Notes on Fisher’s equation!

A Physical discussion

Let u(7,t) be the density of population of a given species. A simple model: u does not depend on 7
and obeys a continuous version of the logistic map u; = ru(1 — u/K), where r is the growth rate and
K the “carrying capacity”, i.e., the maximum density of population that the environment can sustain
(if K = oo the population grows exponentially).

A simple way to introduce a position dependence consists in adding a diffusive term (the members
of the population wander randomly): u; = D V?u + ru(l —u/K). Define i =t-r, & = x+/r/D (idem
for y and 2), @ = u/K, then rename ¢ = t, # = x and % = u. In 1D this leads to Fisher’s equation

Up — Ugy = u(l —u) . (1)
For a uniform initial condition wu(x,0) = wuo,
where 0 < ug < 1, the solution is simple: u re- W(t
mains z-independent and the time-integration of 4
(1) yields
u(t) =1+ exp(—t .
(1) 0 exp(—1) "

If ug <« 1, this expression indeed corresponds
to an initially exponential growth rate: w(t) ~
ug exp(t), can you see that ?

One then looks for more interesting solutions where u(x,t) = U(z) with z = 2 — ¢t with ¢ > 0
(these are called “traveling wave” solutions) and U(z — +00) = K* (yet unknown constants). One
gets (U' = dU/dz)

U'=—-cU -U1-U). (2)

This equation is not so easily integrated as the one
encountered for instance when studying traveling
wave solutions of KdV (lecture 4). Things are sim-
pler if ¢ = 0. In this case, multiplying (2) by U’,
one can find a first integral: $(U")2+W (U) = C*,
where W (U) = U?/2—U?3/3. This is analogous to
the dynamics of a particle evolving in a 1D poten-
tial. One can find solutions to this equation, but
for all of them, at some point, U becomes nega-
tive, this is unphysical for a population density.

When ¢ # 0, Eq. (2) can be interpreted as the equation of motion of a classical particle in a
potential well W (U) in the presence of a dissipative force proportional to the velocity (—cU’). If we
are lucky enough, we will be able to find a solution that starts at U = 1 with “energy” W (1), falls
down the maximum, and, thanks to dissipation, ends up exactly at U = 0 with zero velocity.

'Notes largely inspired by the book by J. D. Logan, “an introduction to nonlinear PDEs”, chapter 5.



B Phase portrait of traveling wave solutions

In order to check if the above discussed lucky scenario is possible, let’s denote V' = U’ and study the
dynamics in the (U, V') phase plane. From (2) we see that it is governed by the following equations:

U=V, Vi=—cV-Ul1-U). (3)

There are 2 fixed points: (1,0) and (0,0). The corresponding phase portrait is represented below in
the cases c=1 and ¢ = 3.
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J(1,0) has eigenvalues \y = %(—c +v/c? +4), they are real and of opposite sign, therefore (1,0) is a

saddle point. The corresponding stable and unstable directions are ( 1 ) and ( 1 ) This looks like:
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J(0,0) has eigenvalues %(—c + /2 — 4). If ¢® < 4 the eigenvalues are complex with negative real
parts, and (0,0) is thus a stable spiral. In this case U would tend toward the asymptotic value 0
in an oscillatory way, which is impossible for a population density (always positive). If ¢ > 4 both
eigenvalues are negative: (0,0) is a stable node; this is the only acceptable situation. In this case there
exists a heteroclinic orbit leaving the saddle along the unstable manifold and reaching the node, such
that U > 0 all along the way. The corresponding U(z) goes from 1 (for z — —00) to 0 (for z — +00)?;
it is called a “domain wall”. It describes a population which has reached its carrying capacity in some
region of space (U = 1 when x — —o0), and which spreads at constant velocity towards a region
initially not occupied (U = 0 when x — +00).

2If you need to refresh your memory on dynamical systems, I advise you read the 9 pages appendix of section 5 of
Logan’s book.
3This is the above mentioned “lucky scenario”.



C Approximate domain wall solution

Let’s now try to see if we can get an approximate expression U(z) for the profile of the domain wall
solution. One identifies a small parameter ¢ = ¢=2 < 0.25. Define s = \/z z and g(s) = U(z). One will
denote ¢’ = dg/ds. From Eq. (2) one sees that g is solution of
eg" +9g +g(1—g)=0, with the boundary conditions lim g(s)=1 and lim g¢(s) =0. (5)
§——00 S—+00

One looks for a solution of the form g(s) = go(s) + € g1(s) + &2 ga(s) + - - - This gives at leading order
9o + 90(1 — go) = 0, which is a separable first order differential equation. Its solution reads

—/ds:/go(fg_ogo)Z/d%(gloJrl_lgO)Wgo(s)zlies- (6)

In the above expression the integration constant has been fixed so that go(0) = 1/2 (arbitrary choice).
Note that gy verifies the expected boundary conditions (5). The next terms in the expansion of g will
thus have to fulfill lim(,_,+ ) gn(s) = 0.

At next order in € one gets

g+ g1(1—2g0) = —g5 - (7)

This is an inhomogeneous linear ODE. The corresponding homogeneous equation is obtained by re-
placing the right-hand side of (7) by 0. It reads

dgi 1—¢f 2¢e’
" (2g0 — 1)ds T o ds <1 T 65> ds (8)

Its solution is g1 (s) = Ke®(1+e*)2, where K is an integration constant. One then looks for a solution
of the full inhomogeneous equation (7) under the form* g;(s) = K(s)e*(1+ e*) 2. Inserting this form
into (7) yields, after a little algebra, K'(s) = (1 — e*)(1 + €*)~!. The relevant integral has already
been computed in (8). One gets

K(s) = K(0) =s=2n{l+¢7) ~ K(S)Zln[cs .es}

One fixes the integration constant in such a way that ¢1(0) = 0 (so that one still has g(0) = 1/2).
This imposes C%* = 4 and the final result reads

(&

S 465
g1(s) = (1+e)? 1n<(1+eS)2) ' ©)

g1(s = £o0) = 0, so that gy + g1 verifies the expected boundary conditions. Going back to the
original function:

L1 ek se7le |
U(z) = — 1 ol—) - 10
(Z) 1+ e?/c + c2 (1 + 62/0)2 n ((1 + ez/c)Q) + (C4> ( )

The accuracy of expansion (10) is illustrated by the figure below which is drawn for the case ¢ = 2.1.
For larger values of ¢ the agreement is even better.

4This is called the method of “variation of the constant”.
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D Stability of the domain wall and of traveling waves

In this section we study the stability of the domain wall solution. To this end, let’s write Fisher’s
equation (1) in a moving coordinate frame, by changing variables to ¢t = ¢t and z = x — ¢t (where
¢ > 2). One gets

Up — Uy — Ccuy = u(l —u) . (11)

Let’s seek for a solution of the form u(z,t) = U(z) +w(z,t), where |w| < U. We further assume that
w(z,t) =0 for |z| > L, forsome L>0. (12)

This implies that the perturbation vanishes outside a bounded domain in the moving frame®. We now
want to study the dynamics of the small perturbation w: will it eventually decay or blow up? This
will decide if the solution U(z) is stable or not. Using (2) one sees that the linearized version of (11)
reads

W — Wy —cw, = (1-20)w. (13)

We look for a solution under the form w(z,t) = &(z) exp(—At), with &(£+L) = 0. If all possible values
of A are positive, the traveling wave solution will be considered as stable. It is convenient to write
&(z) = p(2) exp(—cz/2) in order to eliminate the first derivative term in (13). One obtains

—90"+[2U(z)+12—1]90=)\90~ (14)

This has the form of a Schrédinger equation, since U(z) > 0 and ¢ > 2 the effective potential is
positive. Consequently, the eigenvalue problem with boundary conditions ¢(+L) = 0 has only positive
eigenvalues A. This means that any perturbation of finite size support eventually decays: the domain
wall solution is stable. The argument only relies on the fact that U(z) > 0 and ¢ > 2: it applies for
any traveling wave solution with large enough velocity.

5This is not a natural assumption, but it makes the discussion simpler.



