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2Institut de Physique de Nice, Université Côte d’Azur, CNRS, F-06560 Valbonne, France
3Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

4Institut Universitaire de France (IUF)

(Received 4 August 2023; accepted 27 November 2023; published 18 January 2024)

We present experimental and theoretical results on formation of quantum vortices in a laser beam
propagating in a nonlinear medium. Topological constrains richer than the mere conservation of vorticity
impose an elaborate dynamical behavior to the formation and annihilation of vortex-antivortex pairs. We
identify two suchmechanisms, both described by the same fold-Hopf bifurcation. One of them is particularly
efficient although it is not observed in the context of liquid helium films or stationary systems because it
relies on the compressible nature of the fluid of light we consider and on the nonstationarity of its flow.
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The propagation of light in a nonlinear medium can be
described as a (dispersive) hydrodynamic phenomenon.
This approach, pioneered in the 1960s [1–6] and further
developed in the 1990s [7–10] yielded remarkable suc-
cesses: observation of bright [11–13], dark [14–17], cavity
[18,19], and oblique [20,21] solitons, of wave breaking and
dispersive shock waves [22–26], of quantized vortices
[27–36], and of superfluid flow of light [37,38]. An
extreme hydrodynamiclike behavior is the turbulent regime
in which typical observables display scale-invariant power
law spectra in momentum space. In this Letter, we focus on
two dimensional (2D) configurations, similar to those
already studied in the field of Bose-Einstein condensates,
where quantum vortices proliferation but also robust vortex
structures have been observed [39–42]. Although their role
in the different types of power laws that have been
predicted and/or observed [39,43,44] is not fully elucidated
[45–47], there is no doubt that understanding the dynamics
of vortex formation is crucial for unraveling the mecha-
nisms leading to quantum turbulence. Recent studies
have demonstrated the efficiency of optical platforms for
studying this subject [48–54].
In this Letter, we use a nonlinear optical setup [26,55,56]

for studying the formation and annihilation of vortices and
of other less conspicuous features, such as saddles and
phase extrema, that also carry a topological charge.
Although the existence of these other critical points has
a long history [57,58], their role in enforcing topological
constraints [59–62] is often overlooked. Our detection tool
is able to simultaneously record the intensity and the phase
of a light sheet and then to reconstruct the streamlines of the
flow of the fluid of light, as illustrated in Fig. 1. This enables
us to investigate the formation mechanisms of vortices and

critical points. In particular we experimentally demonstrate
for the first time a scenario of vortex and antivortex
formation first proposed by Nye et al. in 1988 [63] and
identify a new one, which appears simpler and presumably
more efficient in the time dependent flow of a compressible
quantum fluid.
Consider a quantum fluid described by a scalar order

parameter of the form

ψðr⃗Þ ¼ Aðr⃗Þ exp½iSðr⃗Þ�; ð1Þ
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FIG. 1. Experimental intensity pattern and streamlines (in red)
of the beam at the exit of the nonlinear vapor. Dark regions are of
lesser intensity. One distinctly discerns two vortex-antivortex
pairs and also a saddle located close to the origin.
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defined in the plane (r⃗ ¼ xe⃗x þ ye⃗y). In such a system the
formation of vortices is constrained by topological rules: it
is for instance well known that in the absence of externally
imparted angular momentum, vortices typically appear in
pairs with opposite quantized vorticity. This scenario is
enriched by other constraints [63] originating from the
fact that, to any closed curve C of the plane, are associated
not one, but two topological indices: the vorticity
IVðCÞ ¼ ð1=2πÞ HC dS and the Poincaré-Hopf index
IPðCÞ ¼ ð1=2πÞ HC dθ, where θ is a polar angle of the

“velocity field” v⃗ðr⃗Þ ¼ ∇!S and in both cases the integral is
performed clockwise. IV and IP are (positive or negative)
integers. This stems from the fact that along a close contour
the phase S of the order parameter (1) and the orientation θ
of the velocity must both vary by integer multiples of
2π [64]. If S is regular and well-defined in the interior of C,
then IVðCÞ ¼ 0. This value does not change unless a vortex
[67] crosses C. To each vortex one can associate a vorticity
and a Poincaré-Hopf index by integrating along a small
circle around the vortex core. This yields IP ¼ þ1 and
typically [68] IV ¼ �1 for each vortex. Besides vortices,
other points are also associated with a finite Poincaré-Hopf
index: those at which the velocity of the flow cancels. They
are known as critical points, or equilibria. For a potential
flow such as ours, where the phase S is the velocity
potential, they are of two types: phase extrema (local
maxima or local minima) and phase saddles. For an
extremum IP ¼ þ1 and for a saddle IP ¼ −1 [69], while
for both IV ¼ 0 [72]. Similarly to what occurs for the
vorticity, IPðCÞ does not change unless a critical point with
nonzero Poincaré-Hopf index (a vortex, a saddle, or an
extremum) crosses C.
These topological considerations are generic and apply

to any system described by a complex scalar order
parameter. The physical implementation we consider in
this Letter consists in the propagation of a linearly polarized
laser beam of wavelength λ0 ¼ 2π=k0 ¼ 780 nm in a cell
filled with a nonlinear medium consisting in a natural Rb
vapor at a temperature T ≈ 120°. Within the paraxial
approximation, denoting as z the coordinate along the
beam axis, and r⃗ the transverse coordinate, this propagation
is described by a complex scalar field ψðr⃗; zÞ that obeys a
generalized nonlinear Schrödinger equation [75] where z
plays the role of an effective time:

i∂zψ ¼ −
1

2n0k0
ð∂2x þ ∂

2
yÞψ þ k0n2jψ j2ψ −

i
2Λabs

ψ ; ð2Þ

jψ j2 being the intensity, expressed in W:mm−2. Λabs
describes the effects of absorption: if T denotes the
coefficient of energy transmission, then Λabs ¼
−zmax= lnðT Þ, where zmax ¼ 7 cm is the total length of
propagation through the vapor. n0 is the refractive index of
the medium and n2 is the nonlinear Kerr coefficient. The

values of the parameters are T ¼ 0.16, n0 ¼ 1, and
n2 ¼ 2.2 × 10−4 W−1:mm2 [76].
For studying the above discussed topological constraints,

we use a specifically designed incident light pattern that
consists of the superposition of a main Gaussian beam
(wide and isotropic) with an auxiliary one, more tightly
focused and anisotropic. The initial amplitude accordingly
reads

ψðr⃗; 0Þ ¼
ffiffiffiffi
I1

p
exp

�

−
r2

w2
G

�

þ
ffiffiffiffi
I2

p
exp

�

−
x2

w2
x
−
y2

w2
y

�

expfiφ2ðr⃗Þg; ð3Þ

where r ¼ jr⃗j, wG ¼ 1.1 mm, wx ¼ 0.55 mm,
wy ¼ 0.08 mm, and I1 ¼ I2 ¼ 0.4 W:mm−2. The initial
phase of the auxiliary beam is φ2ðr⃗Þ ¼ −k0r2=R2 þΦ2,

FIG. 2. Comparison of experimental measurements (left plots)
and simulations (right plots) of the beam intensity pattern at
the exit of the vapor. The initial amplitude is given by (3) with
Φ2 ¼ 0.96π in panels (a) and (b); Φ2 ¼ π in panels (c) and (d)
and Φ2 ¼ 1.05π in panels (e) and (f). The red rectangle in
panel (b) marks the location of a vortex-antivortex pair whose
formation is analyzed below; see Fig. 3.
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where R2 ¼ −0.5 m is the initial curvature of the wavefront
of the auxiliary beam and Φ2 is the global phase difference
between the auxiliary and the main beam. An antiphase
relationship (Φ2 ¼ π) corresponds to an intensity dip
induced by the narrow auxiliary beam on the main one.
We image the beam pattern at the exit of the cell for
different initial phase differences Φ2 ¼ πð1� 0.05Þ. This
is performed thanks to a wavefront sensor that captures the
amplitude and phase of the near field at the output of the
nonlinear medium. As exemplified in Fig. 1 this enables us
to simultaneously measure the output optical fluid intensity
jψ j2 and velocity v⃗.
Figure 2 compares the experimental and theoretical

intensity profiles jψðx; y; zmaxÞj2 at the exit of the cell.
In panels (a) and (b) eight vortices distributed symmetri-
cally with respect to the horizontal and vertical axes are
observed, which have been created during the nonlinear
propagation within the cell. When increasing the initial
phase difference Φ2 between the main and auxiliary beam,
the vortices close to the y axis get even closer [panels (c)
and (d)] and eventually merge [panels (e) and (f)]. The
agreement between the experimental and numerical results
displayed in Fig. 2 is excellent, especially if one considers
that there are no free parameters: all the constants of the
model have been determined by independent experimental
measurements [76]. This validates the use of the nonlinear
Schrödinger equation (2) for studying the intermediate
steps (0 < z < zmax), which are not accessible in our
experiment.
The dynamics of the critical points during the propaga-

tion within the nonlinear vapor can be complex, but it
always fulfills the previously stated topological require-
ments. For instance, in numerical simulations, we have
observed the concomitant apparition of a phase saddle and
of a phase extremum, a process that preserves the total
Poincaré-Hopf index. In a similar way, the topological rules

impose that the annihilation of a vortex-antivortex pair be
associated to the simultaneous disappearance of two
saddles in order to ensure the conservation not only of
IV but also of IP. This is the process at play in the
disappearance of the two pairs of central vortices observed
in Fig. 2, when going from the top to the bottom row. We
will not go into the particulars of this mechanism here (see
however the discussion in [76]) because it has been
described in detail by the Bristol team [63] and also
because it is seldom observed in our investigation. In the
following we describe an alternative mechanism of vortex
formation, much more often encountered in our setting: two
phase extrema collide and annihilate one another, giving
birth to a vortex-antivortex pair. During this process the
total Poincaré-Hopf index and total vorticity keep the value
2 and 0, respectively. This mechanism is at the origin of the
formation of the two vortices in the red square of Fig. 2(b).
Numerically computed intermediate beam structures lead-
ing to the output pattern shown in Figs. 2(a) and 2(b) are
presented in Fig. 3. A phase minimum (white dot)
approaches a phase maximum (red dot), pinching a low
density region. The two extrema annihilate each other
giving birth to a vortex-antivortex pair [cyan circles in
Fig. 3(b)]. The fact that the two vortices have opposite
vorticity is clearly seen from the orientation of the stream-
lines in the vicinity of each of them. After their formation,
the two vortices slowly drift apart, eventually reaching in
Fig. 3(c) the configuration identified by a red rectangle in
Fig. 2(b).
The structure of the flow, entailed in the velocity field

v⃗ðr⃗Þ, can be interpreted within the theory of dynamical
systems by considering streamlines (red lines in Figs. 1
and 3) as trajectories of a 2D system:

dr⃗
dγ

¼ v⃗ðr⃗Þ; ð4Þ

FIG. 3. Snapshots of simulations of the intensity pattern at several propagation distances within the nonlinear vapor. The initial profile
is (3) withΦ2 ¼ 0.96π. The corresponding final intensity pattern is represented in Fig. 2(b), of which plot (c) is an enlargement. Regions
of low intensity are dark. The oriented curves are the streamlines spanned by the vector field v⃗ðr⃗Þ. A red (white) circle locates a phase
maximum (minimum), i.e., a stable (unstable) node. Cyan circles are vortices. Their vorticity is indicated by a þ or − sign (IV ¼ �1).
The blue diamond is a saddle that plays no part in the vortex formation mechanism.
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with γ an arbitrary parametrization on the trajectory. In the
terminology of dynamical systems, phase extrema are
known as nodes (stable or unstable) and saddles as saddle
points [85]. Although vortices are not equilibria of the
velocity field, the streamlines encircling a vortex are closed
trajectories, and vortices can be seen as “centers” of the
dynamical system (4). Within this framework, the change
of topology of the flow can be viewed as a bifurcation
of (4): for instance, the above mentioned concomitant
apparition of a saddle point (phase saddle) and of a node
(phase extremum) is described by a so-called saddle-node
bifurcation. In the same line, the mechanism described
previously, and displayed in Fig. 3, appears in the fold-
Hopf bifurcation [86,87] for which a generic normal form is
given explicitly in [76]. For the present discussion it
suffices to consider the system (4) with the specific form

v⃗ ¼ v⃗fHðr⃗Þ≡ −2σxye⃗x þ ðμþ σx2 − y2Þe⃗y; ð5Þ

where σ ¼ �1 is fixed, and μ∈R is a parameter of the
bifurcation. The phase portrait of the dynamical system (4),
(5) for σ ¼ 1 and two different values of μ (before and after
the bifurcation) is shown in Fig. 4. In this case, the stable
and unstable nodes (red and white dot respectively) that
exist when μ > 0 annihilate when μ becomes negative to
form two centers (represented by cyan circles); note that the
latter are not singularities but true equilibria of the velocity
field (5).
The velocity field (5) is not that of a potential flow, as

should be the case for a quantum fluid. However, it is
possible to derive a potential flow that shares the same
phase portrait. The corresponding velocity field reads (see
Ref. [76])

v⃗ ¼ ∇!SfH; SfHðr⃗Þ≡ arg½x2 þ σðy2 þ μÞ þ iσy�: ð6Þ

The system (4), (6) is not only a gradient flow, it also obeys
the Onsager-Feynman quantization condition [64]. In
particular the centers of (4), (5) are replaced by singularities
(where SfH is ill-defined) that are encircled by closed orbits

along which the circulation of ∇!SfH is �2π [as depicted in
Fig. 4(b)], i.e., quantum vortices. Note that SfH is not the
phase of a wave function that exactly obeys the nonlinear
Schrödinger equation (2). However, comparing the phase
portraits of Fig. 4 with the flow patterns obtained in
Figs. 3(a) and 3(b) shows that varying μ in (6) effectively
reproduces the local flow pattern of a z-varying wave
function solving (2). Besides, SfH fulfills the requirements
expected from the phase of the order parameter (1) of a 2D
quantum fluid.
It is interesting to remark that the normal form (5), once

modified to derive from the velocity potential (6) as just
explained, also describes when σ ¼ −1 the scenario of
vortex annihilation presented in [63], which we henceforth
denote as the Bristol mechanism: two vortices and two
saddle points annihilate when μ goes from positive to
negative, yielding a featureless flow. Notably, the model
wave function given in [63] reduces to ψ ¼ x2 − y2 − μ −
iy close to the bifurcation point (see Ref. [76]), i.e.,
its phase is SfH with σ ¼ −1, validating the analogy
presented here: the normal form of the fold-Hopf bifurca-
tion provides an approximated theoretical model of the
Bristol mechanism.
The mechanism of vortex formation illustrated in Figs. 3

and 4, although generic, cannot be observed in the special
case of an incompressible 2D quantum fluid, such as
commonly used to model liquid helium films for instance.
Indeed, in such a system the phase S is a harmonic function,
which, by the maximum principle cannot have maxima nor
minima: the only possible critical points with zero velocity
are saddles and no phase extrema occur, contrary to what is
observed in Fig. 3 (see an extended discussion of this point
in [76]). Phase extrema are also forbidden in a stationary
(i.e., z-independent in our case) system, as proven in
Ref. [63], but nothing prevents their formation in a z-
dependent configuration. Indeed, such extrema have been
theoretically considered [59] and experimentally observed
in a random linear speckle pattern [88], but were found to
be relatively scarce, being outnumbered in a ratio 14∶1 by
saddles. Although our use of a specific initial condition (3)
prevents a systematic statistical study, we also observe that
phase extrema are less numerous than saddles. This
corresponds to physical intuition: extrema are typically
born in saddle-node bifurcations, which create an equal
number of extrema and saddles, whereas pairs of saddles
could be additionally created thanks to the Bristol mecha-
nism. More significantly, the new mechanism of vortex
formation we have identified and observed in many
instances, efficiently diminishes the number of extrema.
As a result, when vortices proliferate, saddles tend to be
more numerous than extrema.

FIG. 4. Phase portraits of the dynamical system (4), (5) [or
equivalently (4), (6)] with σ ¼ 1 for two different values of the
bifurcation parameter μ. The color scale corresponds here to the
phase SfH ∈ ½−π; π� (light yellow corresponds to SfH ¼ π and dark
green to SfH ¼ −π). Note that the position of the 2π jump of
SfHðr⃗Þ [dashed line in panel (b)] is arbitrary and fixed by the
choice of constant of integration in (6).
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In conclusion we emphasize that our experiment uses a
new generation of optical techniques that enables a precise
measure of both the intensity and the phase of a light sheet
[32,35,36,52–54]. As demonstrated in the present Letter,
this offers the possibility of an accurate and simple location
not only of vortices but also of other critical points, such as
saddles. This enabled us to obtain evidences of several
(topologically constrained) mechanisms of formation of
vortices and of associated singular points in the time
domain, with an account of the evolution of the streamlines.
As far as vortex formation is concerned, we experimentally
demonstrated a scenario proposed more than 30 years ago
(the Bristol mechanism). We also identified a new scenario,
simpler and more common in our setting, in which two
nodes collide and give birth to a vortex-antivortex pair. This
process requires a nonstationary flow and a compressible
fluid. We showed that the two mechanisms of vortex
formation (Bristol and nodes collision) pertain to the same
fold-Hopf type of bifurcation. We demonstrated that the
corresponding normal form can be enriched in order to
account for the quantum nature of our system. This
suggests that these mechanisms are universal. It would
thus be of great interest to uncover to what extent they are
involved in the nucleation or annihilation of vortices and of
more exotic defects recently studied in Refs. [89–92] or
also during the Kibble-Zurek process [93,94]. As a final
remark we stress that our Letter illustrates the efficiency of
tools issued from the theory of dynamical systems to
investigate the route to turbulence. This opens the path
of a new line of research devoted to the statistical study of
nodes and saddles dynamics in a turbulent quantum fluid.
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Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A.
Bramati, and G. Gigli, All-optical control of the quantum
flow of a polariton condensate, Nat. Photonics 5, 610
(2011).

[35] C. Antón, G. Tosi, M. D. Martín, L. Viña, A. Lemaître, and
J. Bloch, Role of supercurrents on vortices formation in
polariton condensates, Opt. Express 20, 16366 (2012).

[36] L. Dominici, G. Dagvadorj, J. M. Fellows, D. Ballarini,
M. D. Giorgi, F. M. Marchetti, B. Piccirillo, L. Marrucci, A.
Bramati, G. Gigli, M. H. Szymańska, and D. Sanvitto,
Vortex and half-vortex dynamics in a nonlinear spinor
quantum fluid, Sci. Adv. 1, e1500807 (2015).

[37] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I.
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EXPERIMENTAL SETUP

In this section we describe the experimental setup and
discuss some of its characteristics.
As discussed in the main text and sketched in Fig. S1, the
experimental system consists in the propagation of a laser
beam (λ0 = 780 nm) aligned with the axis Oz through a
cell of length zmax = 7 cm filled with a hot atomic vapor
(natural isotopic mixture of Rubidium). Such a vapor
behaves as a Kerr nonlinear medium whose nonlinearity
can be tuned via the frequency detuning of the beam with
respect of the D2 line of Rb, the beam intensity and the
atomic density of the vapor within the cell (monitored
through the temperature of the vapor).

Note that to extract atomic gas temperature, we mea-
sure the transmission profile of a weak laser beam after
propagation through the vapor as a function of the laser
detuning. Fitting this data (as shown in Fig. S2) with
a numerical simulation taking into account atomic lines
of both isotopes, rubidium vapor pressure as a function
of the temperature [1–3] and the Doppler broadening,
we can deduce the atomic density and therefore link it
to the gas temperature using the vapor pressure [4] and
ideal gas law.

We reproduce here for legibility the equation governing
the propagation of the beam’s complex amplitude ψ(~r, z)

FIG. S1. Sketch of the propagation of the beam within the
nonlinear medium. The side pictures depict the transverse in-
tensity pattern at different propagation distances. The quan-
tity znl is the nonlinear length defined in Eq. (S3).

FIG. S2. Transmission spectrum for a vapor temperature
T = 120◦. The frequency range, of about 25 GHz, is de-
termined by the scanning laser. The frequency is measured
with respect to the D2 spectral line of 87Rb. The beam is red
shifted with respect to this reference, with a frequency detun-
ing ∆ = −0.75 GHz. The corresponding measured transmis-
sion coefficient is T = 0.16.

within the nonlinear vapor:

i ∂zψ = − 1

2n0k0
(∂2
x+∂2

y)ψ+k0n2|ψ|2 ψ−
i

2 Λabs
ψ, (S1)

where z is the longitudinal coordinate and the transverse
coordinate is ~r = x~ex+y ~ey, see Fig. S1. In this equation
n0 = 1 is the refractive index of the medium and Λabs =
−zmax/ ln(T ) phenomenologically describes the effects of
absorption (T = 0.16 is the transmission coefficient, see
Fig. S2). The coefficient n2 is the nonlinear index of
refraction. It can be modified by changing the detuning
between the frequency of the laser and that of the D2

line of Rb, or the atomic density of the vapor (i.e., the
temperature). In our study we use a red detuned laser; in
this condition n2 > 0 and the nonlinear medium has self-
defocusing properties. The nonlinear index of refraction
can be determined by an auxiliary experiment [5] which
consists in measuring the nonlinear phase shift

∆φnl = k0zmaxn2I (S2)

acquired by a gaussian beam of intensity I during its
propagation through the nonlinear medium. This tech-
nique, based on the self-phase modulation effect, consists
in imaging the far field intensity after propagation in the
vapor. Every 2π phase shift accumulated will appear as
a ring in the intensity profile; counting the number of
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FIG. S3. Sketch of the experimental apparatus. A 780 nm laser beam is splitted via a Mack-Zender interferometer, each arm
being separately shaped and then overlapped to create the initial condition: a wide gaussian beam (background) in destructive
interference with an elliptical gaussian beam. A PID linked to a piezo-electric mirror controls and locks the relative phase
between both beams. After passing through the atomic vapor, the beam at the output of the cell is imaged on a CCD camera.
The far-field can also be observed on a screen to measure the nonlinear phase shift.

concentric rings gives a good estimate of the nonlinear
phase shift and therefore of the Kerr coefficient n2. The
study presented in the main text has been performed for
∆φnl = 50 (±π) which corresponds to n2 = 2.2(2)×10−4

W−1.mm2. Experiments were generally performed with
an atomic vapor of density ρat ≈ 2×1019 atoms/m3 (at a
temperature of T ≈ 120◦), and a laser detuning varying
from −10 GHz to −1 GHz with respect to the 87Rb D2

transition 5S1/2(F = 2)− 5P3/2(F = 1, 2, 3).

The optical field used for the study presented in the
main text is composed of a gaussian background beam
(with waist wG = 1.1 mm and power PG = 800 mW) over-
lapped with an elliptical gaussian beam (with dimensions
wx = 550 µm and wy = 80 µm) having a central inten-
sity equal to that of the background beam, cf. Eq. (S5).
The interference of these two beams is set as initial con-
dition. Modifying the global relative phase between the
two beams, or the radius of curvature of the elliptical
beam, or titling the elliptic beam with respect to the
background one, leads to modifications of the initial ve-
locity pattern of the fluid of light allowing to frame the
dynamics of the system while keeping the parameters of
the nonlinear Schrödinger equation (S1) fixed. The main
power of the field is sent to the rubidium vapor while a
small part is sent to a photo-detector linked to a propor-
tional–integral–derivative controller (PID) as depicted in
Fig. S3. This allows to lock and scan the relative phase
ϕ2(~r ) between the beams via a piezo-electric mirror in-
stalled on the interferometer (on the arm of the back-
ground beam), offering a precise and stable control of
the initial fluid’s velocity [6].

In this context, the transverse velocity of the fluid of
light can be written as ~v ∝ (∂xS ~ex + ∂yS ~ey) where
S(~r, z) is the phase of the electromagnetic field. The
use of a Phasics camera has been necessary for the ex-
perimental observation of the fluid’s flow. Such a device
uses a technique based on the quadri-wave lateral shear-
ing interferometry (QWLSI) to locally measure both the
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FIG. S4. Left (right) column: Coordinates of the phase gra-
dients along the x (y) axis as measured at the output of the
nonlinear cell. These are used to construct the streamline
patterns presented in Fig. S5. Panels (a) and (b) are the
phase gradients corresponding to Fig. S5(a). Panels (c) and
(d) correspond to Fig. S5(c).

intensity and the phase gradient of a beam of light. This
tools usually used for adaptative optics offers us a di-
rect access to both the density and velocity of our fluid
of light. The wavefront sensor measures the gradient of
the phase along the two transverse axis, as reported in
Fig. S4. From these records we can directly construct the
velocity field and then the corresponding streamlines, as
displayed in Fig. 1 of the paper and in Fig. S5 below.
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FIG. S5. Measured output intensity profile and streamlines (in red) for different values of the input global phase difference
between the main and the elliptical beam: panel (a) Φ2 = 0.96π; panel (b) Φ2 = π; panel (c) Φ2 = 1.05π. Regions of lower
(higher) intensity are dark (bright). The nonlinear parameter stays fixed (∆φnl = 50) during the study, allowing to observe
the fluid’s evolution in the exactly same conditions.

PARAMETERS AND RESULTS

Eq. (S1) can be put in a non dimensional form by
choosing a reference intensity Iref . A natural choice is
to take Iref = I1, where I1 is the common intensity of
the main and of the auxiliary beam, but other choices
are possible. Defining the nonlinear length znl and the
transverse healing length ξ by

znl = (k0n2Iref)
−1 = n0k0ξ

2, (S3)

and considering the dimensionless quantities t = z/znl,
X = x/ξ, Y = y/ξ and Ψ = ψ/

√
Iref makes it possible

to write (S1) under the form

i∂tΨ = 1
2 (∂2

X + ∂2
Y )Ψ + |Ψ|2Ψ− iγΨ , (S4)

where γ = − 1
2 ln T × znl/zmax. Taking Iref = I1 = 0.4

W.mm−2 and n2 = 2.22×10−4 W−1.mm2 yields ξ = 13.2
µm, znl = 1.40 mm and tmax = zmax/znl = 50. The value
T = 0.16 of the transmission corresponds to γ = 0.018.
In terms of the dimensionless parameters the nonlinear
phase shift (S2) reads ∆φnl = tmax · (I1/Iref).

We solve numerically (S4) with the initial profile

Ψ(X,Y, 0) = exp

(
− R

2

W 2
G

)
+ exp

(
−X

2

W 2
x

− Y 2

W 2
y

)
exp{i ϕ2(X,Y )}, (S5)

where R2 = X2 + Y 2. The coefficient WG = 83.3, Wx =
41.7 and Wy = 6.06 are the dimensionless waists of the
two beams (for instance WG = wG/ξ, where the value of
wG is given in the previous section). The phase of the
secondary beam reads, in dimensionless coordinates

ϕ2(X,Y ) = −αR2 + Φ2 (S6)

where α = −2.81 × 10−3 characterizes the curvature
of the wavefront of the auxiliary beam and Φ2 is the

global phase difference between the main and the aux-
iliary beam.

The intensity profiles at t = tmax (i.e., at the exit of
the nonlinear cell) are displayed in Figure 2 of the main
text for different values of the global phase difference Φ2.
Fig. S5 represents an equivalent set of data using the
wavefront sensor which gives an experimental access to
the streamlines. These data are reconstructed from the
phase gradients measured by the wavefront sensor and
shown in Fig. S4.

Bristol mechanism

The field pattern at the exit of the nonlinear cell is
represented in Fig. S5 for different values of the control
parameter Φ2. We plot not only the intensity but also
the streamlines of the fluid of light, which is made pos-
sible by our recording of the phase of the field. By a
detailed inspection of this figure and also by using addi-
tional numerical simulations for intermediates values of
Φ2, one can verify that, when increasing the parameter
Φ2 from the value 0.96π, some of the 8 vortices present
at the output of the cell in Fig. S5(a) merge according to
what we call in the main text the “Bristol mechanism”,
for eventually leading to a 4-vortices configuration when
Φ2 = 1.05π, as shown in Fig. S5(c).

In this section, instead of studying the influence of a
modification of the initial phase difference between the
two beams on the output intensity pattern, we rather fix
the value Φ2 = 1.05π and numerically study the behavior
of the laser beam within the nonlinear cell (i.e., as a func-
tion of z). We will see that the general trend is similar,
indicating that, as suggested by intuition, modifying the
global phase difference between the two beams induces
a change of relative velocity which effectively speeds up
(or slows down) the nonlinear flow, enabling, by varying
Φ2, to observe at the output of the cell, patterns occur-
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FIG. S6. Snapshots of simulations of the intensity pattern at
two propagation distances through the nonlinear vapor (z =
45 mm and 51 mm). The initial profile is (S5) with Φ2 =
1.05π. Regions of low intensity are dark. The oriented curves
are the streamlines spanned by the velocity field ~v(~r ). Cyan
circles are vortices. Their vorticity is indicated by a + or −
sign (IV = ±1). Blue diamonds are saddles.

ring for fixed Φ2 at the interior of the cell (which are not
observable experimentally).

If Φ2 = 1.05π, the profile at the exit of the nonlin-
ear cell displays 4 distinct vortices, as shown in Figs.
2(e) and 2(f) of the main text and in Fig. S5(c). For
this value of Φ2, numerical simulations show that 8 vor-
tices are initially generated within the cell. In short, the
mechanism of vortex formation is the following: since Φ2

is close to π, the initial profile displays a region a low
density elongated along the x axis. At the entrance of
the nonlinear medium the effective photon-photon inter-
action suddenly sets in, as described in Ref. [7] which
considers a setting similar to ours. The initial depleted
region is accordingly separated in two solitons counter
propagating in the y-direction. These two solitons decay
via the transverse instability (also known as snake insta-
bility, see e.g., Refs. [8, 9]) creating a rather large number
of vortices (4 for each soliton). We numerically observe
that these vortices are created in pairs, through the col-
lision of two nodes (fold-Hopf bifurcation with σ = 1, see
below). During the subsequent propagation within the
cell, among the 8 vortices two vortex-antivortex pairs an-
nihilate via the Bristol mechanism [10]. This annihilation
is depicted in Fig. S6: two vortices and two saddles get
closer (left plot) and then annihilate during the propaga-
tion along the z-axis (right plot) [11]. The whole process,
from the entrance until the exit of the nonlineary cell
(0 mm ≤ z ≤ 70 mm, or equivalently 0 ≤ z/znl ≤ 50), is
displayed in the attached video for the case Φ2 = π.

POTENTIAL FLOW

In this section we study the possibility to cast the fold-
Hopf bifurcation under a potential form able to account
for the presence of vortices. We show that this only pos-
sible if reducing the generic form (S8) to ~v = ~∇SfH where

the expression of the potential flow SfH is given in (S17).
Let’s consider a non-gradient dynamical system

ẋ = f(x, y), ẏ = g(x, y), with ∂yf 6= ∂xg, (S7)

such as given by the normal form of the fold-Hopf bifur-
cation [12, 13]:

f(x, y) = νx+ αxy, g(x, y) = µ+ σx2 − y2, (S8)

where α, ν, µ ∈ R and σ = ±1. The system (S7),(S8)
has at most four equilibria of coordinates (0,±√µ) and(

±
√
σ(ν2/α2 − µ),−ν/α

)
. (S9)

The nature of the equilibrium points (S9) depends – when
they exist – on the relative sign of α and σ: if sign(α) = σ
these equilibria are saddles, whereas if sign(α) = −σ they
are either centers (when ν = 0) or points surrounded by
spirals, commonly termed spirals (when ν 6= 0) [12].

One can find a gradient dynamical system

ẋ = ∂xS, ẏ = ∂yS, (S10)

orbitally equivalent to (S7) if S solves the linear first
order partial derivative equation

∂xS

f(x, y)
=

∂yS

g(x, y)
≡ h(x, y) > 0. (S11)

The positivity of the integrating factor h ensures that
the direction of the flow described by the gradient system
is identical to that of the original system (S7). Strictly
speaking, h(x, y) should also be a smooth function. How-
ever, in order to be able to describe flows containing vor-
tices we authorize h(x, y) to be singular. Eq. (S11) can
be solved by the method of characteristics, i.e., by writing
S(x, y) = S(ξ) where ξ(x, y) is constant along the charac-
teristics, governed by the following ordinary differential
equation

dy

dx
+
f(x, y)

g(x, y)
= 0. (S12)

We first note that the normal form (S8) is already a gradi-
ent system if α = 2σ. In this case h = 1 and the velocity
potential S = 1

2νx
2 + µy + σx2y − 1

3y
3 is continuously

differentiable. It can be shown that such a flow does not
admit closed orbits [14]: this case is of no interest for us
since we want to describe vortices.

In the generic situation (α 6= 2σ and h 6= 1) the cases
α = −σ and α = −2σ have to be treated separately.

Standard situation

Let’s first consider the standard situation α 6=
−2σ,−σ, 2σ. Solving (S12) for the normal form of the
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fold-Hopf bifurcation (S8) we obtain

ξ = |αy + ν|2σ/α
[
µ
(
α2σ + 2σ + 3α

)
− σµ2

+x2
(
α2 + 3ασ + 2

)
− y2(α+ 2σ) + 2νy

]
.

yielding the integrating factor

h = sgn (αy + ν)S ′(ξ)(2α2 + 6ασ + 4) |αy + ν|
2σ
α −1

.

Since ξ ∝ |αy + ν|2σ/α, S ′(ξ) does not change sign on
the line y = ν/α, such that h necessarily changes sign at
y = ν/α. Thus the inequality (S11) is violated and no
gradient system orbitally equivalent to (S7),(S8) exists.

The case α = −σ

If α = −σ, one obtains

ξ = ln |σy − ν|+ σx2 − 2y2 + ν2 + µ

2 (σy − ν)
2 ,

yielding

h =
−σS ′(ξ)
(σy − ν)3

.

Similarly to the previous case, since ξ ∝ 1/(σy − ν)2,
S ′(ξ) does not change sign on the line y = σν, and the in-
tegrating factor necessarily changes sign at y = σν. Here
also no gradient system orbitally equivalent to (S7),(S8)
exists.

The case α = −2σ

If α = −2σ, one obtains

ξ = ν ln |2σy − ν|+ 2
σx2 + y2 + µ− ν2/4

2σy − ν
, (S13)

yielding

h =
−4σS ′(ξ)
(2σy − ν)2

,

which is strictly positive provided that sgn[S ′(ξ)] = −σ.
Thus by picking an adequate function S, we obtain a
gradient system orbitally equivalent to (S7),(S8). No-
tice that the points (x, y) = (0,±√µ) remain equilibria,
whereas points of coordinates (S9) are now singularities

of ~∇S.
Requiring that the circulation of ~∇S on a path encir-

cling the singularities (S9) is ±2π, we obtain

S(x, y) = arg[(2y − σν)(ξ + iσ)] . (S14)

Note that the phase (S14) can be written as a piecewise
function of tan−1(σ/ξ) or equivalently cot−1(ξ/σ).

For non zero values of ν the trajectories in the vicin-
ity of the singularities are spirals. In this work we aim
at describing vortices which are singularities of the flow
surrounded by closed orbits. This imposes ν = 0.

A word of caution is in order: It is well known that gra-
dient systems do not admit closed orbits if the velocity
potential is continuously differentiable [14]. This theorem
does not apply here since the phase (S14) has essential
singularities and has a by construction 2π-discontinuity
along the corresponding branch cut(s). This is the rea-
son why it is possible to observed closed orbits around
vortices in a gradient flow with velocity potential (S14).

In summary, in a quantum fluid, some mechanisms of
vortices formation (or anihilation) can be qualitatively
described by the function S whose expression is given in
(S14) where ξ is given by (S13). The resulting flow pat-
tern is orbitally equivalent to the fold-Hopf bifurcation
(S7),(S8) relevant to vortex formation in the special case

α = −2σ and ν = 0. (S15)

In this case (S13) reduces to

ξ =
σx2 + y2 + µ

σy
, (S16)

and the phase (S14) reads

S = SfH ≡ arg
[
x2 + σ(y2 + µ) + iσy

]
, (S17)

which is the expression given in the main text. We re-
mind that in this analogy, the variation of µ can be seen
as the propagation along the z-axis. We will only con-
sider this situation in the following.

Bristol mechanism

In this section we show that, in the case σ = −1, the
system (S10),(S17) describes the potential flow presented
by the Bristol team in [10] close to the bifurcation point
(x = y = µ = 0). Indeed, the model equation (exact
solution of the two-dimensional Helmholtz equation) ob-
tained in [10] reads

ψB(x, y) = (x2 − µ− iy) exp{−iy}. (S18)

Let

x =
√
εX, y =

√
ε Y, µ = εM, (S19)

such that the limit ε→ 0 corresponds to the bifurcation
point. Expanding (S18) in ε we obtain

ψB(x, y) = −i
√
ε Y + ε(X2 − Y 2 −M) +O(ε3/2),

∼ x2 − y2 − µ− iy. (S20)



6
7 = 1=2

-1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5
y

7 = !1=2

-1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(a) (b)

FIG. S7. Phase portraits of the dynamical system (S7), (S8),
(S15) [or equivalently (S10),(S17)] with σ = −1 for two dif-
ferent values of the bifurcation parameter µ. Cyan circles are
vortices, blue diamonds are saddles. The color scale corre-
sponds here to the phase (S17) (light yellow corresponds to
S = π and dark green to S = −π). The position of the 2π-
jump of S(x, y) [dashed line in panel (a)], is arbitrary and
fixed by the choice of constant of integration in (S11).

Thus, in the neighbourhood of the bifurcation point, the
phase of the solution (S18) is given by the potential (S17)
derived previously with σ = −1.

The phase portrait of the gradient dynamical sys-
tem (S10),(S17) is displayed in Fig. S7 in the case σ = −1
which corresponds to the Bristol mechanism. The flow
locally resembles the flow of the numerical simulation
presented in Fig. S6 where two saddles annihilate with
two vortices, yielding a flow without critical points for
µ < 0.

Incompressible flow

In this section we make an attempt to describe the
fold-Hopf bifurcation (S7),(S8),(S15) for an incompress-
ible flow. The discussion shows that the “node to vortex
bifurcation” (i.e., fold-Hopf with σ = 1) can be realized
in an incompressible flow only at the expense of restric-
tions which make its experimental realization doubtful.

The condition of incompressibility is ~∇ · ~v = 0, which,
for a potential flow, implies that S satisfies Laplace’s
equation. In our case S(x, y) = S(ξ) where ξ is given
by (S16), yielding

∆S =
2

y2
[ξ + (1− σ)y]S ′(ξ)+

1

y2
[ξ2 − 4µ+ 4x2(1− σ)]S ′′(ξ) .

(S21)

Hence, when σ = 1 (which is the case we consider hence-
forth) the condition of incompressibility ∆S = 0 can
be expressed as an ordinary differential equation for the
function S(ξ):

2ξS ′(ξ) + (ξ2 − 4µ)S ′′(ξ) = 0 . (S22)

The function S solution of (S22) should verify S ′(ξ) ∝
(ξ2 − 4µ)−1 which leads to

S(ξ) =


1
2 ln

∣∣∣∣ξ −√4µ

ξ +
√

4µ

∣∣∣∣ if µ > 0 ,

arctan
(
ξ/
√
−4µ

)
if µ < 0 .

(S23)

The resulting velocity flow is

vx =
|4µ|1/2

ξ2 − 4µ

2x

y
,

vy =
|4µ|1/2

ξ2 − 4µ

(
1− µ+ x2

y2

)
,

(S24)

and it is easy to check that, except at isolated exceptional
points (see below)

~∇ · ~v = 0 , (S25)

which is the condition of incompressibility for which func-
tion S (S23) has been designed.

When µ < 0, the flow (S24) exhibits two vortices
located at points of coordinates (±

√
−µ, 0). At these

points the velocity diverges and the phase is ill de-
fined. One should check that the above solution verifies
the Onsager-Feynman relation which implies that vor-
tices are essential singularities of the phase connected
by branch cuts along which S experiences 2π jumps.
Actually, this is pretty obvious from expression (S23)
in the case µ < 0, but it is instructive to perform
the explicit computation. Consider a circle of radius ρ
around, say, the vortex (

√
−µ, 0) with parametric equa-

tion x =
√
−µ + ρ cos θ, y = ρ sin θ. For computing the

circulation of the velocity field along this contour one
needs to evaluate

1

2π

∮
~v · d~̀= ρ

∫ 2π

0

(−vx sin θ + vy cos θ)
dθ

2π

=

√
−µ
π

∫ 2π

0

−(2
√
−µ+ ρ cos θ)dθ

ρ2 − 4µ+ 4ρ
√
−µ cos θ

= −1 .

(S26)

This result holds only if ρ < 2
√
−µ. For larger values of

ρ the contour encloses the two vortices and the total cir-
culation is zero as it should. Mathematically this stems
from the formula

∫ 2π

0

(1 + e cos θ) dθ

1 + e2 + 2 e cos θ
=


2π if |e| < 1 ,

π if e = ±1 ,

0 if |e| > 1 ,

(S27)

where e = ρ/(2
√
−µ) in (S26).

When µ > 0 the vortices disappear. From expres-
sion (S24) one can check that there still exist two points
~r±, of coordinates (0,±√µ), at which the velocity |~v |
diverges. These points are also extrema of the phase,
with S → ±∞. This divergence enables to reach a sit-
uation with extrema of S at points where ~∇S 6= ~0, see



7

x

−0.5
0.0

0.5 y
−1.0

−0.5
0.0

0.5
1.0

S
(x
, y

)

FIG. S8. S(x, y) = S(ξ) as given by (S23) for µ = 0.5. The
phase S diverges at the nodes located at ~r± = (0,±√µ). The
lower horizontal plane displays a contour plot of S, where
positive (negative) values are shown in red (blue).

Fig. S8. Hence, apparently contrarily to what is stated in
the main text, it seems (at least mathematically) possible
to realize extrema of the phase within an incompressible
fluid. However, this is obtained at the expense of the
formation of points with a diverging velocity. The situ-
ation met in the main text is completely different from
this idealized configuration: in the compressible quantum
fluid we consider, phase extrema are indeed found to be
stagnation points (stable or unstable nodes) at which the
velocity cancels as expected.

To better understand the meaning of the extrema of S
in the context of an incompressible flow (when µ > 0), it

is instructive to compute the integral of ~∇ · ~v over a sur-
face Ω± enclosing the singular point ~r±. Since ~∇ · ~v = 0
except at this point, the shape of the curve delimiting the
surface is immaterial (provided it does not also enclose
the other singular point). For a circle of radius ρ < 2

√
µ,

a simple use of the divergence theorem shows that∫
Ω±

~∇ · ~v dxdy = ±2π, (S28)

implying that, the flow (S24) verifies

~∇ ·~v = 2πδ(~r− ~r+)− 2πδ(~r− ~r−), when µ > 0. (S29)

This formula, which corrects and precises (S25), indi-
cates that, in an incompressible fluid, it is possible to
enforce the fold-Hopf bifurcation describing the birth of
two nodes resulting from the annihilation of two vortices,
only at the expense of the assumption that one of the
nodes is a source and the other one a sink. Although

quite appealing, such a configuration is certainly hardly
realized in an experimental setup. This is the reason why
we state in the main text that the new node to vortex
bifurcation we identify cannot occur in an incompressible
fluid.
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