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L3 & Magistère 1st year 2022/2023
Fundamental Physics Special relativity

Tutorial # 1
Relativity principle and first consequences

1 Particle decay

The baryon Λ0 decays in proton-pion pairs: Λ0 → p π−. Given that its proper lifetime is 2.9×10−10

s, what is the mean distance covered in the lab frame by a Λ0 of velocity v = 0.994 c ?

2 Length contraction

Let R and R′ be 2 inertial frames in uniform motion with respect to each other. Let a ruler be at
rest in R′ and with its long axis aligned along the motion axis. Retrieve the length contraction law
using two or even three different methods.

3 The ruler and the hole

In an inertial frame R of origin O, coordinates x, y and z and time t, a ruler R1R2 of length L0

is moving at constant speed
−→
V = V −→ex where V is close to c (see Fig. 1). Similarly a plane with

a circular hole of diameter L0 is moving along the y-axis with a constant velocity −→u = u−→ey where
u� c so that the motion of the hole can be considered non-relativistic. The relative motion of the
ruler and the hole is such that at t = 0 the midpoint of the ruler coincides with the origin O and
with the centre of the hole.

Figure 1: Set-up sketch. The ruler is lim-
ited by its endpoints R1 and R2 and T1T2

represents the diameter of the hole along
the y-axis.
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Because of its length contraction as seen in R, the ruler is expected to easily pass through the hole.
However as seen from the ruler’s frame R′, the hole size shrinks and possibly the ruler cannot fit
in. Solve this paradox by considering the coordinates of the points R1,2 and T1,2 in the R and R′
frames. Tip: in R′ study the trajectory of T1 and T2.

4 Velocity composition

1/ Let R and R′ be two inertial frames in relative uniform motion with V −→ex the velocity of R′
with respect to R. Consider a material point M with velocity −→v in R and −→v ′ in R′. Express then
the coordinates of −→v as a function of those of −→v ′. This result will be derived in two different ways:
first directly and then using the transformation of the 4-velocity.
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2/ Let 1 and 2 be two particles with velocity −→v et
−→
V in the laboratory (R). The relative velocity

of 1 with respect to 2, −→vrel, is defined as the velocity of 1 in the frame where 2 is at rest1. Show
that

v2
rel =

1(
1− ~v · ~V /c2

)2


(
~v − ~V

)2
−

(
~v ∧ ~V

)2

c2

 . (1)

5 Fizeau Experiment

We study an experiment performed by Hippolyte
Fizeau in 1851 where the light from a source to the
right is split in 2 rays (in red) which go through
water tubes with opposite flows (see figure). Both
rays then come out to the right and are superposed
in order to interfere. The wavelength of the light is
λ and the index of refraction of water is n.
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We note v′ the speed of light with respect to water and v± the speed of light measured in the
laboratory frame R. The index ± stands for the 2 possible flow velocities, ±V .

(a) Show that v± = (c/n) ± V (1 − 1/n2) where the terms of order (V/c)2 and higher have been
neglected.

(b) Derive the phase difference ∆φ of photons that have followed the 2 possible paths and compare
to the results predicted by classical mechanics.

(c) In his experiment, Fizeau used a set-up where L = 1.487 m, V = 7.059 m/s, λ = 0.526 µm
and n = 1.333. He then measured (∆φ/2π) = 0.23: does this value allow to reject the classical
approach ?

6 Hafele & Keating experiment

In 1971 Hafele & Keating 2 performed an experiment illustrating the “twins paradox”. They synchro-
nized several atomic clocks and flew them on airplanes. Then gathering the clocks, they compared
the elapsed time measured by each of them in flight, i.e., the proper duration.
Numerical values: typical plane velocity with respect to ground V = 900 km/h, flight duration
Tf = 2πR/V = 45 h, Earth radius R = 6380 km.

1/ Using the time dilation relationship, derive the time lag between a clock on the ground and a
clock on a plane. How much lifetime does a pilot spare if he flies 1000 h per year during 30 years ?
Same question for a student who performs 200 Paris-Orsay return trips per year.

2/ In this experiment, it is observed that clocks traveling to the east are lagged back and those
traveling to the west are ahead of time with respect to a clock on the ground. Given that γ is
independent of the velocity direction, how can you explain this result with special relativity?

1Beware that it is −→v −
−→
V only in the non-relativistic case.

2J. C. Hafele et R. E. Keating, Science 177, 166 (1972)

2



7 Happy Anniversary

The astronaut Alice (A) leaves her friend Bob (B) for a return trip to a stellar system located at
a distance of 4 l.yrs from the Earth. For both trips we assume a constant velocity v = 0.8 c and
neglect the time needed to U-turn3.

1/ What is the duration of the first trip as measured by A ? And as measured by B?

2/ Each year, A celebrates her leave by sending a signal to B. For this latter what is the time
between 2 subsequent signals sent during the first trip? Same question for the time between signals
during the return trip. How many messages does B receive in total?

3/ If B also sends signals to A each year, how many messages will be received by A during the first
trip? And during the return trip? How many messages will she receive in total?

8 Other exercices (in french)

Voici quelques exercices qui portent sur le même thème que cette feuille de travaux dirigés et que
vous pouvez télécharger en vous reportant sur la page web de l’enseignement:

? Premier partiel 2014/2015 : problème B (observation radio, corrigé).
? Partiel 2015/2016 : problème A (contraction des longueurs, non corrigé).
? Partiel 2018/2019 : problème B (Effet Sagnac, corrigé).
? Partiel 2019/2020 : problème C (paradoxe du train et du tunnel, corrigé).
? Examen 2019/2020 : problème A (encore un train et un tunnel, corrigé).
? Partiel 2020/2021 : problème A (muons cosmiques, non corrigé) et problème C (Photographier

n’est pas mesurer, corrigé).
? Partiel 2021/2022 : problème A (le centre de gravité est-il un concept pertinent en relativité,

corrigé) et problème B (train, tunnel et porte, corrigé).

3C. G. Darwin [Nature 180, 976 (1957)] used this example to answer to an opponent to the theory of special
relativity.
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L3 & Magistère 1st year 2022/2023
Fundamental Physics Special relativity

Tutorial # 2
Optics and Particle Kinematics

1 Wave four-vector

We aim at demonstrating that for a wave of angular frequency ω, wave vector ~k and phase velocity
vp, the quantity (ω/c,~k ) is a “good” four-vector. For simplifying the demonstration we will work
with a single space dimension.
In the lab frame R, one defines the wavelength λ as
the (usual) distance between two simultaneous events:
two successive maxima of the wave (cf. figure). In R,
the wave maxima move at the phase velocity vp, such
that vp = ω/k.

A B

( (x=0

t=0

x=λ

t=0) )

One considers a frameR′ moving at velocity V with
respect to R along axis Ox. One denotes as C the
nearest maximum of A which is simultaneous to A
in R′. The corresponding space-time diagram is
shown in the figure.
Determine the spatial coordinate of C in R′, obtain
the corresponding wave length λ′. Defining k′ =
2π/λ′ and k = 2π/λ, show that k′ can be expressed
in terms of k and ω as expected from the spatial
component of a four-vector (ωc , k).

A B

C

t

x = vpt x = vpt+ λ

Light
cone

t′ = 0

x

Check that the temporal component obeys also
the correct transformation laws. For that mat-
ter, one will need to define the period as the
time-interval between two events (which are
they?) and to use a reasoning similar to the
above.
indication : Here is a Minkowski diagram rep-
resenting in R the world lines of two succesive
maxima of the wave (the plot corresponds to the
case V < vp).
It is clear that the temporal period in R is T =
tP. What is T ′ in R′ ?

Q

P

O

t

x = vptx = vpt− λ

x = V t
x′ = 0

x
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2 Speed Measurement

A car, considered as a mirror, moves away from a policeman
along a straight line, at constant velocity V . The policeman
emits a light ray of angular frequency ωi which, after reflex-
ion on the car/mirror, return towards the policeman with an
angular frequency ωr. Express ωr as a function of ωi.

Indications : (1) Use the wave four-vector. (2) One will
denote as ω′i and ω′r the angular frequencies in the frame
R′ attached to the mirror and one will justify by physical
arguments that ω′i = ω′r.

U.S. Army soldier using a radar
gun to catch speeding violators.

3 Angular distribution of photons emitted by a moving source

In its own frame R∗, a light source emits photons isotropically. The number of photons dN emitted
in the solid angle dΩ∗ can be expressed as dN/N0 = dΩ∗/(4π) where N0 is the number of photons
emitted in all directions. This light source moves at constant velocity −→u with respect to an inertial
frame R. In the frame R, photons are seen to be emitted in a solid angle dΩ comprised between
cones of half-angles θ and θ+dθ, where θ is the angle between the wave vector of the photon and −→u .

Show that dN/N0 = f(θ) dΩ/(4π) where f(θ) represents the angular distribution of the emitted
photons in R to be expressed as a function of β and θ. Represent f(θ) in a polar plot for β = 1/2.
Show then that half of the photons are emitted in a cone with θ = 60◦.

4 Collision inélastique de deux protons

One studies a two protons collision (mp c
2 = 938.25 MeV) resulting in a deuteron d+ (md c

2 =
1875.56 MeV) and a π+ meson (mπ c

2 = 139.6 MeV):

p+ + p+ → d+ + π+

Determine the threshold energy of this reaction in the center of mass reference frame R∗. Compute,
at threshold, the energy of the incident proton in the lab frame R in which the traget proton is at
rest. Give the analytical formula and the numerical value.

5 Head-on collision

One aims at studying the elastic head-on collision of an incident particle of mass M and velocity
β = v/c with a particle at rest of mass m.

1/ Write the initial energy-momentum four-vector of each particle in the lab frame.

2/ Write down the Lorentz transform between the lab frame and the frame R∗ in which the particle
of mass M is at rest. Derive then the initial four-momenta of each particle in R∗.

3/ One considers the special case M � m.

(a) By studying the kinematics of a head-on collision in R∗, determine without computation the
maximal final momentum of the light particle.
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(b) Going back to the lab frame, show that the final maximal kinetic energy transferred to the
light particle in the collision is

K = 2mc2β2γ2 . (1)

6 Elastic collisions

A particle of mass m and kinetic energy K moves along the x-direction (of unit vector −→ex) and
collides with another particle of same mass at rest. After the collision the particles have different
energies and velocity vectors, namely −→v1

′ · −→ex 6= ~v2
′ · −→ex. We note α the angle between −→v1

′ and −→v2
′.

1/ Show that in newtonian mechanics α = π/2.

2/ Show that in special relativity α is a narrow angle (hint: express cosα as a function of γ′1
and γ′2). Discuss the newtonian and relativistic limits. In the case of a symmetrical collision
(−→v1
′ · −→ex = −→v2

′ · −→ex), show that

cosα =
K

K + 4mc2
.

7 Kinematics of a decay in 2 bodies

1/ A particle of mass M and momentum 4-vector P˜ = (E/c, ~p ) disintegrates in 2 particles of mass
m1, m2 and 4-momentum P˜1, P˜2 (we assume that ~p is along the z-axis).

(a) In the center of mass frame for the disintegration, express the energies of the particles E∗1 and
E∗2 as well as their common momentum p∗.

(b) In the Lorentz transformation from the laboratory to the center of mass frame, show that βCM

is equal to pzc/E .
(c) Express E1 – the energy of particle 1 in the lab frame – as a function of βCM, E∗1 , p∗ and of

the angle θ∗ between the z-axis and the momentum of particle 1 in the centre of mass frame.
(d) In the frame of the centre of mass, the decay is assumed to be isotropic so that: dN/d(cos θ∗) =

A (A a constant). From (c) deduce the distribution dN/dE1 in the lab frame.

2/ A particle π+ decays in flight as : π+ → νµ µ
+ (mπ = 140 MeV/c2, mµ = 106 MeV/c2 and

mν = 0 eV/c2).

(a) Taking the kinetic energy K of the π+ to be 140 MeV in the lab frame, what must be the
value of the βCM factor in the center of mass frame ?

(b) The z-axis is chosen to be along the flight line of the π in the lab frame. Let θ (resp. θ∗)
be the angle between the µ line and the z-axis in the lab frame (resp. in the center of mass
frame). Show that

tan θ =
1

γCM

sin θ∗

cos θ∗ + βCM

m2
π +m2

µ

m2
π −m2

µ

.

From this result show that the µ+ is emitted in the lab frame in a cone of half-angle θmax ' 9◦.
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8 Other exercices (in french)

Voici quelques exercices qui portent sur les même thématiques que celle traitées dans cette feuille
de TD et que vous pouvez télécharger en vous reportant sur la page web de l’enseignement:

? Partiel 2015/2016 : problème B (collisions, corrigé).
? Partiel 2016/2017 : problème A (optique relativiste, corrigé).
? Examen 2016/2017 : problème A (collisions, corrigé).
? Partiel 2017/2018 : problème A (optique relativiste, corrigé) et problème B (collisions, cor-

rigé).
? Examen 2016/2017 : problème II (Compton inverse, corrigé).
? Partiel 2018/2019 : Exercice A (collision de deux protons, non corrigé).
? Examen 2018/2019 : Exercice A (collision photon – proton, corrigé).
? Partiel 2019/2020 : problème A (optique: élargissement d’une raie, non corrigé) et exercice B

(désintégration d’un méson, non corrigé).
? Partiel 2020/2021 : problème B (désintégration d’un Kaon, corrigé).
? Examen 2020/2021 : détail de la cinématique de l’effet Compton (corrigé).
? Partiel 2021/2022 : problème C (perte de masse, corrigé).
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L3 & Magistère 1st year 2022/2023
Fundamental Physics Special relativity

Tutorial # 3
Relativistic dynamics

1 Mass = rest energy

1/ Two piece of clay, both of mass m, have a head-on collision at a speed 3c/5. They form a unique
clay ball after the collision (see picture below). What is the mass M of this particle?

Figure 1: Collision-fusion of
two particles of same mass.

3c/5 3c/5

m m

before after

M

2/ An example of bound state is the hydrogen atom. It consists of a positively charged proton and
a negatively charged electron, the two being bound together by the electric force. The rest masses
of the two particles are respectively: mp = 938.3 MeV/c2 ; me = 0.5 MeV/c2. The corresponding
binding energy is ∆E = −13.5 eV. Evaluate the rest energy Mc2 of the hydrogen atom and the
relative mass gain (me +mp −M)/(me +mp).

3/ Mass defect: a particle α is the nucleus of 4He atom, made of two neutrons and two protons.
The different masses1 are: Helium nucleus mass: 4.0026 u, proton mass: 1.0073 u, neutron mass:
1.0087 u. Calculate the binding energy of the α particle.

Same question for the 238
92U nucleus of mass 238.0022 u. What is the total electron binding energy

of this element knowing that the 238
92U atomic mass is 238.0508 u (we will take me = 5.49 × 10−4

u)?

2 Motion with constant acceleration in its proper frame

0/ One considers a material point of velocity v(t) in an inertial frame R with a single space
coordinate. One defines the four-acceleration A˜ = dU˜/dt0, where t0 and U˜ are the proper time and
the four-velocity, respectively.

(a) Proove that it R one has:

A˜ = γ

(
d(γc)

dt
,
d(γv)

dt

)
= γ4 dv

dt

(v
c
, 1
)

where γ(t) = (1− v2/c2)−1/2 .

(b) Define the proper reference frame R0 of the material point. Show that in R0 the four-
acceleration reads A˜0 = (0, a0) where the proper acceleration a0 relates to the coordinates in
R through a0 = γ3 dv/dt.

1The atomic mass unit “u” is 1/12 of the 12C atomic mass. 1 u = (1/NA) g = 1.6605×10−27 kg = 931.49 MeV/c2.
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1/ A rocket leaves the Earth with a constant proper acceleration a0. We will suppose that at t = 0
in the Earth frame R, assumed inertial, the rocket is at the origin of the coordinates with a speed
equal to zero.

(a) Give the expression in R of the velocity v(t) and of the position x(t) of the space ship.
(b) Express the time t in the Earth frame R as a function of the proper time t0 of the space ship

(the spacetime origins are the same in R and R0)2.
(c) Give the proper time t0 as a function of the distance x covered by the rocket and measured

in the Earth frame R.
(d) Taking as time unit the year (yr) and the light-year as unit of distance (lyr), calculate the

proper time t0 and the corresponding time t for an observer on Earth, for the cosmonaut
to reach by keeping the proper acceleration a0 = 9.52 m.s−2 constant (close to the standard
acceleration of free fall), the nearest star from the Sun, Proxima Centauri, located at 4.25 lyrs.
Same question to reach the centre of our galaxy located at 30000 lyrs, the Andromeda galaxy
located at 2.2.106 lyrs and at last to reach the limits of the observable universe estimated at
15.109 lyrs

3 Minkowski force

A relativistic generalization of the fundamental principle of the dynamics is given by the Minkowski
equation:

dPµ

dτ
= Fµ , (1)

where Fµ is called the four-force. In the following, we are going to study what are the properties
of this four-force.

1/ By studying the spatial component of (1) justify that we can write ~F = γ ~F where ~F is the
analogous of the Newtonian force and γ = (1− v2/c2)−1/2.

2/ Show that the dot product of P˜ and F˜ is zero. Deduce from that the relation (How to call it?)

d

dt
(mγc2) = ~F · ~v . (2)

3/ We suppose that the force is conservative, associated to a potential V (~r ). Write the conservation
of the total energy. Then show that the dynamics of this system corresponds to the Lagrangian

L(~r,~v ) = −mc2
√

1− ~v 2/c2 − V (~r ) . (3)

Explain why the concept of force and potential seems to be difficult to define correctly in relativistic
mechanics.

4/ From the orthogonality relation FµUµ = 0 demonstrated in question 2/, the four-force can’t
be independent from the four-velocity. The simplest dependence corresponds to a linear relation
between the two quantities, of the type Fµ = FµνUν where Fµν(~r, t) is a “tensor field”.

(a) Show that the orthogonality relation is verified if Fµν is antisymmetric under the exchange of
its indexes. This will be assumed in the following.

2One has ∫ X

0

dx√
1 + (αx)2

=
1

α
argsh(αX) ,

where argsh is the reciprocal function of sinh(x) = 1
2
[exp(x)− exp(−x)].
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(b) We decide to parametrize Fµν as 3:

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 . (4)

Write the corresponding Minkowski equations. Don’t you feel the desire to add a multiplicative
parameter to Fµν?

(c) Justify without calculation that for Fµ to be a regular four-vector, Fµν must have specific
properties under Lorentz transformations. Verify that under a change of frame Fµν is trans-
formed like:

F ′µν = Λµα Λνβ F
αβ . (5)

4 Charged particle motion in a uniform electric field

Let R a Galilean frame where a uniform electric field ~ES , independent of the time, is directed along
the Ox axis. At t = 0 a charged particle is sent from the origin O of the frame with an initial
velocity ~v0 parallel to the Oy axis.

Study the motion of this charged particle in the frame R and give the equation of its trajectory.
Study the the non-relativistic limit.

5 Proton synchrotron

A synchrotron is a particle accelerator in which particles follow a fixed circular trajectory. This is
achived by using a set of electromagnets which create a uniform magnetic field ~B, perpendicular
to the plane of the trajectory and which vary slowly with time so that the radius R stays constant
while the particle’s energy increases. These protons are accelerated in an accelerating cavity where
the applied electric field varies with the frequency f , multiple of the rotation frequency ν of the
particles. We will write k = K/mc2 the reduced kinetics energy of the particles (protons), with
mc2 = 0.938 GeV for a proton.

(a) For a given value of k, detremine the values of the magnetic field B and of the frequency ν
that hold the protons on a circular trajectory of given radius R.

(b) We suppose that at each turn, the proton’s energy increases by a constant value ∆E0. By
assimilating the variation of the energy to a continuous variation, establish the law of variation
of the magnetic field with the time. Deduce from this the laws for k and ν in function of the
time.

(c) N.A.: At the Super Proton Synchrotron (SPS) at CERN in Geneva, the protons are injected
with an initial momentum pi = 26 GeV/c, the radius of the synchrotron is R = 1100 m,
∆E0 = 50 keV and the final magnetic field Bf = 1.21 T. Calculate the final proton energy,
their final momentum pf , the duration of the increase of the energy, the number of turns
done, the distance travelled by the protons during this acceleration stage and the extreme
frequencies.

3We take the convention: the first index is the row index and the second is the column index. Take care that the
indexes vary from 0 to 3: so the column of index 1 is the second column.
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6 Other exercices (in french)
Voici quelques exercices qui portent sur les même thématiques que celle traitées dans cette feuille
de TD et que vous pouvez télécharger en vous reportant sur la page web de l’enseignement:

? Deuxième examen 2014/2015: problème B (particule dans champ électromag, corrigé).
? Examen 2015/2016: problème A (fusée relativiste, corrigé).
? Examen 2016/2017: problème B (paquets d’électrons, non corrigé).
? Examen 2019/2020: problème C (faisceau laser, corrigé).
? Examen 2021/2022: problème B (voilier cosmique, corrigé).
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L3 et Magistère 1ère année 2022/2023

Tutorial # 4
Relativistic electrodynamics

1 The Coulomb gauge

We consider an electromagnetic field corresponding to the potentials φ(~r, t) and ~A(~r, t). Determine
the scalar field G(~r, t) such that the gauge transformated potentials φ∗ = φ−∂tG, and ~A∗ = ~A+ ~∇G
satisfie the Coulomb gauge condition: ~∇ · ~A∗ = 0.

2 Point charged particle in uniform rectilinear motion

Let a particle P of charge q move along Ox at uniform velocity ~v = v ~ex in an inertial frame R. P
is at the origin at t = 0. We denote as R0 the proper frame associated to this particle. Let M a
point of coordinates (x, y, z) in R.

1/ Calculate in R0 the four-potential at a point M . Deduce from this the expressions of ~E0 and
~B0. Express in R the four-potential as a function of (x, y, z, t).

2/ We henmceforth work in the frame R. Show that the scalar potential can be written as follows
(the notations are defined on the figure):

φ(~r, t) =
q

4πε0

1

R (1− β2 sin2 ψ)1/2
. (1)

3/ The “retarded time” tr is defined as follows: a pho-
ton emitted by P at time tr arrives inM at time t. We
note ~Rr =

−−−−−→
P (tr)M . Show that sinα = β sinψ. Deduct

from this that:

φ(~r, t) =
q/4πε0

Rr

(
1− R̂r · ~β

) , where

{
R̂r = ~Rr/Rr ,
~β = v

c ~ex .

R

x

ψ
P(t)

x−vt

M

α

r

r

R =
 c 

(t−
t r )

 

)
v(t−t

r
)= β R

r

P(t

4/ Express ~E as a function of x, y, z, t. Study the variations of Ex and of Ey(z) as a function of
ξ = x − vt, in particular for β ' 0 and for β → 1. Comment on. Draw the field lines. Express ~B.
Show that ~B = ~β ∧ ~E/c = R̂r ∧ ~E/c.

Note: To answer to question 3/ you may use the geometric
relation

a

sinα
=

b

sinβ
=

c

sin γ
,

which is valid for the triangle in the figure to the right. α

c β

b

a

γ

12



3 An electromagnetic paradox

One considers a charged particle at rest in a frame R in the presence of a uniform and constant
magnetic field ~B = Bx ~ex + Bz ~ez (this problem is general enough and there is no need to consider
a field with also a component along ~ey).

1/ What is the force experienced by the particle ?

2/ If one now works in a frame R′ moving at the velocity ~V = V ~ex with respect to R, the particle
is no more at rest. It should then undergo a force... Solve this paradox.

4 Force between two electrons moving side by side.

In an inertial frame R, two electrons M1 and M2 are moving side by side at a constant speed v on
two parallel straight lines distant by d. Let R′ be the frame in which they are both at rest.

1/ Calculate in R′ the fields ~E ′ and ~B ′ created by M1 at the point M2. Deduce the force exerted
on M2.

2/ Answer to the same questions in R. Calculate the fields ~E and ~B created by M1 at point M2

by two different methods. Verify the covariant nature of the Lorentz force.

5 Current in a wire
• Show that a infinitely long and thin conducting wire
–assimilated to the axis Ox– travelled by a current I and
carrying a linear charge λ, creates in a point M located
at a distance r of the wire, electric and magnetic fields
which have the following expressions:

~E(M) =
1

2πε0

λ

r
~er , et ~B(M) =

µ0

2π

I

r
~eθ . (2)

In these expressions λ and I are algebraic quantities, ~er
and ~eθ are defined on the nearby figure and are indepen-
dent of the sign of λ or I.

M

~er

~eθ

r

(λ, I)
x

Let’s consider a rectilinear wire of axis Ox. The wire contains positive stationary charges (ions)
corresponding to an electric charge density ρ i and a current density ~J i = ~0. There are also electrons
(charge ρe) moving at a velocity ~u = u~ex and creating a current density ~Je = ρe ~u. The wire being
neutral on average, the whole charge density is ρ = ρ i + ρe = 0.

1/ The total four-current will be noted J˜. Write its components in the frame R in wich the wire
is at rest.

2/ We consider a frame R′ moving at a constant velocity V ~ex with respect to R. Determine the
total charge and current densities in R′.

3/ A charged test q is stationary in R at a distance r from the wire. What is the force felt by this
particle ?

4/ We will try to derive this result working in the frame R′.
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(a) By using the results to question 1/, determine in R′ the fields ~E ′ and ~B ′ created by the wire.
Indication: Let S be the cross section of the wire. It is appropriate to introduce the linear
charge of the wire in R′ (λ′ = ρ′ S), the current I ′ = J ′x S and to use (2).

(b) Determine, always in R′, the force induced on the particle (which is moving at a constant
velocity in R′).

(c) Find the same result by using the concept of four-force (see exercise 3 of tutorial # 3).
We recall that the four-force is given by: Fµ = γ (~FLorentz · ~v/c , ~FLorentz) where ~FLorentz =
q ( ~E + ~v ∧ ~B ).

6 Moving capacitor

Let R and R′ be two inertial frames . An event has coordinates Xµ = (ct, x, y, z) in R and
X ′µ = (ct′, x′, y′, z′) in R′. The origin (0, 0, 0, 0) corresponds to the same event in the two frames.
R′ is moving with respect to R with a constant velocity ~v parallel to Ox axis (Lorentz boost).

A parallel plate capacitor (b� a, c) is stationary
in R. Determine the field ~E ′, ~B ′ in the frame
R′ by using two different methods:

1. by transformation of the field after having
determined the field in R.

2. by a direct calculation using Gauss and
Ampère theorems in the frame R′. You
will need to determine with care the charge
and current densities in this frame.

y

z

O

y’

x, x’

z’

O’

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

a

c

b

+σ

−σ

7 Other exercices (in french)

Voici quelques exercices qui portent sur les même thématiques que celle traitées dans cette feuille
de TD et que vous pouvez télécharger en vous reportant sur la page web de l’enseignement:

? Examen 2015/2016 : exercice B (Force entre deux faisceaux, non corrigé).
? Examen 2017/2018 : problème III (courant dans un fil, corrigé).
? Examen 2018/2019 : exercice C (transformation d’une onde plane, corrigé).
? Examen 2019/2020 : exercice D (sélecteur de vitesse, corrigé).
? Examen 2020/2021 : Plan chargé en mouvement (corrigé).
? Examen 2021/2022: problème A (Invariants du champ électromagnétique, corrigé).
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