Topological constraints on vortex formation in a bi-dimensional quantum fluid

Nicolas Pavloff, LPTMS, Université Paris-Saclay

Newcastle, Sept. 2023

T. Congy Northumbria Univ.

P. Azam Nice Phys. Inst.

R. Kaiser Nice Phys. Inst.

W. Whewell \longrightarrow 1794–1866

Topological constraints on vortex formation in a bi-dimensional quantum fluid

Nicolas Pavloff, LPTMS, Université Paris-Saclay

Newcastle, Sept. 2023

T. Congy Northumbria Univ.

P. Azam Nice Phys. Inst.

R. Kaiser Nice Phys. Inst.

W. Whewell \longrightarrow 1794–1866

Principal tidal constituent (M2: semi-diurnal)

Amphidromic M2 points

ubiquitous saddles

Melbourne group 2D ⁸⁷Rb (Science 2019)

Lecce group 2D polaritons (Nat. Phot. 2023)

LKB group nonlinear light (arXiv 2023) \longrightarrow

Nonlinear fluid of light

output intensity and streamlines

Nonlinear fluid of light

output intensity and streamlines

Nonlinear fluid of light

output intensity and streamlines

 $\vec{E} = \psi(x, y, z) \exp\{i(k_0 z - \omega_0 t)\}\vec{e_x}$

linearly polarized carrier wave

Paraxial approximation:

$$i \partial_z \psi = -\frac{1}{2n_0k_0} (\partial_x^2 + \partial_y^2) \psi + k_0 n_2 |\psi|^2 \psi - \frac{i}{2\Lambda_{\text{abs}}} \psi,$$

 $|\psi|^2$ in W.mm⁻². n_2 nonlinear Kerr coefficient. $\Lambda_{\rm abs} = -z_{\rm max}/\ln(\mathcal{T})$, $z_{\rm max} = 7$ cm is the total length of propagation through the nonlinear medium and $\mathcal{T} \simeq 0.2$ denotes the coefficient of energy transmission.

Saddles: model case

flow + vortex

$$\psi = e^{\mathrm{i}kx} \left(x - \mathrm{i}y \right)$$

Saddles: model case

flow + vortex

di aikx (v iv)

$$\psi = e^{ikx} \left(x - iy \right)$$

Saddles: model case

flow +vortex

$$\psi = e^{\mathrm{i}kx} \left(x - \mathrm{i}y \right)$$

Other points with zero velocity: (elusive) nodes

In a quantum fluid $\Psi(\vec{r}) = A(\vec{r}) \exp\{iS(\vec{r})\}$ $\vec{v} = \vec{\nabla}S$

phase S: velocity potential

min or max of S:

In a quantum fluid

$$\Psi(\vec{r}) = A(\vec{r}) \exp\{iS(\vec{r})\}$$

 $\vec{v} = \vec{\nabla}S$

phase S: velocity potential

min or max of S:

Nodes are forbidden:

• in a 2D incompressible fluid:

$$\vec{\nabla} \cdot \vec{v} = 0 \Longrightarrow \vec{\nabla}^2 S = 0$$

Hence not seen, e.g., in a Coulomb gas model

• in a stationnary configuration:

No sink nor source !

$$\vec{\nabla}^2 \psi + [f(A) + U(\vec{r}) - \mu]\psi = 0 \tag{1}$$

where $\psi = A \exp(iS)$:
$$\vec{\nabla}^2 \psi = \left\{ \vec{\nabla}^2 A - A |\vec{\nabla}S|^2 + i(A\vec{\nabla}^2 S + 2\vec{\nabla}A \cdot \vec{\nabla}S) \right\} e^{iS}$$

at a point where $\vec{\nabla}S = 0$,
the imaginary part of (1) yields $\vec{\nabla}^2 S = 0$

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

$$k^2 b = \boxed{1.3}$$

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

$$k^2 b = 1.3 | 1.05 |$$

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

$$k^2 b = \boxed{\begin{array}{c|c} 1.3 & 1.05 & 1 \end{array}}$$

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

$k^2b =$	1.3	1.05	1
	0.95	0.1	

Nye, Hajnal and Hannay, Proc. R. Soc. (1988)

solution of
$$(\Delta + k^2)\psi = 0$$

 $\psi = e^{ikx} [x - ik(y^2 - b)]$

$k^2b =$	1.3	1.05	1
	0.95	0.1	-0.1

2D scattering on an attractive cylinder

Kamchatnov & Pavloff, EPJD (2015)

Q

Reproducing the experimental results

$$\psi(\vec{r}, 0) = \sqrt{I_1} \exp\left(-\frac{r^2}{w_{\rm G}^2}\right) + \sqrt{I_2} \exp\left(-\frac{x^2}{w_x^2} - \frac{y^2}{w_y^2}\right) e^{i\Phi_2}$$

 $I_1 = I_2 \qquad \Phi_2 \simeq \pi$

 $\begin{array}{ll} (\mathsf{a},\mathsf{b}): & \varPhi_2 = 0.96\,\pi \\ (\mathsf{c},\mathsf{d}): & \varPhi_2 = \pi \\ (\mathsf{e},\mathsf{f}): & \varPhi_2 = 1.05\,\pi \end{array}$

Formation of saddles and nodes: saddle-node bifurcation

Formation of saddles and nodes: saddle-node bifurcation

$$\vec{v} = \nabla(\frac{1}{3}x^3 - ax + \frac{1}{2}y^2)$$

orbitally equivalently: $\vec{v} = \vec{\nabla}S$ where
 $S(\vec{r}) = (almost)any \ fct \ of \ Z = \frac{1}{3}x^3 - ax + \frac{1}{2}y^2$

Mechanism of vortex formation: fold-Hopf bifurcation

Mechanism of vortex formation: fold-Hopf bifurcation

fold-Hopf bifurcation:

$$\begin{cases}
v_x = -2\sigma xy \\
v_y = \mu + \sigma x^2 - y^2 \\
\sigma = 1, \ \mu \in \mathbb{R}
\end{cases}$$

Mechanism of vortex formation: fold-Hopf bifurcation

orbitally equivalent system: $\vec{v} = \vec{\nabla} S_{\rm fH}$, $S_{\rm fH}(\vec{r}) \equiv \arg \left[x^2 + \sigma (y^2 + \mu) + i\sigma y \right]$.

- ✓ gradient system
- \checkmark verifies Onsager-Feynman quantization condition

vortex annihilation: Bristol mechanism ... also belongs to fold-Hopf

$$\Phi_{2} = 1.05 \, \pi$$

vortex annihilation: Bristol mechanism ... also belongs to fold-Hopf

Conclusion and perspectives

Two mechanisms of vortex formation:

- Experimentally relevant
- fulfill topological and quantum constrains

Involve critical points \neq vortices: candidate observables for studying the transition to turbulence

r Can one (predict/describe) the kinetics of the # of vortices, saddles and nodes?

conservation of $I_{\rm P} \implies$ (# vortices) + (# nodes) - (# saddles) = cst

➡ Topological constrains → non trivial correlations between different types of critical points?

Can one think of other nonlinear phenomena that are topologically constrained?

Conclusion and perspectives

Two mechanisms of vortex formation:

- Experimentally relevant
- fulfill topological and quantum constrains

Involve critical points \neq vortices: candidate observables for studying the transition to turbulence

Can one (predict/describe) the kinetics of the # of vortices, saddles and nodes?

conservation of $I_{\rm P} \implies$ (# vortices) + (# nodes) - (# saddles) = cst

Can one think of other nonlinear phenomena that are topologically constrained?

Thank you for your attention

ref: Congy, Azam, Kaiser, Pavloff arXiv:2308.02305