Modulation theory in two-component Bose-Einstein condensates: the ferromagnetic paradigm

T. Congy Northumbria Univ, Newcastle

S. Ivanov ICFO, Barcelona

S. Bresolin BEC Center, Trento

A. Recati BEC Center, Trento

A. Kamchatnov ISAN, Troitsk

A. Roy IIT, Mandy

dark-bright solitons in two components systems

 $^{87}\mathsf{Rb} \quad |\mathsf{F},\mathsf{m}_\mathsf{F}\rangle = |1,1\rangle \equiv |1\rangle \text{ (70\%) and } |2,2\rangle \equiv |2\rangle \text{ (30\%) with } g_{12} < \sqrt{g_{11}g_{22}}$

Dynamical instability if the relative velocity of the two components exceeds a critical value $_{\mbox{Law et al. PRA 2001}}$

Engels group, PRL 2011 :

for $v \gtrsim v_{crit}$ dark/bright structure with a pedestal for $v \gg v_{crit}$ dark/dark solitons Engels group PRA 2011

mean field miscibility criterion:

 $g_{12} < \sqrt{g_{11}g_{22}}$

consider the (realistic) case $g_{11} = g_{22} \equiv g$. Miscibility $\iff g_{12} < g$

Son & Stephanov 2002, Qu, Pitaevskii & Stringari 2016: the degrees of freedom associated to **total and relative density fluctuations decouple**, even at the nonlinear level.

$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \quad i \,\partial_t \Psi = \left(-\frac{\nabla^2}{2} + \frac{\Omega_R}{2} \,\sigma_x + \frac{\delta}{2} \,\sigma_z \right) \,\Psi + \begin{pmatrix} g \,|\psi_1|^2 & g_{12}\psi_2^*\psi_1 \\ g_{12}\psi_1^*\psi_2 & g \,|\psi_2|^2 \end{pmatrix} \Psi$$

Relative density fluctuations \iff spin degree of freedom

$$\begin{array}{l} \mbox{decoupled degrees of freedom} \\ g_s \equiv g - g_{12} \;, \quad |g_s| \ll g \end{array}$$

$$\begin{array}{l} \text{(dissipationless) Landau-Lifshitz eq.} \\ \partial_t \boldsymbol{S} &= \boldsymbol{S} \times (\boldsymbol{H}_{eff} + \boldsymbol{H}_{ext}) \\ \boldsymbol{H}_{eff} &= \nabla^2 \boldsymbol{S} - \boldsymbol{\epsilon} \, \boldsymbol{S}_z \boldsymbol{e}_z \\ \boldsymbol{H}_{ext} &= \omega_D \boldsymbol{e}_z + \omega_R \boldsymbol{e}_x \\ \omega_D &= \delta/(|\boldsymbol{g}_s|\boldsymbol{n}_0) \quad \omega_R = \Omega/(\boldsymbol{g}_s|\boldsymbol{n}_0|) \end{array}$$

 $\epsilon = \frac{g_s}{|g_s|} = \begin{cases} +1 & \text{miscible,} & \text{easy plane} \\ -1 & \text{immiscible, easy axis} \end{cases}$

The Riemann problem for easy-plane LL

- finite region of hyperbolicity
- RI depend non-monotonously on physical variables
- the hyperbolocity region is divided in monotonicity sectors where the system is genuinely nonlinear
- \bullet Riemann problem \rightarrow

Soliton oscillations in the easy-axis LL

Kosevich, Gann, Zhukov, Voronov (1998)

Psol

a movable Josephson junction

The minority component acts as a barrier for the majority component

$$\psi_{1}(x,t) = \sqrt{n_{1}} \exp(i\phi_{1})$$

$$P_{sol} = \int dx (1 - \cos\theta)\varphi_{x} = \phi_{1}\Big|_{-\infty}^{\infty} \equiv \Delta\phi_{1}$$

$$N_{1}^{right} = \int_{X_{sol}}^{\infty} n_{1}(x,t)dx$$

$$h_{1}(t) \equiv \frac{d}{dt}N_{1}^{right} = -n_{0}\frac{d}{dt}X_{sol}$$

where $n_0 = n_1 + n_2 = constant$

Josephson equations !	
ß	$rac{d}{dt}\Delta\phi_1=\eta N_2\equiv\Delta\mu$
ß	$I_1 = \mathcal{I}_0 \sin(\Delta \phi_1)$
where $\mathcal{I}_0 = 2n_0/\sinh(N_2/2)$	

What about the easy plane soliton ?

Periodic dispersion relation

$$(50\%-50\% \text{ mixture } E_{sol} = |2\sin(P_{sol}/2)|$$

What about the easy plane soliton ?

Periodic dispersion relation

(50%-50% mixture
$$E_{sol}=|2\sin(P_{sol}/2)|$$

$$\leftarrow \eta = 10^{-3}$$

9

What about the easy plane soliton ?

Periodic dispersion relation

(50%-50% mixture
$$E_{sol}=|2\sin(P_{sol}/2)|$$

CONCLUSION

J. C. Maxwell (1870)

The recognition of the formal analogy between two systems leads to a knowledge of both, more profound than could be obtained by studying each system separately.

BEC as a platform to study ferromagnetic systems \bigcirc

(almost) perfect coherence and no dissipation + tunable parameters

\vec{r} Possible development: coherently coupled BEC $\iff \pmb{H}_{ext} \parallel \pmb{e}_x$

