Notes on Fisher's equation ${ }^{1}$

A Physical discussion

Let $u(\vec{r}, t)$ be the density of population of a given species. A simple model: u does not depend on \vec{r} and obeys a continuous version of the logistic map $u_{t}=r u(1-u / K)$, where r is the growth rate and K the "carrying capacity", i.e., the maximum density of population that the environment can sustain (if $K=\infty$ the population grows exponentially).

A simple way to introduce a position dependence consists in adding a diffusive term (the members of the population wander randomly): $u_{t}=D \vec{\nabla}^{2} u+r u(1-u / K)$. Define $\tilde{t}=t \cdot r, \tilde{x}=x \sqrt{r / D}$ (idem for y and $z), \tilde{u}=u / K$, then rename $\tilde{t}=t, \tilde{x}=x$ and $\tilde{u}=u$. In 1D this leads to Fisher's equation

$$
\begin{equation*}
u_{t}-u_{x x}=u(1-u) \tag{1}
\end{equation*}
$$

For a uniform initial condition $u(x, 0)=u_{0}$, where $0<u_{0}<1$, the solution is simple: u remains x-independent and the time-integration of (1) yields

$$
u(t)=\left[1+\frac{1-u_{0}}{u_{0}} \exp (-t)\right]^{-1}
$$

If $u_{0} \ll 1$, this expression indeed corresponds to an initially exponential growth rate: $u(t) \simeq$
 $u_{0} \exp (t)$, can you see that ?

One then looks for more interesting solutions where $u(x, t)=U(z)$ with $z=x-c t$ with $c>0$ (these are called "traveling wave" solutions) and $U(z \rightarrow \pm \infty)=K^{ \pm}$(yet unknown constants). One gets $\left(U^{\prime}=\mathrm{d} U / \mathrm{d} z\right)$

$$
\begin{equation*}
U^{\prime \prime}=-c U^{\prime}-U(1-U) \tag{2}
\end{equation*}
$$

This equation is not so easily integrated as the one encountered for instance when studying traveling wave solutions of KdV (lecture 4). Things are simpler if $c \equiv 0$. In this case, multiplying (2) by U^{\prime}, one can find a first integral: $\frac{1}{2}\left(U^{\prime}\right)^{2}+W(U)=C^{\text {st }}$, where $W(U)=U^{2} / 2-U^{3} / 3$. This is analogous to the dynamics of a particle evolving in a 1 D potential. One can find solutions to this equation, but for all of them, at some point, U becomes negative, this is unphysical for a population density.

When $c \neq 0$, Eq. (2) can be interpreted as the equation of motion of a classical particle in a potential well $W(U)$ in the presence of a dissipative force proportional to the velocity $\left(-c U^{\prime}\right)$. If we are lucky enough, we will be able to find a solution that starts at $U=1$ with "energy" $W(1)$, falls down the maximum, and, thanks to dissipation, ends up exactly at $U=0$ with zero velocity.

[^0]
B Phase portrait of traveling wave solutions

In order to check if the above discussed lucky scenario is possible, let's denote $V=U^{\prime}$ and study the dynamics in the (U, V) phase plane. From (2) we see that it is governed by the following equations:

$$
\begin{equation*}
U^{\prime}=V, \quad V^{\prime}=-c V-U(1-U) . \tag{3}
\end{equation*}
$$

There are 2 fixed points: $(1,0)$ and $(0,0)$. The corresponding phase portrait is represented below in the cases $c=1$ and $c=3$.

The Jacobian matrix ${ }^{2}$ around a fixed point (U, V) is

$$
J(U, V)=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
2 U-1 & -c
\end{array}\right) .
$$

$J(1,0)$ has eigenvalues $\lambda_{ \pm}=\frac{1}{2}\left(-c \pm \sqrt{c^{2}+4}\right)$, they are real and of opposite sign, therefore $(1,0)$ is a saddle point. The corresponding stable and unstable directions are $\binom{1}{\lambda_{-}}$and $\binom{1}{\lambda_{+}}$. This looks like:

$J(0,0)$ has eigenvalues $\frac{1}{2}\left(-c \pm \sqrt{c^{2}-4}\right)$. If $c^{2}<4$ the eigenvalues are complex with negative real parts, and $(0,0)$ is thus a stable spiral. In this case U would tend toward the asymptotic value 0 in an oscillatory way, which is impossible for a population density (always positive). If $c^{2}>4$ both eigenvalues are negative: $(0,0)$ is a stable node; this is the only acceptable situation. In this case there exists a heteroclinic orbit leaving the saddle along the unstable manifold and reaching the node, such that $U \geq 0$ all along the way. The corresponding $U(z)$ goes from 1 (for $z \rightarrow-\infty$) to 0 (for $z \rightarrow+\infty$) ${ }^{3}$; it is called a "domain wall". It describes a population which has reached its carrying capacity in some region of space ($U=1$ when $x \rightarrow-\infty$), and which spreads at constant velocity towards a region initially not occupied ($U=0$ when $x \rightarrow+\infty$).

[^1]
C Approximate domain wall solution

Let's now try to see if we can get an approximate expression $U(z)$ for the profile of the domain wall solution. One identifies a small parameter $\varepsilon=c^{-2}<0.25$. Define $s=\sqrt{\varepsilon} z$ and $g(s)=U(z)$. One will denote $g^{\prime}=\mathrm{d} g / \mathrm{d} s$. From Eq. (2) one sees that g is solution of

$$
\begin{equation*}
\varepsilon g^{\prime \prime}+g^{\prime}+g(1-g)=0, \quad \text { with the boundary conditions } \quad \lim _{s \rightarrow-\infty} g(s)=1 \text { and } \lim _{s \rightarrow+\infty} g(s)=0 \tag{5}
\end{equation*}
$$

One looks for a solution of the form $g(s)=g_{0}(s)+\varepsilon g_{1}(s)+\varepsilon^{2} g_{2}(s)+\cdots$ This gives at leading order $g_{0}^{\prime}+g_{0}\left(1-g_{0}\right)=0$, which is a separable first order differential equation. Its solution reads

$$
\begin{equation*}
-\int \mathrm{d} s=\int \frac{\mathrm{d} g_{0}}{g_{0}\left(1-g_{0}\right)}=\int \mathrm{d} g_{0}\left(\frac{1}{g_{0}}+\frac{1}{1-g_{0}}\right) \rightsquigarrow g_{0}(s)=\frac{1}{1+e^{s}} . \tag{6}
\end{equation*}
$$

In the above expression the integration constant has been fixed so that $g_{0}(0)=1 / 2$ (arbitrary choice). Note that g_{0} verifies the expected boundary conditions (5). The next terms in the expansion of g will thus have to fulfill $\lim _{(s \rightarrow \pm \infty)} g_{n}(s)=0$.
At next order in ε one gets

$$
\begin{equation*}
g_{1}^{\prime}+g_{1}\left(1-2 g_{0}\right)=-g_{0}^{\prime \prime} . \tag{7}
\end{equation*}
$$

This is an inhomogeneous linear ODE. The corresponding homogeneous equation is obtained by replacing the right-hand side of (7) by 0 . It reads

$$
\begin{equation*}
\frac{\mathrm{d} g_{1}}{g_{1}}=\left(2 g_{0}-1\right) \mathrm{d} s=\frac{1-e^{s}}{1+e^{s}} \mathrm{~d} s=\left(1-\frac{2 e^{s}}{1+e^{s}}\right) \mathrm{d} s \tag{8}
\end{equation*}
$$

Its solution is $g_{1}(s)=K e^{s}\left(1+e^{s}\right)^{-2}$, where K is an integration constant. One then looks for a solution of the full inhomogeneous equation (7) under the form ${ }^{4} g_{1}(s)=K(s) e^{s}\left(1+e^{s}\right)^{-2}$. Inserting this form into (7) yields, after a little algebra, $K^{\prime}(s)=\left(1-e^{s}\right)\left(1+e^{s}\right)^{-1}$. The relevant integral has already been computed in (8). One gets

$$
K(s)-K(0)=s-2 \ln \left(1+e^{s}\right) \quad \rightsquigarrow \quad K(s)=\ln \left[\frac{C^{\text {st }} \cdot e^{s}}{\left(1+e^{s}\right)^{2}}\right] .
$$

One fixes the integration constant in such a way that $g_{1}(0)=0$ (so that one still has $g(0)=1 / 2$). This imposes $C^{\text {st }}=4$ and the final result reads

$$
\begin{equation*}
g_{1}(s)=\frac{e^{s}}{\left(1+e^{s}\right)^{2}} \ln \left(\frac{4 e^{s}}{\left(1+e^{s}\right)^{2}}\right) . \tag{9}
\end{equation*}
$$

$g_{1}(s \rightarrow \pm \infty)=0$, so that $g_{0}+\varepsilon g_{1}$ verifies the expected boundary conditions. Going back to the original function:

$$
\begin{equation*}
U(z)=\frac{1}{1+e^{z / c}}+\frac{1}{c^{2}} \frac{e^{z / c}}{\left(1+e^{z / c}\right)^{2}} \ln \left(\frac{4 e^{z / c}}{\left(1+e^{z / c}\right)^{2}}\right)+\mathcal{O}\left(\frac{1}{c^{4}}\right) \tag{10}
\end{equation*}
$$

The accuracy of expansion (10) is illustrated by the figure below which is drawn for the case $c=2.1$. For larger values of c the agreement is even better.

[^2]

D Stability of the domain wall and of traveling waves

In this section we study the stability of the domain wall solution. To this end, let's write Fisher's equation (1) in a moving coordinate frame, by changing variables to $t=t$ and $z=x-c t$ (where $c>2$). One gets

$$
\begin{equation*}
u_{t}-u_{z z}-c u_{z}=u(1-u) . \tag{11}
\end{equation*}
$$

Let's seek for a solution of the form $u(z, t)=U(z)+w(z, t)$, where $|w| \ll U$. We further assume that

$$
\begin{equation*}
w(z, t)=0 \quad \text { for } \quad|z| \geq L, \quad \text { for some } L>0 . \tag{12}
\end{equation*}
$$

This implies that the perturbation vanishes outside a bounded domain in the moving frame ${ }^{5}$. We now want to study the dynamics of the small perturbation w : will it eventually decay or blow up? This will decide if the solution $U(z)$ is stable or not. Using (2) one sees that the linearized version of (11) reads

$$
\begin{equation*}
w_{t}-w_{z z}-c w_{z}=(1-2 U) w . \tag{13}
\end{equation*}
$$

We look for a solution under the form $w(z, t)=\Phi(z) \exp (-\lambda t)$, with $\Phi(\pm L)=0$. If all possible values of λ are positive, the traveling wave solution will be considered as stable. It is convenient to write $\Phi(z)=\varphi(z) \exp (-c z / 2)$ in order to eliminate the first derivative term in (13). One obtains

$$
\begin{equation*}
-\varphi^{\prime \prime}+\left[2 U(z)+\frac{c^{2}}{4}-1\right] \varphi=\lambda \varphi \tag{14}
\end{equation*}
$$

This has the form of a Schrödinger equation, since $U(z)>0$ and $c>2$ the effective potential is positive. Consequently, the eigenvalue problem with boundary conditions $\varphi(\pm L)=0$ has only positive eigenvalues λ. This means that any perturbation of finite size support eventually decays: the domain wall solution is stable. The argument only relies on the fact that $U(z)>0$ and $c>2$: it applies for any traveling wave solution with large enough velocity.

[^3]
[^0]: ${ }^{1}$ Notes largely inspired by the book by J. D. Logan, "an introduction to nonlinear PDEs", chapter 5.

[^1]: ${ }^{2}$ If you need to refresh your memory on dynamical systems, I advise you read the 9 pages appendix of section 5 of Logan's book.
 ${ }^{3}$ This is the above mentioned "lucky scenario".

[^2]: ${ }^{4}$ This is called the method of "variation of the constant".

[^3]: ${ }^{5}$ This is not a natural assumption, but it makes the discussion simpler.

