
Notes on Fisher’s equation1

A Physical discussion

Let u(~r, t) be the density of population of a given species. A simple model: u does not depend on ~r
and obeys a continuous version of the logistic map ut = r u(1− u/K), where r is the growth rate and
K the “carrying capacity”, i.e., the maximum density of population that the environment can sustain
(if K =∞ the population grows exponentially).

A simple way to introduce a position dependence consists in adding a diffusive term (the members
of the population wander randomly): ut = D ~∇2u+ r u(1− u/K). Define t̃ = t · r, x̃ = x

√
r/D (idem

for y and z), ũ = u/K, then rename t̃ = t, x̃ = x and ũ = u. In 1D this leads to Fisher’s equation

ut − uxx = u(1− u) . (1)

For a uniform initial condition u(x, 0) = u0,
where 0 < u0 < 1, the solution is simple: u re-
mains x-independent and the time-integration of
(1) yields

u(t) =

[
1 +

1− u0
u0

exp(−t)
]−1

.

If u0 � 1, this expression indeed corresponds
to an initially exponential growth rate: u(t) '
u0 exp(t), can you see that ?

One then looks for more interesting solutions where u(x, t) = U(z) with z = x − c t with c > 0
(these are called “traveling wave” solutions) and U(z → ±∞) = K± (yet unknown constants). One
gets (U ′ = dU/dz)

U ′′ = −cU ′ − U(1− U) . (2)

This equation is not so easily integrated as the one
encountered for instance when studying traveling
wave solutions of KdV (lecture 4). Things are sim-
pler if c ≡ 0. In this case, multiplying (2) by U ′,
one can find a first integral: 1

2(U ′)2+W (U) = Cst,
where W (U) = U2/2−U3/3. This is analogous to
the dynamics of a particle evolving in a 1D poten-
tial. One can find solutions to this equation, but
for all of them, at some point, U becomes nega-
tive, this is unphysical for a population density.

When c 6= 0, Eq. (2) can be interpreted as the equation of motion of a classical particle in a
potential well W (U) in the presence of a dissipative force proportional to the velocity (−cU ′). If we
are lucky enough, we will be able to find a solution that starts at U = 1 with “energy” W (1), falls
down the maximum, and, thanks to dissipation, ends up exactly at U = 0 with zero velocity.

1Notes largely inspired by the book by J. D. Logan, “an introduction to nonlinear PDEs”, chapter 5.
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B Phase portrait of traveling wave solutions

In order to check if the above discussed lucky scenario is possible, let’s denote V = U ′ and study the
dynamics in the (U, V ) phase plane. From (2) we see that it is governed by the following equations:

U ′ = V , V ′ = −c V − U(1− U) . (3)

There are 2 fixed points: (1, 0) and (0, 0). The corresponding phase portrait is represented below in
the cases c = 1 and c = 3.
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The Jacobian matrix2 around a fixed point (U, V ) is

J(U, V ) =

(
0 1

2U − 1 −c

)
. (4)

J(1, 0) has eigenvalues λ± = 1
2(−c±

√
c2 + 4), they are real and of opposite sign, therefore (1, 0) is a

saddle point. The corresponding stable and unstable directions are

(
1
λ−

)
and

(
1
λ+

)
. This looks like:

J(0, 0) has eigenvalues 1
2(−c±

√
c2 − 4). If c2 < 4 the eigenvalues are complex with negative real

parts, and (0, 0) is thus a stable spiral. In this case U would tend toward the asymptotic value 0
in an oscillatory way, which is impossible for a population density (always positive). If c2 > 4 both
eigenvalues are negative: (0, 0) is a stable node; this is the only acceptable situation. In this case there
exists a heteroclinic orbit leaving the saddle along the unstable manifold and reaching the node, such
that U ≥ 0 all along the way. The corresponding U(z) goes from 1 (for z → −∞) to 0 (for z → +∞)3;
it is called a “domain wall”. It describes a population which has reached its carrying capacity in some
region of space (U = 1 when x → −∞), and which spreads at constant velocity towards a region
initially not occupied (U = 0 when x→ +∞).

2If you need to refresh your memory on dynamical systems, I advise you read the 9 pages appendix of section 5 of
Logan’s book.

3This is the above mentioned “lucky scenario”.
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C Approximate domain wall solution

Let’s now try to see if we can get an approximate expression U(z) for the profile of the domain wall
solution. One identifies a small parameter ε = c−2 < 0.25. Define s =

√
ε z and g(s) = U(z). One will

denote g′ = dg/ds. From Eq. (2) one sees that g is solution of

εg′′ + g′ + g(1− g) = 0 , with the boundary conditions lim
s→−∞

g(s) = 1 and lim
s→+∞

g(s) = 0 . (5)

One looks for a solution of the form g(s) = g0(s) + ε g1(s) + ε2 g2(s) + · · · This gives at leading order
g′0 + g0(1− g0) = 0, which is a separable first order differential equation. Its solution reads

−
∫

ds =

∫
dg0

g0(1− g0)
=

∫
dg0

(
1

g0
+

1

1− g0

)
 g0(s) =

1

1 + es
. (6)

In the above expression the integration constant has been fixed so that g0(0) = 1/2 (arbitrary choice).
Note that g0 verifies the expected boundary conditions (5). The next terms in the expansion of g will
thus have to fulfill lim(s→±∞) gn(s) = 0.
At next order in ε one gets

g′1 + g1(1− 2g0) = −g′′0 . (7)

This is an inhomogeneous linear ODE. The corresponding homogeneous equation is obtained by re-
placing the right-hand side of (7) by 0. It reads

dg1
g1

= (2g0 − 1)ds =
1− es

1 + es
ds =

(
1− 2 es

1 + es

)
ds. (8)

Its solution is g1(s) = Kes(1+es)−2, where K is an integration constant. One then looks for a solution
of the full inhomogeneous equation (7) under the form4 g1(s) = K(s)es(1 + es)−2. Inserting this form
into (7) yields, after a little algebra, K ′(s) = (1 − es)(1 + es)−1. The relevant integral has already
been computed in (8). One gets

K(s)−K(0) = s− 2 ln(1 + es)  K(s) = ln

[
Cst · es

(1 + es)2

]
.

One fixes the integration constant in such a way that g1(0) = 0 (so that one still has g(0) = 1/2).
This imposes Cst = 4 and the final result reads

g1(s) =
es

(1 + es)2
ln

(
4 es

(1 + es)2

)
. (9)

g1(s → ±∞) = 0, so that g0 + εg1 verifies the expected boundary conditions. Going back to the
original function:

U(z) =
1

1 + ez/c
+

1

c2
ez/c

(1 + ez/c)2
ln

(
4 ez/c

(1 + ez/c)2

)
+O

(
1

c4

)
. (10)

The accuracy of expansion (10) is illustrated by the figure below which is drawn for the case c = 2.1.
For larger values of c the agreement is even better.

4This is called the method of “variation of the constant”.
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D Stability of the domain wall and of traveling waves

In this section we study the stability of the domain wall solution. To this end, let’s write Fisher’s
equation (1) in a moving coordinate frame, by changing variables to t = t and z = x − c t (where
c > 2). One gets

ut − uzz − c uz = u(1− u) . (11)

Let’s seek for a solution of the form u(z, t) = U(z) +w(z, t), where |w| � U . We further assume that

w(z, t) = 0 for |z| ≥ L , for some L > 0 . (12)

This implies that the perturbation vanishes outside a bounded domain in the moving frame5. We now
want to study the dynamics of the small perturbation w: will it eventually decay or blow up? This
will decide if the solution U(z) is stable or not. Using (2) one sees that the linearized version of (11)
reads

wt − wzz − cwz = (1− 2U)w . (13)

We look for a solution under the form w(z, t) = Φ(z) exp(−λ t), with Φ(±L) = 0. If all possible values
of λ are positive, the traveling wave solution will be considered as stable. It is convenient to write
Φ(z) = ϕ(z) exp(−cz/2) in order to eliminate the first derivative term in (13). One obtains

−ϕ′′ +
[
2U(z) +

c2

4
− 1

]
ϕ = λϕ . (14)

This has the form of a Schrödinger equation, since U(z) > 0 and c > 2 the effective potential is
positive. Consequently, the eigenvalue problem with boundary conditions ϕ(±L) = 0 has only positive
eigenvalues λ. This means that any perturbation of finite size support eventually decays: the domain
wall solution is stable. The argument only relies on the fact that U(z) > 0 and c > 2: it applies for
any traveling wave solution with large enough velocity.

5This is not a natural assumption, but it makes the discussion simpler.
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