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Close to the demixing transition, the degree of freedom associated with relative density fluctuations of a
two-component Bose-Einstein condensate is described by a nondissipative Landau-Lifshitz equation. In the
quasi-one-dimensional weakly immiscible case, this mapping surprisingly predicts that a dark-bright
soliton should oscillate when subject to a constant force favoring separation of the two components. We
propose a realistic experimental implementation of this phenomenon which we interpret as a spin-
Josephson effect in the presence of a movable barrier.
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Periodic motion under the effect of a uniform force field
is a counterintuitive phenomenon occurring in some pecu-
liar dissipation-less quantum-mechanical systems. The
most well-known example is represented by Bloch oscil-
lations of a particle in a periodic potential [1], which are
due to the wave nature of particles and the consequent
energy band structure. Another remarkable example due to
quantum coherence is the ac Josephson effect, where a
fixed voltage induces an oscillating current across a super-
conducting junction. Such an effect also exists in other
systems which break a continuous symmetry [2]. In
particular it occurs in superfluid 3He [3,4] and 4He [5]
and in systems exhibiting Bose-Einstein condensation
(BEC), such as ultracold gases [6–8], magnons [9], and
exciton-polaritons [10]. Two weakly coupled ferromagnets
or antiferromagnets can also show the ac Josephson effect
for the spin current in a mechanism referred to as the spin-
Josephson effect, see, e.g., [11–14].
A different instance of oscillatory motion under a dc

drive concerns certain solitons in Galilean-invariant sys-
tems. To our knowledge, such behavior was first discussed
in [15,16], in the context of solitonic solutions of the
dissipationless Landau-Lifshitz equation (LLE), which
describes the nonlinear dynamics of the local spin in a
ferromagnet [17]. Very recently, similar dynamics have
been found for two solitonic solutions in spinor conden-
sates in ultracold gases: a magnetic soliton in a two-
component BEC with very specific interaction strengths
[18] and a ferro-dark soliton in the ferromagnetic phase of a
spin-1 BEC [19]. Furthermore, it has been shown in [20,21]
that a single impurity in a zero-temperature one-
dimensional Bose gas also exhibits a peculiar damped
oscillating dynamics under a constant force.
In the LLE, Kosevich and collaborators attributed the

strange dynamics to the periodic dispersion relation—as for

Bloch oscillations—and to the stability under an external
uniform magnetic field of the easy-axis magnetic solitons.
In the case of spinor condensates, the reason for the
numerically observed dynamics was related to the oscil-
lation between two solitonic solutions with positive and
negative mass [18,19]. Finally, for the impurity in the one-
dimensional Bose gas the explanation of the periodic
motion was based on the impurity cutting the gas and
behaving as the barrier of a mobile Josephson junction [22],
and on Bragg reflection induced by the strong bath
correlation and the characteristic 1D spectrum [21].
In the present Letter we first exploit a mapping between

the Bose mixture and a ferromagnetic system to give a
unified interpretation of this phenomenon alternative to
previous ones [16,18]: we argue that, as for the single
impurity model of Ref. [22], the oscillations of the soliton
in the presence of a constant force—such as represented in
Fig. 1—are due to an unconventional Josephson effect.
This interpretation suggests that the phenomenon is not
restricted to the exact solitonic solution or to regimes where
the mapping between a two-component BEC and a ferro-
magnet is valid. In the second part of the Letter we show
that, indeed, the oscillating dynamics under a constant force
is a more general feature of small spin domains. The
breaking of integrability is reflected in nonperfectly sinus-
oidal oscillations of the spin domain. However, the majority
component current preserves its sinusoidal character, as
expected for a Josephson current. Such a robustness implies
that it should be possible to (i) directly observe oscillating
dynamics in a Galilean-invariant system using present
technology in cold gas platforms (thus contributing to
settle the controversy concerning the possible observation
of this phenomenon [23–25]) and (ii) realize the analog of
the voltage-current characteristic of a superconducting
Josephson junction (SJJ). So far, indeed, the Josephson
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effect in BEC has been related to the coherent relative
density oscillations between two weakly linked conden-
sates, either in double well traps or in two hyperfine levels
[6,7,26]. Such a dynamics is described by the so-called
Bose-Josephson junction equations, i.e., nonrigid pendu-
lum equations [27,28], which interestingly show some new
phenomena not observable with SJJs. The magnetic soliton,
or more generally the magnetic domain under the external
potential, instead realizes a perfect analogue of the ac SJJ
(see also [29]).
Our platform is a two-component Bose gas at zero

temperature. The mixture is physically realised by properly
populating two hyperfine states of the atomic species of
mass m forming the gas. The system is well described as a
BEC with a spinor order parameter Ψðr⃗; tÞ ¼ ðψ1ψ2ÞT
obeying a Gross-Pitaevskii equation:

iℏ∂tΨ ¼
�
−
ℏ2

2m
Δþ Vext þUmf

�
Ψ; ð1Þ

with

Vext ¼
�
V1 0

0 V2

�
; Umf ¼

�
g11jψ1j2 g12ψ�

2ψ1

g12ψ�
1ψ2 g22jψ2j2

�
;

ð2Þ

where Viðr⃗Þ is an external potential acting on component i
(i ¼ 1 or 2) and gij are the positive intra- (i ¼ j) and inter-
(i ≠ j) species interaction strengths. In a homogeneous
configuration, i.e., Vext ≡ 0, the system exhibits a first-
order phase transition from a miscible to an immiscible
state depending on the relative value of the gij’s. Within the
Gross-Pitaevskii description the system is miscible as long
as g12 <

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
(see, e.g., Ref. [30]).

Our goal is to describe quasi-one-dimensional configu-
rations, so we consider the system to be confined in an
elongated geometry in order for the dynamics of the gas to
occur only in the x direction. The Gross-Pitaevskii equation
can be conveniently recast in the form of spin superfluid
hydrodynamics (see, e.g., [31]) for the total density n ¼
ΨT ·Ψ and the spin density s⃗ ¼ ΨT σ⃗Ψ, where σ⃗ is the
vector of Pauli matrices. The spin superfluid nature of BEC
mixtures, collective spin modes, the role of the SU(2)
symmetry breaking (due to the nonequality of the gij’s as
well as to the presence of an external transverse magnetic
field) have recently received important experimental ver-
ifications [32–37].
As already discussed in Refs. [38–41], the density and

spin degrees of freedom essentially decouple close to the
defocusing Manakov regime [42], in the limit

jg11 − g22j and jgsj ≪ g; ð3Þ

where g ¼ ðg11 þ g22Þ=2 and gs ¼ g12 − g. The parameter
gs (≠ 0) can be seen as an effective spin interaction; it
provides the natural units of length ξs ≡ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn0jgsj

p
and

time τs ≡ ℏ=ðn0jgsjÞ for the spin dynamics in a system with
homogeneous density n0. In the regime (3), using the
rescaled variables x=ξs → x and t=τs → t, the equation of
motion for the magnetization M⃗ ¼ s⃗=n can be written in the
form of a one-dimensional dissipationless LLE [41]:

∂tM⃗ ¼ ðH⃗eff þ H⃗extÞ ∧ M⃗; ð4Þ

where H⃗ext ¼ ωDe⃗z is an external field, H⃗eff ≡ ∂
2
xM⃗ þ

ϵMze⃗z, and we introduced the dimensionless quantities

ωD ≡ V1 − V2

jgsjn0
; ϵ≡ gs

jgsj
; ð5Þ

where the adimensional differential potential ωD can, in
general, depend on position. For ϵ ¼ −1 (ϵ ¼ þ1), corre-
sponding to a slightly miscible (immiscible) mixture, Eq. (4)
describes the evolution of the magnetization vector in an
easy-plane (easy-axis) ferromagnet. The relevance of the
LLE for describing the dynamics of elongated BECmixtures
has recently been experimentally addressed in [43].
We now turn our attention to magnetic solitons. When

Hext is constant, Eq. (4) is exactly integrable and its
solitonic solutions are known [44]. The equivalence with
Eq. (1) yields analytic expressions for the spin-solitonic
solutions of the coupled Gross-Pitaevskii equations in the
near-transition BEC mixture. In the following we restrict
our attention to the immiscible situation (easy-axis LLE)
such as considered, e.g., in Ref. [45] and defer a discussion
of the miscible case to the Supplemental Material [46]. It is
convenient to write M⃗ ≡ −ðsin θ cosφ; sin θ sinφ; cos θÞT ,
corresponding to the parametrization [49]

FIG. 1. Numerical results for the evolution under a constant
force of a dark-bright soliton in an immiscible mixture con-
densate of two hyperfine states of Na (jF ¼ 1; mF ¼ −1i and
jF ¼ 2; mF ¼ −2i). We represent the density of the minority
component (in arbitrary units) as a function of position and time.

PHYSICAL REVIEW LETTERS 130, 220403 (2023)

220403-2



Ψ ¼
� ffiffiffiffiffi

n1
p

eiϕ1

ffiffiffiffiffi
n2

p
eiϕ2

�
¼ ffiffiffi

n
p

eiΦ=2

�
cos θ

2
e−iφ=2

sin θ
2
eiφ=2

�
: ð6Þ

The solitons are characterized by two parameters: the
conserved quantity associated with the total z magnetiza-
tion N ¼ R ð1 − cos θÞdx (in the Bose-mixture language
N ¼ 2N2=n0ξs, where N2 is the number of atoms of the
minority component) and the total (adimensional) momen-
tum P ¼ R

∂xφð1 − cos θÞdx. In terms of these quantities,
the soliton energy reads

Esol ¼ 4 tanhðN=4Þ þ 8
sin2ðP=4Þ
sinhðN=2Þ : ð7Þ

This is a periodic function of the momentum, which
suggests that if we apply a constant external force, such
that the momentum increases linearly in time, the soliton
should respond by oscillating. We stress that an adiabatic
approximation is involved in this reasoning, which assumes
that the application of the external force is able to explore
the dispersion relation, i.e., that the Gross-Pitaevskii
evolution of an initial soliton state leads to another state
within the soliton family. This is valid provided the external
potentials vary slowly enough to be approximately constant
over the width of the soliton.
The reasoning just outlined raises the question of what

the notion of “external force” means in our binary BEC. It
is straightforward to show from (4) that the canonical
momentum satisfies _P ¼ R

∂xωDð1 − cos θÞdx. The differ-
ential potential V1 − V2 couples to the relative density in
the system’s dynamical equations, while the sum V1 þ V2

couples to the total density, which we have excluded as a
dynamical variable. We are thus led, by analogy with
Newton’s second law, to consider the dynamics of a
magnetic soliton under the application of linear potentials
such that ωD ¼ ω0

D þ ηx, with some small gradient η [50].
In this scenario, N remains exactly constant while _P ¼ ηN:
the differential potential gradient assumes the role of a
constant force, and the momentum increases linearly in
time. Within the adiabatic approximation we can use
Eq. (7) to find the evolution of the soliton position X
through the relation _X ¼ ∂Esol=∂P [51]. This yields

XðtÞ ¼ Xð0Þ þ 4
cosðPð0Þ=2Þ − cosðPðtÞ=2Þ

ηN sinhðN=2Þ : ð8Þ

This motion corresponds to an adiabatically conserved
energy E ¼ Esol − ηNX. In dimensional units, the constant
force applied to the soliton is f ¼ N2dðV1 − V2Þ=dx ¼
ηN2gsn0=ξs and the period T ¼ 2πℏn0=f is independent
of gs. The dimensional amplitude is A ¼ 4gsn30ξs=
f sinhðN2=n0ξsÞ, a decreasing function of gs.
We performed simulations to check our prediction,

solving Eq. (1) numerically starting from a stationary
soliton state obtained from imaginary-time evolution via
the procedure detailed in [52], and under a potential
consisting of a hard wall confining both components to
a region much larger than the soliton, supplemented by a
linear potential acting on the minority component. For
concreteness, and because it is a promising experimental
platform, we take the mass to be that of 23Na. The results of
our simulations are illustrated in Fig. 2: panels (a) and (c),

FIG. 2. Numerical evolution of a spin domain under a linear differential potential for different values of the interaction strengths:
(a) gs=g ¼ 0.01, (b) gs=g ¼ 0.09 and δg=g≡ ðg22 − g11Þ=g ¼ 0.17, and (c) gs=g ¼ 0.28. The color plots display the relative density
cos θ as a function of position and time, while the insets show the particle current in the majority component across the spin domain
during the same time interval. Close to the Manakov limit, the analytical expression (8) accurately describes the domain’s trajectory,
while as gs or δg increase, oscillations persist in the current and in the position of the domain, and their period is well matched by our
prediction. At the same time, the amplitude of the periodic trajectory decreases, so that the configuration comes to mimic a static
Josephson junction in the high-gs limit. Panel (b) shows that the phenomenon is visible and the amplitude and period reasonably close to
predictable values with experimentally achievable interaction strengths.
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respectively, illustrate the good quantitative agreement of
our predictions for the dynamics close to the Manakov limit
and the persistence of the phenomenon and reasonable
agreement with predictions for larger gs=g and δg=g,
which we will discuss shortly. Panel (b) displays the results
of a simulation performed with experimentally accessible
parameters, using the scattering lengths between the
jF ¼ 1; mF ¼ −1i and jF ¼ 2; mF ¼ −2i hyperfine states
of 23Na, demonstrating good agreement with our predic-
tions even in the case where the condition g11 ≠ g22 breaks
the mixture’s Z2 symmetry, and presenting evidence that it
is possible to observe soliton oscillations in the laboratory.
Previous works have described soliton oscillations like

those we predict as Bloch oscillations [16] or attributed
them to the periodically changing sign of the soliton’s
effective mass [18]. Although these are appropriate descrip-
tions of a quasiparticle with a periodic dispersion relation,
they do not explain why the dispersion is periodic in the
first place. To do so, it is fruitful to step back from the
quasiparticle picture and to consider the soliton as a
configuration of a phase-coherent field. Indeed, the
momentum and dispersion relation of this and other
solitons are properly defined only by accounting for a
global quantity, namely, the counterflow momentum
(cf. [51,53,54] and [30], Chap. 5). Once this is done,
one finds that the momentum P is proportional to the
majority-component phase difference at infinity Δϕ1≡
ϕ1ðþ∞Þ − ϕ1ð−∞Þ, since total current conservation ena-
bles us to express the momentum as P ¼ R ð∂xφ − ∂xΦÞ
dx ¼ 2Δϕ1. [cf. Eq. (6)]. We now propose what we
consider to be a more insightful explanation of magnetic
soliton oscillations by explicitly deriving Josephson equa-
tions which hold in the slightly immiscible mixture with a
magnetic soliton subject to a small uniform differential
potential gradient. In this picture, the order parameter
subject to Josephson physics is ψ1, with the localized
minority component acting, thanks to interspecies repulsion,
as a mobile barrier, thus forming a weakly linked junction.
The Josephson equation describing the phase across the
junction is found by restating _P ¼ ηN in terms of the
majority-component phase jump (note that ϕ1 is approx-
imately constant outside the soliton, soΔϕ1 is approximately
equal to the phase difference across the soliton):

d
dt

Δϕ1 ¼
1

2
ηN: ð9Þ

The particle current of the majority component across the
soliton is IðtÞ≡ ðd=dtÞ Rþ∞

XðtÞ n1ðx; tÞdx ¼ −n0 _XðtÞ. We

readily obtain from (8) and (9)

I ¼ −I0 sinðΔϕ1Þ; ð10Þ

where I0 ¼ 2= sinhðN=2Þ (independent of η). Restoring
dimensional units gives I0 ¼ 2n0cs= sinhðN2=n0ξsÞ.

Equations (9) and (10) can be interpreted as the Josephson
equations for a junction across which the voltage (or, in the
Bose-Josephson picture, the chemical potential difference) is
constant and proportional to η, which is subject to the ac
Josephson effect. Note that the apparent complication of
a mobile barrier actually simplifies the equations in our
regime: the density on either side of the soliton remains
constant while the left and right populations change thanks to
the fact that the soliton position changes. This means that the
only contribution to the chemical potential difference across
the junction is that due to the external potential gradient. The
constant density also implies that the full Bose-Josephson
physics more usually encountered in BECs is not realized; in
particular, there is no self-trapping regime in our case.
Instead, we have a bosonic system reproducing the physics
of a superconducting Josephson junction.
The following picture thus emerges: In the soliton

structure we consider, the left and right part of the majority
component are separated by the minority component that
acts as the analog of a weak link between two super-
conductors. In such a configuration, an external potential
generates a linear increase over time of the phase difference
Δϕ1 between the right and left ends of the majority
component [55], as described by Eq. (9). The current
induced in the majority component by this phase mismatch
is of course a periodic function of Δϕ1 [see Eq. (10)] and
thus of time. The resulting oscillations trigger, by total
particle number conservation, similar and opposed oscil-
lations of the minority component, as observed in Fig. 1.
The immiscibility of the two components makes the
structure particularly robust and the interpretation of the
soliton as a Josephson junction does not depend on
the precise values of the mixture’s interaction parameters.
Thus, although we used the decoupling from the total
density dynamics close to the Manakov limit and the
mapping to the Landau-Lifshitz equation to treat the
problem analytically, we expect oscillations to occur under
a constant differential potential gradient even far away from
the Manakov limit, as well as for localized spin domains
more generally, rather than for solitons specifically. We
have confirmed this by solving Eq. (1) numerically for
increasing values of gs (we increase g12 while keeping g11
and g22 constant). Examples of the results are shown in
Figs. 2(b) and 2(c). We observe an oscillatory trajectory
whose period is inversely proportional to the external
potential gradient and does not depend strongly on gs or
δg. The particle current remains sinusoidal, with an
amplitude decreasing with increasing gs, consistent with
the fact that this corresponds to a greater energy barrier for
the current to tunnel through. While our prediction for the
critical current and oscillation amplitude deviate from
simulations at higher gs and δg, the period continues to
match, consistently with the fact that the Josephson
frequency does not depend on the characteristics of the
junction.
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These observations strengthen the proposed Josephson-
junction interpretation and reframe the sinusoidal soliton
trajectory found in an easy-plane ferromagnet and in a
slightly immiscible condensate mixture as a special case of
a more general phenomenon. In the LLE language, mag-
netic soliton oscillations in easy-axis ferromagnets are,
according to our picture, to be interpreted as manifestations
of the spin Josephson effect, with the soliton itself acting as
a junction. This interpretation is unanticipated from a
spintronics perspective, where nondissipative transport is
rather expected for an easy-plane ferromagnet [14,56], but
it arises naturally if the phenomenon is realized in an
immiscible two-component BEC. In both the ferromagnet
and the binary condensate, phase coherence in the order
parameter plays the key role.
We expect an oscillating current to arise in a binary

condensate mixture any time a junction is realized, irre-
spective of the precise parameter values or profile of the
initial state. Possible avenues for future research therefore
include the effects of the Josephson mechanism under
conditions different from the ones considered here, as well
as technological applications in atomtronics [57], such as
quantum gyroscopes, where the weak link is implemented
by our oscillating minority component.

We thank A. Kamchatnov and G. Lamporesi for fruitful
discussions. This work has been funded from Provincia
Autonoma di Trento, from the Italian MIUR under the
PRIN2017 project CEnTraL (Protocol No. 20172H2SC4).
A. Roy acknowledges the support of the Science and
Engineering Research Board (SERB), Department of
Science and Technology, Government of India under the
project SRG/2022/000057 and IIT Mandi seed-grant funds
under the project IITM/SG/AR/87. This work has benefited
from Q@TN, the joint lab between University of Trento,
FBK-Fondazione Bruno Kessler, INFN-National Institute
for Nuclear Physics and CNR-National Research Council.

*Corresponding author.
alessio.recati@ino.cnr.it

[1] F. Bloch, Über die quantenmechanik der elektronen in
kristallgittern, Z. Phys. 52, 555 (1929).

[2] A. J. Beekman, Theory of generalized Josephson effects,
Prog. Theor. Exp. Phys. 2020, 073B09 (2020).

[3] O. Avenel and E. Varoquaux, Josephson Effect and Quantum
PhaseSlippage inSuperfluids, Phys.Rev. Lett.60, 416 (1988).

[4] S. V. Pereverzev, A. Loshak, S. Backhaus, J. C. Davis, and
R. E. Packard, Quantum oscillations between two weakly
coupled reservoirs of superfluid 3He, Nature (London) 388,
449 (1997).

[5] K. Sukhatme, Y. Mukharsky, T. Chui, and D. Pearson,
Observation of the ideal Josephson effect in superfluid 4He,
Nature (London) 411, 280 (2001).

[6] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson
junction arrays with Bose-Einstein condensates, Science
293, 843 (2001).

[7] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani,
and M. K. Oberthaler, Direct Observation of Tunneling and
Nonlinear Self-Trapping in a Single Bosonic Josephson
Junction, Phys. Rev. Lett. 95, 010402 (2005).

[8] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c.
and d.c. Josephson effects in a Bose-Einstein condensate,
Nature (London) 449, 579 (2007).

[9] K. Nakata, K. A. van Hoogdalem, P. Simon, and D. Loss,
Josephson and persistent spin currents in Bose-Einstein
condensates of magnons, Phys. Rev. B 90, 144419 (2014).

[10] K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and
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VALUES OF THE PARAMETERS USED IN THE
NUMERICAL SIMULATIONS

We present here the parameters used in the simu-
lations whose results are reported in the Letter. The
code numerically solves coupled one-dimensional Gross-
Pitaevskii equations whose interaction strengths are ob-
tained from three-dimensional values, renormalized as
for a cigar-shaped condensate in a harmonic trap with
ωy = ωz ≡ ω⊥ � ωx. We denote as a⊥ = (~/mω⊥)1/2

the transverse harmonic oscillator length and by aij the
s-wave scattering length characterizing the low-energy 3D
interaction between components i and j. We work in the
1D mean field regime [1] where (aij/a⊥)2 � n0aij � 1.
In this regime g1Dij = 2~ω⊥aij . The results in Fig. 2(a)
of the main text are obtained for a11 = a22 = 54.5a0,
a12 = 55.1a0, where a0 is the Bohr radius. In panel (b) we
use a11 = 54.5a0, a22 = 64.3a0(c), while in panel (c) we
keep a11 = a22 = 54.5a0 and use a12 = 69.6a0, and a12 =
64.3a0, which are the scattering lengths between the hy-
perfine states |F = 1,mF = −1〉 and |F = 2,mF = −2〉
of 23Na. The total densities at the center of the trap

are n
(a)
0 = 3.3· 109m−1, n

(b)
0 = 3.6· 108m−1, and n

(c)
0 =

3.3· 108m−1.
The different potentials acting on the two components

can be realized by means of a combined magneto-optical
potential whose magnetic and optical parts are both lin-
ear. The electric field will exert the same force fE on
both components, while the magnetic field will affect the
component with larger magnetic moment more strongly.
Formally, we can write the external potential contribu-
tion to the Hamiltonian as

V̂ext = fB x̂ (|1〉 〈1| − 2 |2〉 〈2|) + fE x̂(|1〉 〈1|+ |2〉 〈2|),

where we use the shorthand notation |F 〉 ≡
|F,mF = −F 〉 (F = 1 or 2). The condition to obtain
V1 = 0, V2 = f · x therefore becomes{

fB + fE = 0

−2fB + fE = f,

which is solved by fB = −fE = −f/3. The magnetic
potential gradients used in the simulations correspond,
through the expression VB = µB |B|/2 (where µB is the

Bohr magneton) for the magnetic moment potential en-
ergy, to magnetic field gradients of 1.1 G/m, 0.9 G/m,
and 1.2 G/m respectively. For such gradients the mag-
netic field change is very small over the size of the cloud
and the scattering lengths are thus practically constant.

EQUAL AND OPPOSITE POTENTIALS

The sum V1 + V2 couples to the total density n in
the Lagrangian of the system, and has no equivalent in
the Landau-Lifshitz picture, where the magnitude of the
magnetization vector is strictly constant. For these rea-
sons, it may seem preferable to use equal and opposite
linear potentials to study the dynamics of the condensate
mixture, to ensure V1 +V2 ≡ 0 and avoid exciting the to-
tal density degree of freedom. Actually, as indicated in
the main text, a non-zero total potential does not nec-
essarily break the condition of constant density. In fact,
using V1 = −V2 = η x/2 complicates the dynamics by
acting on the majority component across the entire size
of the system, causing the initially flat majority density
profile to tilt back and forth periodically, as an effect
of the edges of the system. These oscillations affect the
motion of the soliton, showing up as a higher-frequency
component in its trajectory, as shown in Fig. S1. The
effect is more noticeable at higher gs/g, since the ampli-
tude of the Josephson oscillations on which the finite-size
oscillations are superimposed becomes smaller as the en-
ergy barrier grows higher. Thus the trajectory comes to
look very different from the sinusoidal curve seen at low
gs/g - but nonetheless the particle current remains per-
fectly sinusoidal. In this case, a non-sinusoidal soliton
trajectory and variations in the background density con-
spire to keep the behavior of the current in line with the
AC Josephson effect, although its period is modified.

ADIABATIC SOLITON MOTION

A more detailed view of the approximations we utilize
in our analytic treatment can be reached by considering
the energy of the system. In a generic configuration of
the coupled condensates, with the boundary conditions
n1 → n0 and n2 → 0 at x→ ±∞, the energy is given by



2

1

FIG. S1. Numerical evolution of a spin domain under a linear differential potential with V1 = −V2 for different values of
the interspecies interaction strength. At higher gs/g, the higher-frequency component due to background density oscillations
becomes more visible, but the current remains sinusoidal rather than resembling the domain’s trajectory.

the Gross-Pitaevskii expression

EGP =

∫ [ ~2
2m

(
|∂xψ1|2 + |∂xψ2|2

)
+ V1(n1 − n0)

+ V2n2 +
g

2
(n21 + n22 − n20) + g12n1n2

]
dx ,

(S1)

which, in the limit of small and positive g12 − g imply-
ing constant total density, in adimensional variables and
using the (θ, ϕ) variables of the paper, reduces to

E =

∫ [
1
2 (∂xθ)

2 + 1
2 sin2 θ(1 + (∂xϕ)2)

+ ωD(x)(cos θ − 1)
]

dx .

(S2)

This expression corresponds to the energy of an equiva-
lent magnetic system governed by the easy-axis Landau-
Lifshitz equation. If (θ, ϕ) are those of a soliton solution
parametrized by the position X and momentum P , this
yields the energy

E = Esol(P ) +

∫
ωD(x)(cos θ − 1) dx

≈ Esol(P )− ωD(X)N,

(S3)

where Esol is the soliton’s energy [given by Eq. (7) of the
paper] and N =

∫
(1− cos θ) dx as in the main text. The

final expression in (S3) gives the Hamiltonian governing
the adiabatic motion of the soliton, X and P being the
relevant canonical variables. It is obtained in the ap-
proximation that ωD(x) varies over a typical length scale
much larger than the width of the soliton. For linear
potentials, this means η � 1.

It should be noted that, if the external potentials are
too large, they will break the condition of constant to-
tal density and thus prevent the mapping of the coupled

GPEs to a Landau-Lifshitz equation, invalidating our an-
alytical treatment and complicating the interpretation as
a Josephson junction. Quantitatively, this means that
the difference between the maximum and minimum val-
ues of the external potentials should be small compared
to the chemical potential. This criterion is suggested by
analytical treatment of the GPEs and simulations show
that if this condition is violated, large density gradients
in the initially flat background form and lead to shock
waves which quickly break the junction. Numerically,
the oscillations are robust up until this happens. Note
that, by only applying a potential to the minority com-
ponent, this condition is weakened, as only the potential
difference over the region where the minority density is
non-zero is relevant. In this case, the condition becomes
equivalent to the one discussed above, imposing η � 1.

THE MISCIBLE CASE

In the main text we focus on the case of immiscible
condensate mixtures, corresponding to easy-axis ferro-
magnets. Analytical expressions for families of solitons
also exist for easy-plane ferromagnets [2] and for misci-
ble binary condensates in the small-|gs| limit where the
mapping between Gross-Pitaevskii equation and the Lan-
dau Lifshitz equation is applicable [3–6]. These solitons
also have a periodic dispersion relation. Thus, similar
questions to those we have considered in the Letter can
be posed in the miscible (easy-plane) case: can the pe-
riodicity in the dispersion relation be attributed to the
creation of a mobile Josephson junction? Does this re-
sult in an oscillatory current across the soliton when it is
subjected to a linear differential potential and is this ac-
companied by periodic motion of the soliton itself? Does
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P
π(1− cos θ0)−π(1− cos θ0)

V = 0− V = 0+

V = −cs V = cs

Esol

FIG. S2. Black solid line: Dispersion relation of the easy-
plane soliton for a relative background density (n1−n2)/n0 =
cos θ0. |P | varies between 0 and π(1−cos θ0) and Esol between
0 and 2 sin θ0 − 2θ0 cos θ0. The dashed blue lines correspond
to the hydrodynamic limit: Esol = ±cs P , with cs = sin θ0.
Thick dashed red line: adiabatic motion with bouncing off a
hard wall (see the text).

this effect also arise in the generic case of a magnetized
domain (as opposed to a true soliton), as it does in im-
miscible mixtures? Our investigations suggest that some
fundamental differences exist between the miscible and
immiscible regimes.

A key difference regards the formation of a mobile
Josephson junction. In an immiscible mixture, a region
where one component has a high density is able to act as
a barrier to the other component. In a miscible mixture,
on the other hand, mixing between the two components
is favored, so such a configuration can no longer be said
to constitute an effective barrier. Rather, the initial bar-
rier is typically unstable and will quickly be destroyed by
the mixing of the two condensates (even in the absence
of an external force). In the absence of a stable barrier,
the argument leading to an interpretation in terms of a
Josephson effect is untenable.

The situation is different when dealing with solitons.
In this case, even in the miscible case the object in ques-
tion is stable and has its own dynamics: a soliton trans-
lates unperturbed at constant velocity in a homogeneous
system, and in a weakly inhomogeneous system, its mo-
tion can be described thanks to a local density approx-
imation [7]. In the presence of a linear potential acting
differently on the two components, this approach runs
into some difficulties. One of them is the question of
the stability of the soliton under such a force: it may be
that, favoring mixing, the force destroys the soliton (see
below). Another aspect is the behavior of the easy-plane
soliton for increasing velocity: let’s assume that a soliton
initially at rest is subject to a constant force that drags
is toward negative x and linearly increases its momen-
tum1. In this case, its representative point (Esol, P ) in
Fig. S2 will move from the left-most point of the curve
(V = 0−) down to the origin, following the black disper-
sion relation. When the representative point gets close

1 The soliton is accelerated counter to the force.

to the origin, the width of an easy-plane soliton diverges
and its amplitude vanishes2. In this situation the adia-
batic hypothesis breaks down and the soliton decays into
elementary excitations.

A way to avoid this decay is to introduce a hard wall
potential which prevents a constant rate of increase of the
momentum. In this case, the velocity and momentum of
the soliton bouncing off the hard wall are reversed and
the soliton changes branch of the dispersion relation, as
illustrated schematically by the red dashed line in Fig.
S2. Conservation of energy will let the representative
point of the soliton reach the right-most point of the dis-
persion relation (with zero velocity) and then start over
the same downward motion. This is the analog of a ball
bouncing off the ground under the effect of the gravita-
tional acceleration.

We tested this scenario by running numerical simula-
tions to probe the behavior of solitons in a miscible mix-
ture under a constant external force for various values
of several parameters (the relative values of the particle
numbers N1 and N2, the total density, the interaction
strength gs, the external force, the initial velocity of the
soliton) and the results, of which two representative ex-
amples are presented in Fig. S3, are compatible with
the above scenario: the soliton is initially accelerated
counter to the force (towards negative x in our case) un-
til it reaches the wall of the box potential in which the
simulations are run. At this point it bounces back and
moves in the positive x direction until it stops and starts
the same motion again. We note however, that the adia-
batic hypothesis breaks down for forces typically smaller
than for easy plane soliton (as already pointed out in [2]).
In the presence of a sizeable constant force (i.e., when η
increases), the velocity of the soliton has become large
at the bouncing time and this is associated to a break-
down of adiabaticity: the width of the soliton is large
at the point where the gradient of external potential is
the largest. In this case, the bouncing is accompanied
by a sizeable amount of radiation, as illustrated in the
lower panel of Fig. S3. A counter-intuitive phenomenon
is then observed: the soliton having lost energy during
the bouncing sees its velocity increased and is thus able
to reach a point further away from the hard wall than
its initial position. This effect is increased at the next
bouncings, eventually leading to a decay of the soliton.
This mechanism is clearly at work in the lower panel of
Fig. S3 and also, although in a less pronounced way, in
the upper panel (which corresponds to a lower value of
η).

When the adiabatic approximation holds, one can de-
scribe its motion by considering the soliton as a classical

2 In this instance, the behavior of the easy-plane soliton is similar
to that of a dark soliton in a one component condensate, as
discussed in a limiting case in Ref. [6].
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FIG. S3. Numerical evolution of a magnetic soliton in a
miscible mixture (gs/g = −0.01) under a linear differential
potential with gradient η = 1.6 × 10−3 (upper panel) and
η = 1.3 × 10−2 (lower panel). The background relative den-
sity is initially zero (n1 = n2: cos θ0 = 0). The soliton in the
upper panel is stable on the timescale in which the one in the
lower one is destroyed. The dashed curves correspond to the
analytic prediction (S4).

particle [7]. The situation is particularly simple in a mis-
cible mixture with equal proportion of the two compo-
nents, as considered in Fig. S3. In this case the position
X of the center of the soliton during its initial motion

before bouncing is given by

X(t) = X(0)− 2

ηπ

[
1− cos(ηπt/2)

]
. (S4)

The good agreement of this prediction with the numerical
simulations presented in Fig. S3 is a strong support of the
above analysis of the ingredients governing the dynamics
of an easy-axis soliton.

It is worth emphasising that during our numerical sim-
ulations, the miscible mixture proved much more delicate
to treat within an adiabatic approximation than the im-
miscible one. As stated above we attribute this difference
to the robustness granted by phase separation to a spin
domain in the immiscible phase, thanks to which the dy-
namics are not very sensitive to the initial condition. In
the miscible phase, on the other hand, it is important for
the initial state and all subsequent states in a hypotheti-
cal adiabatic evolution to truly be solitons. However, we
know the exact solitonic solutions only at the demixing
transition, whereas for finite gs/g, these states are only
approximate solutions of the Gross-Pitaevskii equation.
Decreasing gs/g makes this discrepancy less significant,
but also makes spin excitations softer (as can be seen, for
example, from the spin speed of sound cs =

√
gsn0/2m).

This means that any external field will excite the spin
channel more strongly, making adiabaticity harder to
achieve. Correspondingly, it proved necessary in simu-
lations to raise the total density in order to find good
agreement with Eq. (S4).
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