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Amphidromic M2 points

TM2 = 12 h 25 min, ∆tcotidal = 1 h 2 min, ωM2 ×∆tcotidal = π/6

=⇒ quantized circulation of tidal current of the M2 component
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ubiquitous saddles

Melbourne group 2D 87Rb (Science 2019)

Lecce group 2D polaritons (Nat. Phot. 2023)

LKB group nonlinear light (arXiv 2023) −→
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Nonlinear fluid of light experiment at Nice

output intensity and streamlines

�
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~E = ψ(x , y , z) exp{i(k0z − ω0t)}~ex linearly polarized carrier wave

Paraxial approximation:

i ∂zψ = − 1
2n0k0

(∂2
x + ∂2

y )ψ + k0n2|ψ|2 ψ −
i

2Λabs
ψ,

|ψ|2 in W.mm−2. n2 nonlinear Kerr coefficient. Λabs = −zmax/ ln(T ),
zmax = 7 cm is the total length of propagation through the nonlinear medium
and T ' 0.2 denotes the coefficient of energy transmission.
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Saddles: model case

flow + vortex

ψ = e ikx (x − iy)
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Other points with zero velocity: (elusive) nodes

In a quantum fluid

Ψ(~r ) = A(~r ) exp{iS(~r )}

~v = ~∇S

phase S : velocity potential

min or max of S :

Nodes are forbidden:

in a 2D incompressible fluid:

~∇ · ~v = 0 =⇒ ~∇2S = 0

Hence not seen, e.g., in a Coulomb gas model

in a stationnary configuration:

No sink nor source !

~∇2
ψ + [f (A) + U(~r )− µ]ψ = 0 (1)

where ψ = A exp(iS):

~∇2
ψ =

{
~∇2A− A|~∇S|2 + i(A~∇2S + 2~∇A · ~∇S)

}
e iS

at a point where ~∇S = 0,

the imaginary part of (1) yields ~∇2S = 0
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Two topological indices Nye & Berry, Proc. R. Soc. (1974)

~r = x~ex + y~ey

Ψ(~r ) = A(~r ) exp{iS(~r )}
~v = ~∇S

~∇S

θ

~∇S
θ

C

IV(C ) = 1
2π

∮
C
~∇S · d~̀=

∮
C

dS
2π

IP(C ) = 1
2π

∮
C
~∇θ · d~̀=

∮
C

dθ
2π

vortex
IV ∈ Z

IP = +1

saddle
IV = 0

IP = −1

node

min/max of
the phase

IV = 0

IP = +1
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Danse of the saddles Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

flow + 2 vortices

solution of (∆ + k2)ψ = 0

ψ = e ikx [x− ik(y2−b)]

k2b =
1.3

1.05 1
0.95 0.1 -0.1
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2D scattering on an attractive cylinder Kamchatnov & Pavloff, EPJD (2015)
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Reproducing the experimental results

ψ(~r , 0) =
√
I1 exp

(
− r2

w2
G

)
+
√
I2 exp

(
− x2

w2
x
− y2

w2
y

)
e iΦ2

I1 = I2 Φ2 ' π

(a,b) : Φ2 = 0.96π
(c,d) : Φ2 = π
(e,f) : Φ2 = 1.05π
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Formation of saddles and nodes: saddle-node bifurcation

Φ2 = 0.96π

Saddle-node:{
vx = x2 − a

vy = y

a ∈ R

sr
a = −0.1 a = 0 a = 0.1

~v = ~∇( 1
3x

3 − ax + 1
2y

2)

orbitally equivalently: ~v = ~∇S where
S(~r ) = (almost)any fct of Z = 1

3x
3 − ax + 1

2y
2
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Mechanism of vortex formation: fold-Hopf bifurcation

−→

fold-Hopf bifurcation:{
vx = −2σxy
vy = µ+ σx2 − y2

σ = 1, µ ∈ R

orbitally equivalent system: ~v = ~∇SfH, SfH(~r ) ≡ arg
[
x2 + σ(y2 + µ) + iσy

]
.

3 gradient system
3 verifies Onsager-Feynman quantization condition
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vortex annihilation: Bristol mechanism ... also belongs to fold-Hopf

Φ2 = 1.05π

close to the bifurcation point

the phase of the model wave
function (solution of Helmoltz
equation) matches SfH(~r )

~v = ~∇SfH where SfH(~r ) ≡ arg
[
x2 + σ(y2 + µ) + iσy

]
with σ = −1 and µ ∈ R
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Conclusion and perspectives

Two mechanisms of vortex formation:

Experimentally relevant

fulfill topological and quantum constrains

Involve critical points 6= vortices: candidate observables for studying
the transition to turbulence

ê Can one (predict/describe) the kinetics of the # of vortices, saddles and nodes?

conservation of IP =⇒ (# vortices) + (# nodes) − (# saddles) = cst

å Topological constrains → non trivial correlations between different types
of critical points?

+ Can one think of other nonlinear phenomena that are topologically constrained?

Thank you for your attention
ref: Congy, Azam, Kaiser, Pavloff arXiv:2308.02305
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