same boundary. This information, together with
the knowledge of the smooth solution in the dispersionless re-
gions, is enough to find the law of motion of the corresponding
edge of the DSW for an arbitrary initial profile. We will use
the methods of Ref. [39] to find the dynamics of the edges of
the DSW in our case.

The specific dispersive properties of the system under
consideration enter into the general theory in the form of
Whitham’s “number of waves” conservation law [15,16]:

∂k

∂t
+ ∂ω(k)

∂x
= 0, (47)

where k = 2π/L and ω = kV are the wave vector and the
angular frequency of a single phase nonlinear wave, L be-
ing its wavelength and V its phase velocity. Because of the
large difference between the scales characterizing the en-
velope and those characterizing the oscillations within the
wave, Eq. (47) is valid along the whole DSW. At the small
amplitude edge of the DSW the function ω(k) becomes the
linear dispersion relation ωlin(k) in the system. In our case,
this dispersion law is obtained by linearizing Eqs. (6) around
the uniform state ρ = ρ0, u = u0 (we keep here a nonzero
value of u0 for future convenience); that is, we write ρ(x, t ) =
ρ0 + ρ ′(x, t ) and u(x, t ) = u0 + u′(x, t ), where |ρ ′| � ρ0 and
|u′| � u0. A plane wave expansion of ρ ′ and u′ immediately
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yields

ωlin(k) ≡ ku0 ± k

√
ρ0

(1 + γ ρ0)2
+ k2

4
. (48)

Thus, if one can calculate the wave number at the small ampli-
tude edge of the DSW, one obtains the speed of propagation of
this edge as being equal to the corresponding group velocity
vg(k) = dωlin/dk.

Unfortunately, this approach cannot be applied straight-
forwardly at the soliton edge of a DSW. In spite of that, El
showed [30] that under some additional assumptions one can
obtain from Eq. (47) an ordinary differential equation relating
the physical variables along the characteristic of Whitham
equations at the soliton edge of the DSW. The idea is based on
the following remark: At the tails of a dark soliton, the density
profile tends to the background distribution as ∝exp(−k̃|x −
Vst |), where Vs is the speed of the soliton. Of course a soliton
propagates at the same velocity as its tails, which, being small
perturbations of the background, obey the linear dispersion
law ω = ωlin(k). Hence, as was noticed by Stokes [55] (see
also Sec. 252 in Ref. [56]), we arrive at the statement that the
soliton velocity Vs is related to its “inverse half-width” k̃ by
the formula

Vs = ω̃(̃k)/̃k, where ω̃(̃k) ≡ −iωlin(ĩk). (49)

However, the “solitonic counterpart”

∂ k̃

∂t
+ ∂ω̃(̃k)

∂x
= 0 (50)

of Eq. (47) does not apply in all possible DSW configurations,
even at the soliton edge. Interestingly, it does apply for a
steplike type of initial conditions, and El used this property
to determine the inverse half width and velocity of a soliton
edge, using a procedure similar to the one employed at the
small amplitude edge. As a result, a number of interesting
problems were successfully considered by this method (see,
e.g., Refs. [31–38]).

To go beyond the initial steplike type of problems, one
has to use some additional information about the properties
of the Whitham modulation equations at the edges of DSWs
(see Refs. [39,40]). For integrable equations, it is known that
the “soliton number of waves conservation law” (50) is valid
in the case where the DSW is triggered by a simple-wave
breaking [39]. Therefore, it is natural to assume that Eq. (50)
also applies for nonintegrable equations in situations where
the pulse considered propagates into a uniform and stationary
medium1 and experiences a simple-wave breaking.

We can consider that the smooth solution of the disper-
sionless equations is known from the approach presented in
Sec. III. At the boundary between the dispersionless simple-
wave region and the DSW, Eqs. (47) and (50) reduce to
ordinary differential equations which can be extrapolated to
the whole DSW. Their solution, with known boundary condi-
tion at both edges, yields the wave number k and the inverse
half width of solitons k̃ at the boundary with the smooth part

1More precisely, it propagates into a medium for which r+ and r−
are constant.

of the pulse. Consequently, the corresponding group velocity
or the soliton velocity at a DSW edge can be expressed in
terms of the parameters of the smooth solution at its bound-
ary with a DSW. These velocities can be considered as the
characteristic velocities of the limiting Whitham equations at
this edge, which makes it possible to represent these equations
in the form of first order partial differential equations after
a hodograph transformation. The compatibility condition for
this partial differential equation with a smooth dispersionless
solution gives the law of motion of this DSW edge. If the
soliton solution of the nonlinear equation at hand is known,
then the knowledge of its velocity makes it possible to also
determine its amplitude at the boundary of the DSW. In this
paper, we shall apply this method to study the evolution of
initial simple-wave pulses in the generalized NLS Eq. (4).

We suppose that in the whole region of the DSW one has

r− = u

2
− 1√

γ
arctan

√
γ ρ

= − 1√
γ

arctan
√

γ ρ0 = −r0 = const. (51)

This occurs, for instance, in the DSW formed at the right of
the right propagating bump issued from the initial condition
(26)—for which the behavior of the dispersionless Riemann
invariants is sketched in Fig. 1—and also in the model cases
studied in Secs. IV A 1 and IV B below.

Equation (10b) is satisfied identically by virtue of our as-
sumption (51). Also, since r− is constant, r+ and u can be
considered as functions of ρ only [see Eqs. (12) and (13)]:

u(ρ) = 2√
γ

(arctan
√

γ ρ − arctan
√

γ ρ0),

r+(ρ) = 1√
γ

(2 arctan
√

γ ρ − arctan
√

γ ρ0), (52)

and Eq. (10a) for r+ thus takes the form

∂ρ

∂t
+ [u(ρ) + c(ρ)]

∂ρ

∂x
= 0, (53)

where the expression of the local sound velocity is given in
(8). The general solution (17a) of Eq. (10a) here specializes to

x − [u(ρ) + c(ρ)]t = w+(r+(ρ),−r0). (54)

All the relevant characteristic quantities of the DSW formed
after the wave breaking of such a pulse can be considered to
be functions of ρ only. We can thus write the right propagating
soliton dispersion law (49) in the form

ω̃(̃k) = k̃
[
u(ρ) +

√
c2(ρ) − 1

4 k̃2
]

= k̃[u(ρ) + c(ρ )̃α(ρ)], (55)

where

α̃(ρ) =
√

1 − k̃2

4 c2(ρ)
. (56)

We then have

k̃(ρ) = 2 c(ρ)
√

1 − α̃2(ρ), (57)

where α̃(ρ) is yet an unknown function.
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As implied by El’s method, along the soliton edge of the
DSW one considers that r− is also a constant, and that, at all
times, the quantities u, c, r+, k̃, α̃, and ω̃ can be considered
as functions of ρ only. Then the solitonic “number of wave
conservation” (50) yields, with account of (53),

d ω̃

dρ
= [u(ρ) + c(ρ)]

d k̃

dρ
. (58)

Substitution of (55) and (57) into this equation yields an
ordinary differential equation for α̃(ρ):

dα̃

dρ
= − (1 + α̃)[1 + 3γ ρ + 2α̃(1 − γ ρ)]

2ρ(1 + γ ρ)(1 + 2α̃)
, (59)

which should be solved with the boundary condition appro-
priate to the situation considered (see below).

The same method is employed for studying the motion of
the small amplitude edge of the DSW. This edge propagates
at the linear group velocity, and for determining the relevant
wave vector we rewrite Eq. (48) in the form

ωlin(k) = k[u(ρ) + c(ρ)α(ρ)], (60)

that is,

α(ρ) =
√

1 + k2

4 c2(ρ)
, (61)

and

k(ρ) = 2 c(ρ)
√

α2(ρ) − 1. (62)

A simple calculation leads to the following differential equa-
tion:

dα

dρ
= − (1 + α)[1 + 3γ ρ + 2α(1 − γ ρ)]

2ρ(1 + γ ρ)(1 + 2α)
, (63)

which actually coincides with Eq. (59). Now we “extrapolate”
this equation across the entire DSW and determine the wave
vector as the value of k(ρ) at the density of the small am-
plitude edge. The appropriate boundary condition for solving
(63) is fixed at the solitonic edge, and depends on the config-
uration under study (see below).

A. Positive pulse

In this section we consider an initial condition with a
region of increased light intensity over a stationary uniform
background.

1. Constant Riemann invariant r−

As a first illustration of the method we consider an initial
condition for which the Riemann invariant r− has the constant
value −r0 for all x. We shall start with a pulse with the
following initial intensity distribution:

ρ(x) =
{
ρ0 + ρ̃(x) if x < 0,

ρ0 if x � 0,
(64)

where ρ̃(x) is a decreasing function of x with a vertical tan-
gent at x → 0− [see Fig. 3(a).] From (9) one then obtains

FIG. 3. (a) Initial profile ρ(x) of a monotonous positive pulse.
(b) Inverse function x(ρ ).

u(x, 0) = u(x) with

u(x) = 2√
γ

arctan
√

γ ρ(x) − 2 r0. (65)

This nonstandard type of initial condition is of interest be-
cause it enables us to test the theory just presented in a
particularly simple setting in which (i) the evolution of the
nondispersive part of the system is that of a simple wave, i.e.,
one can replace w+ in the right-hand side of Eq. (54) by x(ρ),
where x(ρ) is the function inverse to the initial distribution of
the intensity ρ(x) [see Fig. 3(b)], and (ii) the wave breaking
occurs instantaneously, at the front edge of the pulse. This
wave breaking is followed by the formation of a DSW with
a small amplitude wave at its front edge and with solitons at
its trailing edge, at the boundary with the smooth part of the
pulse [described by Eq. (54)]. Therefore, we can find the law
of motion of the rear soliton edge of the DSW by the method
of Ref. [39].

Equation (59) should be solved with the boundary condi-
tion α̃(ρ0) = 1, that is, the soliton inverse half width vanishes
together with its amplitude at the small amplitude edge.

When the function α̃(ρ) is known, the velocity of the front
edge can be represented as the soliton velocity

Vs = ω̃

k̃
= u(ρs) + c(ρs )̃α(ρs), (66)

where ρs is the density at the solitonic edge of the DSW.
We notice again that Vs is the characteristic velocity of
the Whitham modulation equations at the soliton edge.
The system being nonintegrable, the corresponding Whitham
equation is not known, but its limiting form at the soli-
tonic edge can be written explicitly: along this boundary one
has dxs − Vsdt = 0, where xs(t ) is the position of the soli-
tonic edge at time t and ρs = ρ(xs(t ), t ). It is convenient to
reparametrize all the quantities in terms of ρs: x(ρs) and t (ρs).
This leads to

∂xs

∂ρs
− Vs(ρs)

∂t

∂ρs
= 0. (67)

This equation should be compatible with Eq. (53) at the
solitonic boundary between the DSW and the dispersionless
region, with account of (54). Here, the specific initial con-
dition we have chosen [with r−(x, 0) = const] simplifies the
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FIG. 4. (a) Initial profile ρ(x) of a nonmonotonous positive
pulse. (b) The inverse function x(ρ ) is represented by two branches
x1(ρ ) and x2(ρ ). Here xm is the point where ρ reaches its maximal
value ρm.

problem because one has w+(r+(ρ),−r0) = x̄(ρ). The com-
patibility equation then reads

√
ρs

1 + γ ρs
(1 − α̃)

dt

dρs
+ 3 + γ ρs

2
√

ρs(1 + γ ρs)2
t = −dx(ρs)

dρs
.

(68)

One sees from Fig. 3 that, for the initial condition we consider,
the wave breaking occurs instantly at t = 0, with ρs = ρ0.
Hence Eq. (68) should be integrated with the initial condition
t (ρ0) = 0. The corresponding solution reads

t (ρs) =
∫ ρs

ρ0

(1 + γ ρ)x′(ρ)G(ρs, ρ)√
ρ (̃α(ρ) − 1)

dρ, (69)

where x′ = dx/dρ and

G(ρs, ρ) = exp

(∫ ρs

ρ

3 + γ ρ ′

2ρ ′(1 + γ ρ ′)[̃α(ρ ′) − 1]
dρ ′

)
. (70)

Consequently,

xs(ρs) = [u(ρs) + c(ρs)]t (ρs) + x(ρs), (71)

where u(ρ) and c(ρ) are given by Eqs. (52) and (8), respec-
tively.

As a generalization of the model initial profile represented
in Fig. 3, we now consider the case where the initial dis-
tribution ρ(x) is nonmonotonous, with a single maximum.
This amounts to assume that ρ̃ in (64) has a maximum ρm

at x = xm < 0 and tends to zero fast enough as x → −∞,
with still a vertical tangent at x → 0− [see Fig. 4(a)]. This
last condition means that we suppose again for convenience
that the wave breaks at the moment t = 0. The reciprocal
function of ρ(x) becomes now two-valued and we denote its
two branches as x1(ρ) and x2(ρ) [see Fig. 4(b)]. In an initial
stage of development of the DSW, the formulas obtained pre-
viously for a monotonous initial condition straightforwardly
apply. This occurs when the maximum of the smooth part
of the profile issued from the initial distribution has not yet
penetrated the DSW. In this case the soliton edge propagates
along the branch x1(ρ) and one should just use this function
instead of x(ρ) in Eqs. (69) and (71). A second stage begins
when the maximum of the smooth part of the profile reaches

FIG. 5. Blue solid curve: simple-wave initial condition (75) with
ρ0 = 0.5, ρm = 1, and x0 = 50. Red thick solid curve: resulting dis-
persive shock wave computed by numerically solving Eq. (4) with
γ = 1.

the DSW. In this case one can show2 that Eqs. (69) and (71)
are modified to

t (ρs) =
∫ ρm

ρ0

(1 + γ ρ)x′
1(ρ)G(ρs, ρ)√

ρ (̃α(ρ) − 1)
dρ

+
∫ ρs

ρm

(1 + γ ρ)x′
2(ρ)G(ρs, ρ)√

ρ (̃α(ρ) − 1)
dρ, (72a)

xs(ρs) = [u(ρs) + c(ρs)]t (ρs) + x2(ρs). (72b)

To determine the position of the small amplitude edge we
solve Eq. (63) with the boundary condition

α(ρm) = 1, (73)

which corresponds to the moment at which the soliton edge
reaches the maximal point of the initial distribution. The
corresponding solution α(ρ) yields the spectrum (62) of all
possible wave numbers k(ρ), with ρ ranging from ρ0 to ρm.
The maximal value of the group velocity dωlin/dk is reached
at ρ = ρ0 and it provides the asymptotic value of the velocity
of the small amplitude edge:

dxr

dt
= dωlin

dk

∣∣∣
ρ=ρ0

=
√

ρ0

1 + γ ρ0

2α2(ρ0) − 1

α(ρ0)
. (74)

As an illustration of the accuracy of the method, we now
compare the theoretical results with those of a numerical
solution of the generalized NLS equation (4) for the non-
monotonous initial intensity distribution:

ρ(x) =
{
ρ0 + (ρm − ρ0)

(
x
x0

+ 1
)3

if x ∈ [−x0, 0]
ρ0 elsewhere,

(75)

[see the blue (thin) curve in Fig. 5]. The typical form of the
DSW generated by such a pulse is represented in the same
figure by a red (thick) curve. For the particular initial profile
(75) the branch x1(ρ) shrinks to zero, the first term in the right-
hand side of (72a) cancels, and we need take into account only

2See the detailed study of a similar situation in Sec. IV A 2.
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FIG. 6. Position xs(t ) and density ρs(t ) of the solitonic edge of
the DSW induced by the initial profile (75) and (65). The black dots
are obtained by numerical integration of Eq. (4). The colored solid
and dashed lines are obtained from the analytic formulas (72). In
each plot the green solid theoretical line is obtained by taking ρm = 1
and the red dashed one is obtained by taking ρm = 0.9362 (see the
text).

the contribution of the second branch, given by the expression

x2(ρ � ρ0) = x0

(
ρ − ρ0

ρm − ρ0

)1/3

− x0. (76)

For the numerical simulation, we took instead of the idealized
profile (75) the numerical initial condition:

ρ(x) = ρ0 + (ρm − ρ0)(1 + x/x0)3 1 − tanh(x/w)

2
, (77)

with w = 1, x0 = 50, ρ0 = 0.5, and ρm = 1. Equation (77)
yields a maximum value of ρ which is not exactly equal
to ρm = 1, but to ρmax = 0.9362. Equations (72) give the
parametric dependence of the soliton edge position xs(t ) and
density ρs(t ), which are represented in Fig. 6 by continuous
and dashed colored curves. For the analytic determination
of ρs(t ) and xs(t ) we used in Eqs. (72) two possible values
of ρm: 1 (solid green curve in Fig. 6) and 0.9362 (dashed
red curve). As one can see, there is not much difference,
and the theoretical results both agree well with the numerical
simulations (black dots). Of course, the results at short time
for ρs are better when one takes the initial ρm = 0.9362, but
this has little incidence at large time, and the results for xs

almost do not depend on the choice ρm = 1 or 0.9362.
For our initial parameters, the analytic formula (74) gives

the asymptotic propagation velocity of the right small ampli-
tude edge of the DSW: dxr/dt = 1.11. The numerical value
of the velocity is 1.12 for our choice of initial condition, an
agreement which should be considered as very good since the
position of the small amplitude edge is not easily determined,
as is clear from Fig. 5, and we evaluate it by means of an
approximate extrapolation of the envelopes of the wave at this
edge.

2. The parabolic initial condition (26)

We now consider the initial density profile (26) with
u(x, 0) = 0, that is, an initial state which is not of simple-
wave type, and for which the formulas of Sec. IV A 1 are
not directly applicable. In this case, the wave breaking of the
right propagating part of the pulse occurs in region III, where
r− is constant and equal to −r0 at ρs(tWB) = ρ(xs(tWB), tWB) =
ρ0. Hence Eq. (59) should be integrated with the boundary
condition α̃(ρ0) = 1. In a first stage of its development,3 the
DSW matches the dispersionless profile described by Eq. (43)
where W (3)(r+, r−) is given by Eq. (40) and x(r) is given
by (30).

In the region of interest for us r− = −r0, so all quantities
in Eq. (43) depend on r+ only. Differentiation with respect to
r+ yields, at the solitonic edge where dxs = Vsdt ,

(Vs − v+)
dt

dr+
− dv+

dr+
t = ∂2W (3)

∂r2+
, (78)

where all quantities are evaluated at rs = r+(xs(t ), t ) and r− =
−r0. It follows from (13) that drs = c(ρs)dρs/ρs, yielding

dv+
dr+

= 1 + ρs

c(ρs)

dc

dρs
= 3 + γ ρs

2(1 + γ ρs)
. (79)

For explicitly evaluating the right-hand side of Eq. (78) it is
convenient to write R(r1, r2) = f (r1)/ f (r2) in Eq. (40) [see
expressions (38) and (39)], which leads to

∂W (3)

∂r+
= − f ′(r+ − r−)

f (r+ − r−)
W (3) + x(r+) f (2r+)

f (r+ − r−)
, (80)

and

∂2W (3)

∂r2+
=

[
2

f ′2(r+ − r−)

f 2(r+ − r−)
− f ′′(r+ − r−)

f (r+ − r−)

]
W (3)

− 2x(r+)
f ′(r+−r−) f (2r+) − f (r+ − r−) f ′(2r+)

f 2(r+ − r−)

+ dx

dr+

f (2r+)

f (r+ − r−)
. (81)

At the wave-breaking time tWB one has rs = r0; Eqs. (40), (80),
and (81) then directly yield W (3) = 0, ∂W (3)/∂r+ = x(r0) =
l , and [using Eqs. (30) and (29)]

∂2W (3)

∂r2+
= dx

dr

∣∣∣∣
r=r0

= −l
(1 + γ ρ0)

√
ρ0

ρm − ρ0
. (82)

At the wave breaking Vs = v+ [̃α(ρ0) = 1 in (66)] and
Eq. (78) thus yields

tWB = l

ρm − ρ0

2
√

ρ0(1 + γ ρ0)2

3 + γ ρ0
. (83)

This result is in agreement with the findings of Ref. [14] and
reduces to the one obtained in Ref. [12] for the nonlinear
Schrödinger equation in the limit γ = 0. For the example
considered in Fig. 1, expression (83) gives tWB = 12.12.

3It is explained below what happens in a second stage [see
Eq. (91)].
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For times larger than tWB one should solve Eq. (78) using
the generic form (81) of its right-hand side. It is convenient
to multiply this equation by ρs/c(ρs)(drs/dρs) = 1, which
yields

ρs (̃α(ρs) − 1)
dt

dρs
− 3 + γ ρs

2(1 + γ ρs)
t = ∂2W (3)(rs,−r0)

∂r2
s

. (84)

The solution reads

t (ρs) =
∫ ρs

ρ0

∂2W (3)

∂r2+

G(ρs, ρ)

ρ (̃α(ρ) − 1)
dρ, (85)

where the expression of G is given in (70) and r+ and x should
be computed as functions of ρ via Eqs. (52), (29), and (30).
Once t (ρs) is known, xs(ρs) is determined from Eq. (43). One
can check that expression (85) yields the correct result (83)
for tWB: When ρ is close to ρ0 one gets from Eqs. (70) and (59)
[with α̃(ρ0) = 1]

G(ρs, ρ) 	
(

ρ − ρ0

ρs − ρ0

)3/2

. (86)

Inserting this expression back into (85) one obtains

t (ρ0) = −2(1 + γ ρ0)

3 + γ ρ0

(
∂2W (3)

∂r2+

)
r+=r0

. (87)

That is, as expected, t (ρ0) = tWB, where tWB is given by
Eq. (83).

The solution (85) is acceptable only up to a time which we
denote as t2|3 at which rs = rm, i.e., ρs reaches a maximum
which we denote as ρM where [see Eq. (14)]

ρM = γ −1 tan2[
√

γ (rm + r0)/2]. (88)

At times larger than t2|3 the region III disappears and the
DSW is in contact with region IIr of the dispersionless profile4

in which Eq. (45) applies. Instead of (84) one should thus
solve

ρs (̃α(ρs) − 1)
dt

dρs
− 3 + γ ρs

2(1 + γ ρs)
t = ∂2W (2)(rs,−r0)

∂r2
s

,

(89)

with the initial condition t (ρM) = t2|3. W (2) in the above
equation is given by Eq. (41), which can be cast in the
form

W (2)(r+, r−) = 1

f (r+ − r−)

[ ∫ rm

−r−
x(r) f (2r)dr

+
∫ rm

r+
x(r) f (2r)dr

]
. (90)

This yields

∂W (2)

∂r+
= − f ′(r+ − r−)

f (r+ − r−)
W (2) − x(r+) f (2r+)

f (r+ − r−)
, (91)

4The equivalent time was denoted as tA|B in Ref. [12].

FIG. 7. Position xs(t ) and density ρs(t ) of the solitonic edge of
the DSW induced by the initial profile (26) with ρ0 = 0.5, ρm = 2,
and l = 20. The continuous red curves are the theoretical results.
The big red dots locate the wave-breaking time tWB = 12.12, posi-
tion xs(tWB) = 25.71, and intensity ρ(xs(tWB), tWB) = ρ0. The dotted
curves are extracted from numerical simulations (see the text). The
dashed gray line in the upper panel corresponds to a soliton edge
which would propagate at the background sound velocity. The hori-
zontal red line in the lower panel marks the position of the maximum
ρM as given by Eq. (88).

and

∂2W (2)

∂r2+
=

[
2

f ′2(r+ − r−)

f 2(r+ − r−)
− f ′′(r+ − r−)

f (r+ − r−)

]
W (2)

+ 2 x(r+)
f ′(r+−r−) f (2r+)− f (r+ − r−) f ′(2r+)

f 2(r+ − r−)

− dx

dr+

f (2r+)

f (r+ − r−)
. (92)

The solution of (89) reads

t (ρs) = t2|3 +
∫ ρs

ρM

∂2W (2)

∂r2+

G(ρs, ρ)

ρ (̃α(ρ) − 1)
dρ. (93)

Once t (ρs) is determined from (93) xs(ρs) is obtained from
(45). Formulas (85), (43), (93), and (45) give parametric ex-
pressions of ρs(t ) and xs(t ) for all t � tWB.

We note here that in the limit γ → 0 the solution
of Eq. (59) reads α̃ = −1 + 2

√
ρ0/ρ, which, from (66),

yields Vs = √
ρs = 1

2 (rs − r−), in agreement with the find-
ings of Ref. [12]. Also in this limit, one gets the exact
expression G(ρs, ρ) = (

√
ρ − √

ρ0)3/2(
√

ρs − √
ρ0)−3/2 and

formulas (85) and (93) reduce to the equivalent ones derived
for the NLS equation in Ref. [12].

In the generic case γ �= 0, the results for xs(t ) and ρs(t )
corresponding to the parameters of Fig. 1 are compared in
Fig. 7 with the values extracted from the numerical solution of
Eq. (4) (with γ = 1). The position xs of the solitonic edge is
easily determined from the numerical simulation: it is located
between the maximum of the smooth part of the intensity
and the following zero of ρ − ρ0 [respectively, black (lower)
and blue (upper) dots in the upper panel of the figure]. The
intensity ρs of the solitonic edge is more difficult to extract
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from the numerical simulations in the present situation that
in the case studied in Fig. 6. At times close to the theoretical
wave-breaking time, one cannot exactly decide from the nu-
merical intensity profile if the oscillations at the boundary of
the right propagating edge of the region of increased intensity
are linear disturbances (due to dispersive effects) or corre-
spond to the birth of a DSW. It is only after a certain amount of
time that the oscillations become clearly nonlinear. Even then,
the precise location of the intensity of the solitonic edge is
not easily determined: it is comprised between the maximum
intensity of the smooth part of the spectrum and the following
maximum intensity [respectively, black (dark gray) and green
(light gray) dots in the lower panel of Fig. 7]. The green (light
gray) dots initially yield a clear underestimate of ρs, and, in
contrast, when the dispersive shock is fully developed, they
indicate a too large value. This is due to the fact that, at large
time, the amplitudes of the oscillations in the vicinity of the
soliton edge increase within the DSW.

We note also that expression (88) gives a simple and ac-
curate prediction for the maximum of ρs (ρM = 1 in the case
considered in Fig. 7). At times large compared to the time
t2|3 at which this maximum is reached, one can approximately
evaluate the behavior of ρs and xs as follows: The integrands
in Eqs. (85) and (93) are of the form (ρs − ρ0)−3/2F (i)(ρs, ρ)
where F is a nonsingular function [with i = 2 for Eq. (85) and
i = 3 for Eq. (93)]. Since at large time ρs tends to ρ0, formula
(93) can be approximated by

t (ρs) 	 A
(ρs − ρ0)3/2

, (94)

where

A =
∫ ρM

ρ0

[
F (3)(ρ0, ρ) − F (2)(ρ0, ρ)

]
dρ. (95)

From there it follows that, at large t , ρs tends to ρ0 as t−2/3

and xs exceeds c(ρ0)t by a factor of order t1/3. The fact
that the soliton edge propagates at a velocity higher than
the speed of sound is illustrated in Fig. 7 by the difference
between xs(t ) and the gray dashed line of the equation x =
xs(tWB) + c(ρ0)(t − tWB).

A final remark is in order here. When ρm gets large com-
pared with ρ0, α̃(ρs)—the solution of (59)—may become
negative. For instance, when γ = 0 this occurs for ρm � 4 ρ0.
As noticed in Ref. [32], this is linked to the occurrence within
the DSW of a vacuum point [23] at which the density cancels.
In this case, one should use another branch in the dispersion
relations (48) and (55), but once this modification is per-
formed the approach remains perfectly valid and accurate.

When γ > 0, a more serious problem occurs at larger
values of ρm, when α̃(ρs) reaches − 1

2 . A rough estimate
based on the regime γ � 1 indicates that this occurs starting
from ρm ≈ 16 ρ0. In this case the theoretical approach leads
to singularities [see, e.g., Eq. (59)] whereas the numerical
simulations do not indicate a drastic change of behavior in
the dynamics of the DSW. This points to a probable failure of
the Gurevich-Meshcherkin-El approach, however the study of
this problem is beyond the scope of the present paper and we
confine ourselves to a regime of initial parameters for which
α̃(ρs) remains larger than − 1

2 and the theory is applicable.

FIG. 8. (a) Initial profile ρ(x) of a monotonous negative pulse.
(b) Inverse function x(ρ ).

B. Negative pulse

In this section we consider an initial condition with a region
where the density is depleted with respect to that of the back-
ground. For simplicity we only consider the case where, as in
Sec. IV A 1, the initial Riemann invariant r−(x, 0) is constant
and equal to −r0 for all x.

Let us first consider a monotonous initial pulse:

ρ(x, 0) =
{
ρ0 if x < 0,

ρ0 − ρ̃(x) if x � 0.
(96)

This initial condition is sketched in Fig. 8. The small ampli-
tude edge propagates with the group velocity:

Vr (ρr ) = dω

dk
= u(ρr ) +

√
ρr

1 + γ ρr

2α2(ρr ) − 1

α(ρr )
, (97)

where ρr (t ) is the density of the small amplitude edge. Fol-
lowing a reasoning analogous to the one already employed in
Sec. IV A 1 for the solitonic edge, we parametrize all relevant
quantities at the small amplitude edge in terms of ρr . This
leads to the following differential equation:

√
ρr

1 + γ ρr

2α2 − α − 1

α

dt

dρr
− 3 + γ ρr

2
√

ρr (1 + γ ρr )2
t = dx(ρr )

dρr
,

(98)

which should be solved with the initial condition ρr = ρ0 at
t = 0. The solution reads

t (ρr ) =
∫ ρr

ρ0

α(ρ)(1 + γ ρ)x′(ρ)G(ρr, ρ)√
ρ(α(ρ) − 1)[1 + 2α(ρ)]

dρ, (99)

where x′(ρ) = dx/dρ and

G(ρr, ρ) = exp

(∫ ρr

ρ

α(ρ ′)(3 + γ ρ ′) dρ ′

2ρ ′(1+γ ρ ′)[α(ρ ′)−1][1 + 2α(ρ ′)]

)
.

(100)

Consequently, the position xr of the small amplitude edge is
given by

xr (ρr ) = [u(ρr ) + c(ρr )]t (ρr ) + x(ρr ), (101)

where u(ρ) is given by Eq. (52). Formulas (99) and (101)
determine, in a parametric form, the coordinates xr (t ) and
ρr (t ) of the small amplitude edge.

In the case of a nonmonotonous negative pulse, such as the
one represented in Fig. 9, the approach has to be modified in
a manner similar to that exposed in Sec. IV A 1 for the non-
monotonous profile displayed in Fig. 4. We do not write down
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FIG. 9. (a) Initial profile ρ(x) of a nonmonotonous negative
pulse. (b) The inverse function x(ρ ) is represented by two branches
x1(ρ ) and x2(ρ ). Here xm is the point where ρ takes its minimal
value ρm.

the corresponding formulas for not overloading the paper with
almost identical expressions. We only indicate that ρm denotes
now the minimal value of the density in the initial distribution.

For numerically testing our approach we consider a non-
monotonous initial profile of the form

ρ(x) =
{
ρ0 − (ρm − ρ0)

(
x
x0

− 1
)3

if x ∈ [0, x0],
ρ0 elsewhere

(102)

(see the blue thin curve in Fig. 10). In this case one has
x1(ρ) = 0 and

x2(ρ � ρ0) = x0 − x0

(
ρ0 − ρ

ρ0 − ρm

)1/3

. (103)

The initial velocity distribution u(x, 0) is determined from
(102) by imposing that r−(x, 0) = −r0. The typical wave pat-
tern for the light evolved from such a pulse is shown in Fig. 10.

The motion of the right, small amplitude edge is de-
termined as previously explained. Equation (63) should be
solved with the initial condition α(ρm) = 1. Then, in the non-
monotonous case we consider here, Eq. (98) should be solved
with an initial condition different from the one used in the
case of the initial profile (96). The appropriate initial value

FIG. 10. Density profile ρ(x, t = 300) (red thick solid curve),
which results from the time evolution of the simple-wave initial
condition (102) with ρ0 = 1, ρm = 0.5, and x0 = 300 (blue solid
curve).

FIG. 11. Coordinate xr (t ) and density ρr (t ) of the small-
amplitude edge of the DSW induced by the initial profile (102). The
black dots are obtained by numerical integration of Eq. (4). The green
solid lines are obtained from the analytic solution, i.e., from Eqs. (99)
and (101).

is here ρr = ρm at t = 0. As a result, the lower boundary of
the integration region in (99) should be changed from ρ0 to
ρm. The theoretical results compare very well with the one
extracted from the numerical simulations, as illustrated in
Fig. 11. Note that the determination of the small amplitude
edge of the numerical DSW is a delicate task, which is sim-
plified if the DSW contains a large number of oscillations.
This is the reason why we had to choose here an initial profile
of extension larger than the one considered in the previous
Sec. IV A 1 (x0 = 300 instead of 50). Note, however, that the
case considered here presents an advantage compared to the
similar one considered in Sec. IV A 1: the motion of the small
amplitude edge is less dependent on the precise characteristics
of ρ(x) at its extremum than the motion of the solitonic edge.
As a result, we need not discuss here the precise numerical
implementation of the idealized discontinuous profile (102),
in contrast to what has been done in Sec. IV A 1.

At asymptotically large time the velocity of the trailing
soliton generated from a localized pulse is determined from
the knowledge of α̃(ρ0), where α̃(ρ) is the solution of Eq. (59)
with the boundary condition α̃(ρm) = 1. Within this approxi-
mation, the asymptotic velocity of the soliton edge reads

Vs(t → ∞) =
√

ρ0

1 + γ ρ0
α̃(ρ0). (104)

The comparison of the analytic prediction (104) with our
numerical simulations is not difficult because the soliton edge
is easily identified in the numerical density profiles, and,
indeed, a leading soliton is easily located at this edge of
the numerically determined DSW. As we see in Fig. 12, its
velocity tends at large t to a constant value. In this figure, the
numerical result is fitted with the empirical formula Vs(t ) =
V num

s + ∑6
i=1 ait−i, where V num

s and ai are fitting parameters.
The trend is in excellent agreement with the prediction (104)
since one obtains V num

s = 0.39 whereas from (104) one ex-
pects Vs(t → ∞) = 0.37.
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FIG. 12. Black dots: numerically determined velocity Vs(t ) of the
soliton edge. The initial conditions are specified in Eq. (102) with
ρ0 = 1, ρm = 0.7, and x0 = 300. Continuous red line: fit of the nu-
merical data by the formula Vs(t ) = V num

s + ∑6
i=1 ait−i. One obtains

V num
s = 0.39, in good agreement with the theoretical prediction from

Eq. (104): Vs(t → ∞) = 0.37 (blue dashed line).

V. CONCLUSION

In this paper we have presented a theoretical study of the
dynamics of spreading of a pulse of increased (or decreased)
intensity propagating over a uniform background. The initial
nondispersive stage of evolution is described by means of
Riemann’s method, the result of which compares very well
with numerical simulations. After the wave-breaking time, we
have studied the behavior of the resulting dispersive shock
wave at its edges, by means of the modification of El’s method
presented in Ref. [39]. Here also the results compare very well
with the ones of numerical simulations.

Our paper represents a comprehensive theoretical descrip-
tion of the spreading of the wave breaking and of the
subsequent formation of a dispersive shock in a realistic
setting for a system described by a nonintegrable nonlinear
equation. In particular, our approach yields a simple analytic
expression for the wave-breaking time, even in situations

where the initial density and velocity profiles do not reduce
to a simple-wave configuration. Also, in view of future ex-
perimental studies, we have devoted a special attention to the
determination of the position and intensity of the solitonic
edge of the DSW issued from the spreading of a region of
increased light intensity.

It should be stressed that the method developed in the
present paper can be applied to other forms of nonlinearity, in-
cluding different types of saturation, provided the generalized
defocusing nonlinear Schrödinger equation has dark soliton
solutions. If the system includes some other effects described
by additional equations, as it happens in some models of
nonlocality, then the method needs further development.

It is natural to ask to what extent these results can be
applied to evolution of pulses in nonlinear focusing media. It
is known that in this case the Whitham method has a limited
applicability because of the modulational instability of the
wave. In spite of that, it describes correctly the initial stage of
evolution of a steplike pulse for integrable equations (see, e.g.,
the review in Ref. [54]) in good agreement with numerical
simulations (see, e.g., Ref. [57]). This approach breaks down
when the contribution of unstable modes becomes compa-
rable with the amplitude of the one-phase modulated wave
the evolution of which is governed by the Whitham theory.
However, in a recent work [58] a method was suggested for
controlling the number of phases in the multiphase wave. This
can be used for suppressing the unstable modes, in which
case the one-phase Whitham evolution can be traced for a
longer period. Thus, there is a possibility to extend our theory
to modulationally unstable focusing systems the evolution of
which is governed by a nonintegrable equation.
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