(Dispersive) shock wave dynamics les Houches, march 2023

Morning glory roll cloud, Australia copyright M. Petroff, Creative Commons3.0, 2009

Waves generated by wind \longrightarrow south China sea

(Dispersive) shock wave dynamics les Houches, march 2023

Morning glory roll cloud, Australia copyright M. Petroff, Creative Commons3.0, 2009

viscous fluid conduit, Mark Hoefer's group, Boulder

Different types of shock waves

Schlieren photograph of shocks attached on a supersonic body

Dispersive shock

undular bore (mascaret) on river Dordogne

Simple nonlinear PDEs

vibrating string: $u_{tt} - c^2 u_{xx} = 0$ where $c^2 = T_0/\mu$

Simple nonlinear PDEs

vibrating string: $u_{tt} - c^2 u_{xx} = 0$ where $c^2 = T_0/\mu$

nonlinearize the right mover: $c \rightarrow c(u) = c_0 + c_1 \cdot u + \cdots$

upon re-parametrization: $u_t + uu_x = 0$ Hopf equation regularize the above: other possible choice:

 $u_t + uu_x = \epsilon u_{xx}$ $u_t + uu_x = \epsilon u_{xxx}$

Burgers equation Korteweg de Vries eq.

Simple nonlinear PDEs

vibrating string: $u_{tt} - c^2 u_{xx} = 0$ where $c^2 = T_0/\mu$

nonlinearize the right mover: $c \rightarrow c(u) = c_0 + c_1 \cdot u + \cdots$

upon re-parametrization: $u_t + uu_x = 0$ Hopf equation regularize the above: other possible choice:

 $u_t + uu_x = \epsilon u_{xx}$ $u_t + uu_x = \epsilon u_{xxx}$

Burgers equation Korteweg de Vries eq.

dispersion re	lation ι	$(x,t) = u_0$	$a_0 + A \exp[i(kx - \omega t)]$
Burgers :	$\omega = u_0 k - i\epsilon$	k ² dam	ping
KdV :	$\omega = u_0 k + \epsilon k$	³ disp	ersion

uni-directional vs bi-directional motion

KdV

 $x \longrightarrow$

A genuine nonlinear phenomenon

nonlinear problem:

$$i\psi_t = -\frac{1}{2}\psi_{xx} - \rho \psi$$

with $\rho = |\psi|^2$ and
 $\rho(|x| < x_0, 0) = \rho_0 + \rho_1 \left(1 - \frac{x^2}{x_0^2}\right)$
 $\rho_0 = 1, \ \rho_1 = 0.15, \ x_0 = 20$

linear approximation:

$$\psi = \exp(-i\rho_0 t)(\sqrt{\rho_0} + \delta\psi)$$

 $i\delta\psi_t = -\frac{1}{2}\delta\psi_{xx} - \rho_0(\delta\psi + \delta\psi^*)$

Wave breaking phenomenon

wave breaking time: $c(\rho_0 + \rho_1).t_{WB} = x_0 + c(\rho_0).t_{WB}$ $c(\rho_0 + \rho_1) \simeq c_0.(1 + \frac{1}{2}\rho_1/\rho_0) \text{ where } c_0 = c(\rho_0)$ $\boxed{c_0.t_{WB} \simeq 2x_0 \frac{\rho_0}{\rho_1}}$

Fleischer's group

photo-refractive material: NL induced by a voltage bias across the crystal

0 ≤ *t* ≤ 60

output

dispersionless hydrodynamics

$$\psi(x,t) = \sqrt{\rho} \exp\{i S\} \qquad S_x = u$$

$$\begin{cases} \rho_t + (\rho u)_x = 0 \\ u_t + uu_x + \rho_x + \left(\frac{(\rho_x)^2}{8\rho} - \frac{\rho_{xx}}{4\rho}\right)_x = 0 \end{cases}$$

• In a region where both λ 's vary:

Hodograph transform

$$x = x(\lambda^+, \lambda^-), t = t(\lambda^+, \lambda^-)$$

$$\frac{\partial x}{\partial \lambda_{\pm}} - V_{\mp} \frac{\partial t}{\partial \lambda_{\pm}} = 0$$

Riemann invariants

 $\lambda_{\pm} = \frac{1}{2}u \pm \sqrt{\rho}$

$$\partial_t \lambda_{\pm} + \mathbf{V}_{\pm} \partial_x \lambda_{\pm} = \mathbf{0}$$

with
$$V_{\pm} = \frac{1}{2}(3\lambda^{\pm} + \lambda^{\mp}) = u \pm \sqrt{\rho}$$

 \bullet in a region where one the λ 's is constant: simple wave, the method of characteristics works

Euler-Poisson equation

$$x - V_{\pm}t = \frac{\partial W}{\partial \lambda_{\pm}}$$

$$\frac{\partial^2 W}{\partial \lambda_{+} \partial \lambda_{-}} = \frac{1}{2(\lambda_{+} - \lambda_{-})} \left(\frac{\partial W}{\partial \lambda_{+}} - \frac{\partial W}{\partial \lambda_{-}} \right)$$
solved by the so-called Riemann method

PRA 99 (2019), EPL 129 (2020), PRE 102 (2020)

NLS pre wave-breaking

$$-\frac{1}{2}A_{xx} + \left[\rho + \frac{J^2}{2\rho^2} - \mu\right]A = 0, \quad \text{where} \quad J = \rho(x)u(x) \quad \text{and} \quad A = \sqrt{\rho}$$

first integral:

$$\frac{1}{2}A_x^2 + W(\rho) = E_{cl}$$
, where $W(\rho) = -\frac{\rho^2}{2} + \mu\rho + \frac{J^2}{2\rho}$.

Single phase solutions of the NLS equation

$$\rho(x,t) = \frac{1}{4}(\lambda_4 - \lambda_3 - \lambda_2 + \lambda_1)^2 + (\lambda_4 - \lambda_3)(\lambda_2 - \lambda_1) \operatorname{sn}^2(k(x - Vt), m)$$

$$k = \sqrt{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)}, \quad V = \frac{1}{4}(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4),$$

$$m = \frac{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)} \in [0, 1], \quad u(x, t) = V - \frac{C(\lambda_1, \lambda_2, \lambda_3, \lambda_4)}{\rho(x, t)}.$$

slow modulations $\lambda_i \rightarrow \lambda_i(x, t)$ with

$$\partial_t \lambda_i + \mathscr{V}_i(\{\lambda_j\}) \partial_x \lambda_i = 0$$

$$\mathcal{V}_{1}(\{\lambda_{j}\}) = \frac{1}{2} \sum_{i=1}^{4} \lambda_{i} - \frac{(\lambda_{4} - \lambda_{1})(\lambda_{3} - \lambda_{1})K(m)}{(\lambda_{4} - \lambda_{1})K(m) - (\lambda_{3} - \lambda_{1})E(m)} \qquad m = \frac{(\lambda_{2} - \lambda_{1})(\lambda_{4} - \lambda_{3})}{(\lambda_{4} - \lambda_{2})(\lambda_{3} - \lambda_{1})}$$

Gurevich & Pitaevskii (1973)

simple case: decay of an initial discontinuity \rightarrow dispersive shock wave

no characteristic length : self-similar solution depending on $\zeta = x/t$ and matching to the right and left boundaries with a non dispersive flow.

slow modulations $\lambda_i \rightarrow \lambda_i(x, t)$ with

$$\partial_t \lambda_i + \mathscr{V}_i(\{\lambda_j\}) \partial_x \lambda_i = 0$$

 $m = \frac{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)}$

$$\mathcal{V}_{1}(\{\lambda_{j}\}) = \frac{1}{2} \sum_{i=1}^{4} \lambda_{i} - \frac{(\lambda_{4} - \lambda_{1})(\lambda_{3} - \lambda_{1})K(m)}{(\lambda_{4} - \lambda_{1})K(m) - (\lambda_{3} - \lambda_{1})E(m)}$$

Gurevich-Pitaevskii problem

Gurevich & Pitaevskii (1973)

simple case: decay of an initial discontinuity \rightarrow dispersive shock wave

no characteristic length : self-similar solution depending on $\zeta = x/t$ and matching to the right and left boundaries with a non dispersive flow.

- in the simple wave region $\rho(x, t) = \frac{1}{4}(\lambda_+ \lambda_-)^2$ remember $\lambda_{\pm} = \frac{1}{2}u \pm \sqrt{\rho}$
- in the DSW region: two (x, t)-dependent λ 's. Hodograph method then Euler-Poisson equation $\rightarrow \lambda_3(x, t)$ and $\lambda_4(x, t)$

$$\rho(\mathbf{x},t) = \frac{1}{4}(\lambda_4 - \lambda_3 - \lambda_2 + \lambda_1)^2 + (\lambda_4 - \lambda_3)(\lambda_2 - \lambda_1) \, \operatorname{sn}^2(k \, (\mathbf{x} - Vt), m)$$

16

 $\vec{E}(z, \vec{r}_{\perp}) = \mathcal{A}(z, \vec{r}_{\perp}) \exp\{i(k_0 z - \omega t)\}\vec{e}_z$ complex amplitude × carrier wave

paraxial approximation:

$$i\partial_z \mathcal{A} = -\frac{1}{2n_0k_0}\vec{\nabla}_{\perp}^2 \mathcal{A} + \frac{k_0n_2|\mathcal{A}|^2}{1+|\mathcal{A}|^2/I_{\rm sat}}\mathcal{A} - \frac{i}{\Lambda_{\rm abs}}\mathcal{A}$$

LKB experiment. Dispersive shock wave production and analysis

T. Bienaimé EQM, Strasbourg

M. Isoard LKB, Paris

Q. Fontaine C2N, Palaiseau

A. Bramati LKB, Paris

Q. Glorieux LKB, Paris

A. Kamchatnov ISAN, Troitsk

LKB experiment

plots with background removed

$t \gg t_{WB}$: asymptotic weak shock theory

New (asymptotically) conserved quantity

$$\mathcal{A} = \sqrt{2} \int_{\bar{x}}^{x_5} (\sqrt{\rho} - c_0)^{1/2} dx \simeq 2 x_0 \sqrt{c_0} F(\rho_0/\rho_1)$$

where

$$F(\alpha) = \int_0^{\pi/2} \cos\theta \left(\sqrt{1 + \frac{\cos^2\theta}{\alpha}} - 1 \right)^{1/2} d\theta$$

PhLAM experiment

 C_{ont} is a function of a single scaling parameter : $\xi = \frac{X_0}{C_0 t} F(\rho_0 / \rho_1)$

$$C_{ont} = 4 \, \frac{(2\xi)^{2/3}}{4 + (2\xi)^{4/3}}$$

 $C_{ont} = 1$ for $\xi = \sqrt{2}$

Conclusion

rich analogy between nonlinear optics and hydrodynamics

- modulational instability
- observation of dispersive shock waves
- analogy with superfluid motion
- in the presence of disorder : competition between SF and Anderson localization
- possible formation of "sonic" horizon

Conclusion

rich analogy between nonlinear optics and hydrodynamics

- modulational instability
- observation of dispersive shock waves
- analogy with superfluid motion
- in the presence of disorder : competition between SF and Anderson localization
- possible formation of "sonic" horizon

Mathematical description: Riemann + Whitham

- describes the early, pre-breaking, dispersiveless spreading
- analytic result for the wave-breaking time
- describes the later, post-breaking, dispersive shock
- analytic result for the asymptotic weak shock parameters

Conclusion

rich analogy between nonlinear optics and hydrodynamics

- modulational instability
- observation of dispersive shock waves
- analogy with superfluid motion
- in the presence of disorder : competition between SF and Anderson localization
- possible formation of "sonic" horizon

Mathematical description: Riemann + Whitham

- describes the early, pre-breaking, dispersiveless spreading
- analytic result for the wave-breaking time
- describes the later, post-breaking, dispersive shock
- analytic result for the asymptotic weak shock parameters

Thank you for your attention