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Violation of Bell inequalities in an analog black hole
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Signals of entanglement and nonlocality are quantitatively evaluated at zero and finite temperature in an analog
black hole realized in the flow of a quasi-one-dimensional Bose-Einstein condensate. The violation of Lorentz
invariance inherent to this analog system opens the prospect to observe three-mode quantum correlations and we
study the corresponding violation of bipartite and tripartite Bell inequalities. It is shown that the long-wavelength
modes of the system are maximally entangled, in the sense that they realize a superposition of continuous variable
versions of Greenberger-Horne-Zeilinger states the entanglement of which resists partial tracing.
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I. INTRODUCTION

The domain of analog gravity aims at providing laboratory
models for gaining insight on general relativity phenomena
that cannot be directly observed in the usual gravitational
context or for which there exists no complete theoretical
framework. Two such phenomena are black-hole super-
radiance [1–3] and Hawking radiation [4,5]. In that context,
the most successful analogous experimental platforms have
been surface gravity [6–10] and acoustic [11] waves, nonlin-
ear optical systems [12–15], cavity polaritons [16–18], and
Bose-Einstein condensates (BECs) of atomic vapors [19–21].
Because of their low temperature and coherence properties
BECs appear particularly well suited for demonstrating quan-
tum features. We will not address here the question of the
actual experimental demonstration of quantum entanglement
in a BEC analog black hole (see, e.g., Ref. [22] for a recent
discussion) but rather take the theoretical analysis a little
further by asking which general insight can be reached by
studying quantum correlations of the Hawking signal emitted
by an analog black hole. A natural approach for such an
investigation is a test of nonlocality via violation of a Bell
inequality. The epistemological query of refutation of local
hidden variable theories has already received an unambiguous
answer in many contexts (see, e.g., Ref. [23] and references
therein) and important progresses have also been achieved
in the field of BEC matter waves [24–27] we consider here.
Such a test is nonetheless a nontrivial extension of the scope
of analog gravity and would constitute a primer for continu-
ous variable entanglement in a matter wave environment (see
also Refs. [28–30] for related proposals). In view of future
experimental studies it is relevant to quantitatively evaluate
in realistic configurations to what extent Bell inequalities can
be violated in BEC analogs. This is a natural question to
ask, all the more so as we argue in the following that in
some (exotic) limits the analog black hole we consider exactly
realizes a Einstein-Podolsky-Rosen (EPR) pair. Furthermore,
as will be shown, the specifics of the system provide a natural

testing ground for genuine tripartite nonlocality. Our theoret-
ical investigation of the matter reveals an unexpected generic
feature of black-hole analogs: in the long-wavelength limit,
the state of the system realizes an infinite sum of degener-
ate Greenberger-Horne-Zeilinger (GHZ) states. Interestingly,
thanks to the continuous nature of its degrees of freedom, and
despite the clear GHZ nature of its long-wavelength modes,
the analog system remains entangled after partial tracing.

The paper is organized as follows. Section II presents
the BEC analog system we consider and the theoretical
tools we employ for its study. Section III is devoted to the
study of measures of bipartite nonlocality and Sec. IV is
devoted to tripartite nonlocality. We present our conclusions in
Sec. V. Technical aspects are summarized in the Appendixes.
Appendixes A and B are devoted to a brief presentation of
previous results. The black-hole analog we consider can be
modeled by an equivalent optical system [22] the relevance of
which for the aspects we consider in the main text is discussed
in Appendix C. Appendix D presents elementary properties of
the pseudospin we use in the main text. Appendixes F–H treat
specific technical aspects of the procedures used in Secs. III
and IV for maximizing the violation of bipartite and tripartite
Bell inequalities. Appendix E also concerns technical aspects,
but these are of crucial importance for the computation of
all the quantities we present and plot in the main text, such
as the Clauser-Horne-Shimony-Holt (CHSH), Svetlichny, and
Mermin parameters. Appendix I presents results in analog
black-hole configurations different from the one on which we
focus in the main text.

II. THE MODEL

We consider a one-dimensional (1D) BEC described by a
quantum field �̂(x, t ) solution of

ih̄∂t �̂ = − h̄2

2m
∂2

x �̂ + [U (x) + g n̂ − μ]�̂. (1)
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In this equation U (x) is an external potential the precise form
of which depends on the black-hole configuration considered,
μ is the chemical potential, n̂(x, t ) = �̂†�̂ is the density op-
erator, and g is the nonlinear constant describing the effective
interaction within the system. We consider an effective repul-
sion, with g > 0. In the so-called 1D mean-field regime [31]
the quantum field can be written as

�̂(x, t ) = �(x) + ψ̂ (x, t ), (2)

where �(x) describes the background flow while ψ̂ accounts
for small quantum fluctuations. Whereas the decomposi-
tion (2) is legitimate in three dimensions, it has a finite
range of validity in the 1D configurations we consider; how-
ever, its conditions of applicability are commonly met in
standard experimental situations (see, e.g., the discussion in
Ref. [32] which is summarized in Appendix A). In decompo-
sition (2) the classical field � is a stationary solution of the
Gross-Pitaevskii equation [see Eq. (A2)]. The associated flow
realizes an analog black-hole horizon if it is subsonic in the
asymptotic upstream region and supersonic in the asymptotic
downstream region. Several such flows have been considered
in the past. We will here focus on the “waterfall configuration”
which is close to the experimental realization of Refs. [20,33].
In order to assess the generality of our results, we present in
Appendix I the results obtained for two other configurations,
which we denote as “delta peak” and “flat profile.” All these
configurations are described in Appendix A.

A. Propagation channels and quantum modes

The decomposition (2) is meaningful in a regime of small
quantum fluctuations where the operator ψ̂ can be treated
within a Bogoliubov approach. In this case ψ̂ is naturally
expanded along the asymptotic ingoing and outgoing channels
of the flow. The dispersion relation of elementary excita-
tions in the asymptotic upstream subsonic and downstream
supersonic regions (x → −∞ and +∞, respectively) is of
Bogoliubov type, with a Doppler shift accounting for the finite
velocity of the background:

(ω − Vαq)2 = ω2
B,α (q), (3)

where α = u far upstream and α = d downstream. In this
expression Vα is the asymptotic velocity of the flow in region
α and

ωB,α (q) = cαq
√

1 + q2ξ 2
α/4 (4)

is the Bogoliubov dispersion relation [34]. In Eq. (4) cα and ξα

are the asymptotic speed of sound and healing length in region
α, respectively (see Appendix A). These dispersion relations
are represented in Fig. 1.

From the identification of the relevant channels and of
their direction of propagation it is possible to define quantum
modes forming a basis enabling us to describe all the elemen-
tary excitations of the background flow. To each such mode is
associated a quantum operator: b̂†

i (ω) and b̂i(ω) (i = 0, 1, or
2) are the creation and annihilation operators of an excitation
of energy h̄ω which is ingoing in channel i|in and scattered
by the horizon onto the three outgoing channels 0|out, 1|out,
and 2|out. Since each b̂ mode is associated with a single
ingoing channel, it is denoted as an “ingoing mode.” It is also

FIG. 1. Graphical representation of the positive frequency part of
the dispersion relation (3) in the far upstream subsonic (upper plot)
and downstream supersonic (lower plot) regions. The background
color of the lower plot is gray for recalling that it concerns the
interior of the analog black hole. In both plots the horizontal dashed
line represents the angular frequency ω of a given excitation. In the
upstream region there are two channels of propagation associated
to each value of ω. In the downstream region there are four (two)
propagation channels when ω is smaller (larger) than the threshold
	 defined in Eq. (7). The channels are denoted as 0, 1, or 2, with
an additional “in” (“out”) label indicating if the wave propagates
towards (away from) the horizon. The direction of propagation of
each channel is marked with an arrow.

relevant to define “outgoing modes” associated with a single
outgoing channel. The corresponding operators are denoted
as ĉi(ω) and ĉ†

i (ω). For instance ĉ†
0 is the creation operator

of an excitation where the three ingoing channels are implied
and form an outgoing excitation in channel 0|out. The cor-
responding quantum mode is the analogous Hawking mode.
The outgoing modes are related to the incoming ones via the
scattering matrix S(ω):⎛

⎜⎝
ĉ0

ĉ1

ĉ†
2

⎞
⎟⎠ =

⎛
⎜⎝

S00 S01 S02

S10 S11 S12

S20 S21 S22

⎞
⎟⎠
⎛
⎜⎜⎝

b̂0

b̂1

b̂†
2

⎞
⎟⎟⎠, (5)

where all the ω dependencies have been omitted for legibility.
The modes b̂2 and ĉ2 are particular in the sense that they have
a negative norm and should be quantized inverting the usual
role of the creation and annihilation operators [35] in order
to satisfy the standard Bose commutation relations. The mode
ĉ2 is analogous to what is called the partner in the context of
Hawking radiation. We denote the mode associated with ĉ1

the companion; Lorentz invariance prevents such a mode to
exist in a gravitational black hole, but it is unavoidable in an
analog system.

The fact that the outgoing operators fulfill the canonical
commutation relations implies that the scattering matrix S(ω)
obeys the skew-unitarity condition

S†ηS = η = SηS†, where η = diag(1, 1,−1). (6)
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FIG. 2. Model optical system equivalent to the analogous black
hole. The explicit relationship of the effective modes fi and ei (i =
0, 1, and 2) with the physical outgoing modes is given in Eqs. (C1)
and (C2). The f0 mode is represented with a dashed line because,
contrarily to modes f1 and f2, it is not occupied at zero temperature
[see Eqs. (C6)]. The long-wavelength transmission coefficient of the
beam splitter is denoted as �0 in Appendix B. It plays the role of the
graybody factor of the analogous black hole.

For ω > 	 the mode with subscript 2 (the partner) disappears
because the corresponding ingoing and outgoing channels do
(see Fig. 1) and the S matrix becomes 2 × 2 and unitary. In this
case the vacuum of the outgoing modes (the ĉ’s) is identical to
the vacuum of the incoming ones (the b̂’s) and the analogous
Hawking effect disappears. The value of the corresponding
threshold energy is

	 = q∗Vd − ωB,d (q∗) with

q∗ξd =
(

−2 + m2
d

2
+ md

2

√
8 + m2

d

) 1
2

. (7)

It has been shown in Ref. [22] that the three-mode system
describing the analogous black-hole horizon can be modeled
by an optical setup simply composed of a parametric amplifier
and a beam splitter, as depicted in Fig. 2. Entanglement is
localized in the two-mode squeezed state f1| f2. It is then
dispatched by means of a beam splitter which performs a
nonlocal transformation from the effective modes ( f0, f1, f2)
onto other effective modes (e0, e1, e2) which connect to the
physical outgoing modes (c0, c1, c2) by a simple local linear
unitary Bogoliubov transformation (LLUBO) (see details in
Appendix C). We stress that the configuration depicted in
Fig. 2 captures the essence of the analog black-hole con-
figuration and is generic: A similar model has been used
in Ref. [36] for describing an optical system containing a
pair white-hole–black-hole analog and then studied on gen-
eral grounds in Ref. [37]. Despite the fact that we allow the
down-conversion process to violate Lorentz invariance (since
we enforce the Bogoliubov dispersion relation) the two-mode
squeezed state built on f̂1 and f̂2 is the closest possible analog
to an ideal black hole. The additional beam splitter is inherent
to any analog model. The transmission coefficient of this beam
splitter plays the role of the graybody factor which is relevant
in the gravitational context (see discussion in Ref. [22]).

B. Density matrix and measure of bipartite entanglement

For describing analog black-hole physics one should con-
sider observables operating in the Fock space of the outgoing
modes, as would an observer located outside the horizon of
a gravitational black hole. However, the physical implemen-
tation of the analog black-hole configurations presented in
Appendix A is realized in the vacuum of the incoming modes.
This mismatch is the origin of the quantum evaporation pro-
cess, as first presented by Hawking [38]. An ingoing vacuum
mode of frequency ω (which we denote as |0ω〉in) relates to an
outgoing vacuum mode |0ω〉out through

|0ω〉in = 1

|S22| e(X02 ĉ†
0+X12 ĉ†

1 ) ĉ†
2 |0ω〉out, (8)

where the coefficients Xi2 (i = 0 and 1) are expressed in terms
of entries of the S matrix (5): Xi2(ω) = Si2(ω)/S22(ω), and

|0ω〉out = |0ω〉out
0 ⊗ |0ω〉out

1 ⊗ |0ω〉out
2 , (9)

where |0ω〉out
j is the vacuum of operator ĉ j (ω), with j ∈

{0, 1, 2}. Equation (8) can be rewritten in terms of the number
states of quasiparticles of type c j :

|nω〉 j = 1√
n!

(ĉ†
j (ω))n|0ω〉out

j , (10)

as

|0〉in = 1

|S22|
∞∑

μ,ν=0

√(
μ + ν

μ

)
X μ

02 X ν
12|μ〉0|ν〉1|μ + ν〉2. (11)

It will be often the case below that, as in expression (11), we
drop the explicit ω dependence for legibility.

Relationships (8) and (11) ensure that the system is in a
pure three-mode Gaussian state which is fully characterized
by its 6 × 6 covariance matrix σ (ω) with entries

σ�m ≡ 1
2 〈ξ̂� ξ̂m + ξ̂m ξ̂�〉 − 〈ξ̂�〉 〈ξ̂m〉, (12)

where operator ξ̂� (or ξ̂m) is one of the six components of the
column vector ξ̂ = √

2 (q̂0, p̂0, q̂1, p̂1, q̂2, p̂2)T, where

q̂ j (ω) = 1√
2

(ĉ j + ĉ†
j ) and p̂ j (ω) = i√

2
(ĉ†

j − ĉ j ). (13)

In expression (12) and in all the following, the averages 〈· · · 〉
are performed over the density matrix of the system. This
density matrix is simply ρ = |0〉in in〈0| in the ideal case just
described. We also consider more realistic situations where
some incoherent excitations are present and the system is
not in a pure state. A simple manner to account for this
situation would be to assume that the system is in a thermal
state. This is however impossible because the analog con-
figurations depicted in Appendix A are thermodynamically
unstable. A way to circumvent this problem has been proposed
in Refs. [39,40]. It consists in postulating that the system
was initially in thermal equilibrium at temperature T with a
constant density and velocity (nu and Vu, respectively) and
that the flow has been adiabatically modified by slowly ramp-
ing the appropriate external potential, eventually reaching the
black-hole configuration of interest. This situation, although
idealized, it less schematic than the zero excitation regime.
It emulates the experimental situation of Refs. [20,21] if the
system is considered to have been initially in equilibrium in
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the frame attached to the flowing condensate. In this case one
has (for j ∈ {0, 1, 2})

n̄ j (ω) ≡ 〈b̂†
j (ω)b̂ j (ω)〉 = nth{ωB,α[q j|in(ω)]}, (14)

where nth (ω) is the thermal Bose occupation distribution at
temperature T and energy h̄ω, whereas ωB,α (q j|in ) is the Bo-
goliubov dispersion relation (4), with α = u if j = 0 and α =
d if j = 1 or 2. The functions qj|in(ω) appearing in expres-
sion (14) are pictorially defined in Fig. 1. For instance q2|in(ω)
is the function that, to a given angular frequency ω ∈ [0,	],
associates a wave vector along the 2|in dispersion branch.1

We loosely refer to the cases where n̄ j ( j ∈ {0, 1, 2}) is equal
to the right-hand side (r.h.s.) of (14) as “finite-temperature”
situations. In the simplest configuration, denoted as “zero
temperature,” the system is in the pure state |0〉in and the n̄ j’s
are all equal to zero. We will not specify the values of the n̄ j’s
in the following, so that the formulas we give are generally
valid, even in situations where the occupation numbers should
not be given by formulas of the type of Eq. (14). However, for
illustrative purposes, all the figures of the paper are plotted in
specific temperature cases.

Several observables have been proposed to theoretically
evaluate the bipartite entanglement in the context of analog
gravity, such as the Cauchy-Schwarz criterion [41–46], the
generalized Peres-Horodecki parameter [47,48], the logarith-
mic negativity [49–52], the entanglement entropy [52,53],
the entanglement of formation [54], and the Gaussian con-
tangle [22]. In the present paper, for reasons recalled in
Appendix B, we chose as in Ref. [22] to evaluate the bipartite
entanglement between modes i and j by means of a quan-
tity �(i| j)(ω) ∈] − ∞, 1] which is a monotonous measure of
entanglement that we denote as the “PPT measure.” States i
and j are separable when �(i| j) < 0, which is always the case
when (i| j) = (0|1): the companion and the Hawking modes
are not entangled. The two other couples of modes, (0|2) and
(1|2), are always entangled at T = 0 for all ω. Their entan-
glement decreases with increasing temperature by an amount
specified by the PPT measure which reads explicitly (i = 0 or
1) [22]

�(i|2)(ω) = − 〈ĉ†
i ĉi〉 − 〈ĉ†

2 ĉ2〉

+
√

(〈ĉ†
i ĉi〉 − 〈ĉ†

2 ĉ2〉)2 + 4|〈ĉi ĉ2〉|2.
(15)

As clear from the above expression, a key ingredient for
characterizing entanglement is the determination of average
values of different combinations of two creation or annihi-
lation operators of the outgoing modes. At the experimental
level, this determination could prove difficult for quantities
such as 〈ĉ0 ĉ2〉 for instance. Steinhauer proposed a possi-
ble way to extract this information from the knowledge of
the density-density correlation function [45]. As stressed in
Refs. [55,56] this method needs to be used with more care than
initially thought, but is indeed a possible manner to obtain
the information. At the theoretical level, it is a straightforward
matter to compute the expectation values of products of the

1q2|in (ω) ∈ [q∗, q0] with q∗ = q2|in (	) and q0 = q2|in (0) (see
Fig. 1).

ingoing creation and annihilation operator [quantities such
as (14) for instance]. From there, expression (5) makes it pos-
sible to compute the equivalent expressions for the outgoing
operators, which are the quantities of interest. The relevant
formulas are given in Appendix B [Eqs. (B9)].

III. BIPARTITE NONLOCALITY

Most Bell-like inequalities proposed in the context of con-
tinuous variables hinge on a discretization process [57–62].
Indeed, since the set of outcomes for a given observable
is typically unbounded in continuous variable systems, it
seems a priori difficult to derive an upper bound of the
expectation value of a Bell-type observable. It is not impos-
sible, though: relying on the Fine-Abramsky-Brandenburger
theorem [63,64], the authors of Refs. [65,66] were able
to derive continuous Bell inequalities for continuous and
unbounded observables. However, to our knowledge, no prac-
tical (theoretical or experimental) use of such fully continuous
approaches has been successfully implemented so far. A
method to circumvent this difficulty is based on discretization
and consists of using a dichotomic binning of the outcome
results. In this case, by using observables which rely on
continuous measurements but can only take a finite number
of outcomes, one can construct a Bell inequality similar to
those derived for discrete variables. The so-called pseudospin
operators are a well-known example of such observables: they
live in an infinite-dimensional Hilbert space but the outcome
of their measurement is either −1 or +1.

Due to its practicability, we chose to follow this discretiza-
tion approach to derive Bell-like inequalities in the context
of BEC analog black holes. In this paper we use the Gour-
Khanna-Mann-Revzen (GKMR) pseudospins introduced in
Ref. [67]: To an outgoing mode j ( j ∈ {0, 1, 2}) of energy
ω is associated a Hermitian vectorial operator �̂( j)(ω) with
Cartesian coordinates

�̂( j)
x (ω) =

∫ +∞

0
dq (|q〉 j j〈q| − | − q〉 j j〈−q|), (16a)

�̂( j)
y (ω) = i

∫ +∞

0
dq (|q〉 j j〈−q| − | − q〉 j j〈q|), (16b)

�̂( j)
z (ω) =

∫ +∞

−∞
dq |q〉 j j〈−q|, (16c)

where |q〉 j is the eigenstate associated to the eigenvalue q of
the position operator q̂ j (ω) (13). The operators (16) anticom-
mute with each other and all square to unity. They verify the
expected spin commutation relations, such as[

�̂( j)
x , �̂( j)

y

] = 2 i �̂( j)
z , (17)

and similar relations upon circular permutations of the indices
x, y, and z. In Appendix D we recall the properties of the
pseudospin operator and of its eigenvalues which are useful
in the following.

These pseudospin operators have been studied in contexts
similar to ours in Refs. [62,68,69]. Compared with other
pseudospin operators such as for instance those introduced
by Banaszek and Wódkiewicz (see Refs. [70,71]), the GKMR
spins (16) have the advantage of having simple Wigner trans-
forms, which makes the computation of their expectation
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values over Gaussian states relatively easy, as detailed in
Appendix E. We stress here that different choices of spin
representation lead to different values of averages of the Bell
operators (18) [67]. From this remark naturally results that,
generally speaking, the observables (19), (21), and (32) we
use below are witnesses of nonlocality: Their violation of
Bell-type inequalities is a sufficient but not necessary test of
nonlocal behavior. As a final remark, we note here an unfore-
seen benefit of the use of the pseudospin operators (16): it will
be shown in Sec. IV that the structure of the zero-temperature
ground state of the analog system (the vacuum |0〉in) is most
easily analyzed in terms of a combination of eigenstates of
operator �̂x.

Equipped with the pseudospin operators (16) we can de-
fine a CHSH Bell operator [72] measuring the correlations
between the emitted quasiparticles of type i and j:

B̂(i| j)(ω) = (a + a′) · �̂(i) ⊗ b · �̂( j)

+ (a − a′) · �̂(i) ⊗ b′ · �̂( j), (18)

where a, a′, b, and b′ are unit vectors. Given a unit vector n it
is easily checked that (n · �̂( j) )2 = 1, meaning that the Her-
mitian operator n · �̂( j) has eigenvalues ±1. It then follows
from direct inspection that, if one believes in local realism,
one should expect that a measure of the operator B̂(i| j) yields
a result ±2 [73]. The tenant of local realism is thus violated
when 〈B̂(i| j)〉 > 2, whereas the Cirel’son bound [74] imposes
〈B̂(i| j)〉 � 2

√
2. Since the modes 0 and 1 are not entangled the

quantity 〈B̂(0|1)〉 is always lower than 2 and its computation
is of no interest to us. For attempting to violate as much as
possible the Bell inequality one should consider the modes 0
and 2 (or 1 and 2) and look for an arrangement of the four mea-
surement directions a, a′, b, and b′ which maximizes 〈B̂(i|2)〉
(i = 0 or 1). This procedure is explained in Appendix F and
makes it possible to analytically compute the quantity

B(i|2)(ω) ≡ maxa,a′,b,b′ 〈B̂(i|2)(ω)〉. (19)

The corresponding explicit expression is given in Eq. (F8b).
The values of B(0|2) and B(1|2) are plotted as functions of

ω for different temperatures in Fig. 3 for a waterfall configu-
ration with a downstream Mach number2 md ≡ Vd/cd = 2.9,
the same as in the Technion 2019 experiment [20]. We also
plot for comparison the values of the corresponding PPT
measures �(0|2) and �(1|2), as defined by (15). The figure illus-
trates that, as well known, entanglement is necessary but not
sufficient for violating the Bell inequality. Also, the amount by
which the Bell inequality is violated is not proportional to the
amount of entanglement. This is clearly seen, for instance, by
comparing the values of B(0|2) and �(0|2) at T = 0: the max-
imum violation of the Bell inequality is not achieved for the
maximal entanglement. One can also notice that the violation
of the Bell inequality is much less resilient to temperature
than is the entanglement. These features can be most easily
understood in the framework of the optical model represented
in Fig. 2. They originate from the dilution of entanglement

2In this theoretical model configuration, fixing the value of md

determines all the other dimensionless parameters: md = m−2
u =

nu/nd = Vd/Vu (see Ref. [75]).

FIG. 3. Plot of B(i|2) (solid lines) and �(i|2) (dashed lines) as
functions of ω for the waterfall configuration with md = 2.9 and
different temperatures. We only consider the range of frequencies
ω < 	 for which the vacua of the outgoing and ingoing modes do
not coincide. The value of the temperature is indicated in units of
gnu = mc2

u. Upper plot: i = 0. Lower plot: i = 1. Nonseparability of
modes i and 2 is achieved when �(i|2) > 0. The Bell inequality is
violated when B(i|2) > 2. The inset in the upper plot is a blowup of
the region 1.8 � B(0|2) � 2.1 and 0.1 � ω/	 � 1 showing that the
reduced state (0|2) does not violate Bell inequality at temperatures
T = 0.1 and 0.2.

between the three modes caused by the beam splitter, as dis-
cussed in Appendix C.

Figure 3 indicates that, in the waterfall configuration we
consider (with md = 2.9), the entanglement is lower and the
violation of the Bell inequality is less significant for the corre-
lations among modes 1 and 2 than for the correlations among
modes 0 and 2. However, this is not always the case. This
point is illustrated in Fig. 4 which displays, for all water-
fall configurations, the zero-temperature values of maxωB(i|2)

and maxω�(i|2) (for i = 0 and 1) as functions of the upper
Mach number mu (the maximization is performed at fixed mu,
for ω ∈ [0,	]). All the possible waterfall configurations are
considered since mu spans the whole interval [0,1]. In this fig-
ure we aim at evaluating the largest amount of entanglement
and nonlocality reached in each configuration. This is the rea-
son why we plot the maximum values taken by the quantities
�(i|2) and B(i|2) over the energy interval [0,	] [where 	 is
defined by relation (7)] since it is only for energies in this
interval that spontaneous emission of quasiparticles occurs.
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FIG. 4. Zero-temperature value of the CHSH parameter and of
the PPT measure characterizing nonseparability of modes i (= 0
and 1) and 2 for the waterfall configuration. The maximal value
reached by these quantities over the interval ω ∈ [0, 	] is plotted
as a function of the upper Mach number mu which (as explained in
Appendix A) characterizes a given configuration. The values of B(1|2)

for mu � 0.01 are not indicated because of lack of numerical preci-
sion. The upper bounds of B(i|2) and �(i|2) (

√
8 and 1, respectively)

are indicated with filled dots.

For instance, the situation depicted in Fig. 3 (md = 2.9) cor-
responds in Fig. 4 to the point mu = 0.587 since for waterfall
configurations mu and md are related by (A4a). And indeed,
Fig. 4 shows that for this value of mu the maximum over ω of
B(0|2) is 2.25, and the one of B(1|2) is 2, as observed in Fig. 3.

Figure 4 shows that for values of mu larger than 0.6, the
entanglement is mainly concentrated between modes 2 and
0, i.e., between the Hawking quantum and the partner. This
is indicated by the fact that both the PPT measure and the
CHSH parameter significantly point to nonseparability and
nonlocality between these two modes. For mu � 0.2 instead,
the figure shows that entanglement is concentrated between
the partner and the companion (modes 2 and 1, respectively).
A plot similar to the one of Fig. 4, but where the quantities
are evaluated at finite temperature, enables us to evaluate the
resilience of entanglement and nonseparability to an increase
of temperature. This check is performed in Fig. 5 which shows
that, whereas at T = 0.2 gnu the PPT measure is not dramati-
cally affected, the CHSH parameters B(0|2) and B(1|2) no longer
show evidences of violation of the Bell inequality, except in
the (1|2) sector for waterfall configurations with mu � 0.15
and, to a lesser extent, in the (0|2) sector for mu � 0.85.

Figures 4 and 5 illustrate a specific feature of analog
models: there is no recipe enabling one to qualify one of
the positive norm modes (in our specific case, mode 0 or
1) as unessential. For instance, it is incorrect to study the
system discarding a priori the companion (mode 1) from
one’s analysis. Figure 4 shows that, at zero temperature, this
is allowed in some regions of parameters, but incorrect in
others. Figure 5 even shows that only the companion-partner
correlations display violation of the Bell inequality above a
certain temperature. In this instance it is the Hawking mode

FIG. 5. Same as Fig. 4 for a temperature T = 0.2 gnu. Contrarily
to what is observed in the zero-temperature case displayed in Fig. 4,
the maxima of � and B (1 and 2

√
2, respectively) are never reached.

which is unessential. It is therefore important to give a proper
account of all the modes involved in our analog system.

Another way to consider the same problem is to use the
equivalent model depicted in Fig. 2: it is well known that a
nondegenerate optical parametric amplifier generates an EPR
state when the squeezing parameter tends to infinity (see,
e.g., Ref. [76]). As discussed in Appendix C this is the case
for the two-mode squeezed state (C5) when ω → 0. The
zero-energy transmission coefficient �0 of the effective beam
splitter (pictorially defined in Fig. 2) tends to 0 or 1 when
the upper Mach number mu tends to 0 or 1, respectively [see,
e.g., Eq. (B12) which holds for the waterfall configuration]. In
these two limits the system forms an EPR state between two of
the three outgoing modes (and the third one can be omitted).
This EPR state involves either the Hawking quantum and the
partner (when mu → 1) or the companion and the partner
(when mu → 0). This is the reason why the entanglement and
nonlocality bounds are reached in these two limits in Fig. 4,
and similarly in Figs. 11 and 12 of Appendix I for the delta
peak and flat profile configurations, respectively.

We conclude this section by noticing that, from a quantum
information perspective, the fact that reduced bipartite states
of a tripartite system are entangled is of no particular signifi-
cance per se. It is however important for future experimental
studies of analog systems to determine for which configura-
tions, and to quantify to which extent, the three-mode acoustic
Hawking emission is bipartite entangled and nonlocal. Also,
we will see in the next section that this resilience of entangle-
ment to partial tracing acquires a particular significance when
examining the exact nature of the long-wavelength compo-
nents of the three-mode state |0〉in (the ground state of the
system).

IV. TRIPARTITE NONLOCALITY

Equipped with the same pseudospin operators as the ones
defined in Sec. III one can define a three-mode Bell operator
of a type similar to the two-mode one (18). This operator
measures the correlations between the outgoing quasiparticles
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of type i, j, and k. It is defined as [77,78]

Ŝ (i| j|k)(ω) = 1
2B̂(i| j) ⊗ c′ · �̂(k) + 1

2B̂′(i| j) ⊗ c · �̂(k), (20)

where B̂′( j|k)(ω) is the same as B̂( j|k)(ω) defined in (18) with
the primes reversed, and c and c′ are normalized vectors (as
well as a, a′, b, and b′ involved in the definition of B̂( j|k)).
Expanding expression (20) shows that Ŝ (i| j|k) is invariant
upon a permutation of its indices, provided the names of
the unit vectors (a, b, c) and (a′, b′, c′) undergo the same
permutation. In the following we arbitrarily chose the order
(i, j, k) = (0, 1, 2).

Similarly to what occurs for the two-mode operator, the
principle of local realism, if correct, should predict that a
measure of the operator Ŝ (0|1|2) yields results ±2. The system
violates this principle when the average of the operator (20)
is larger than 2. This is often referred to as violation of
the Svetlichny inequality. It is important to note that the
observable Ŝ (0|1|2) is specially designed in order to be sen-
sitive to genuine tripartite nonlocality (see discussions in
Refs. [23,77–79] and references therein): a tripartite sys-
tem can involve nonlocal correlations between any of its
bipartitions and still not violate the Svetlichny inequality
〈Ŝ (0|1|2)〉 < 2. A simple example of a system which displays
two-mode nonlocality but does not pass the Svetlichny test is
presented in Appendix C [see Eq. (C14) and the discussion
below].

For attempting to reach a maximum violation of the
Svetlichny (i.e., three-mode Bell) inequality it is necessary to
choose a particular arrangement of the vectors a, a′, b, b′, c,
and c′ which maximizes the expectation value 〈Ŝ (0|1|2)〉. To
do so, we resort to a genetic algorithm which is presented in
Appendix G and numerically determines the quantity

S(0|1|2)(ω) ≡ maxa,a′,b,b′,c,c′ 〈Ŝ (0|1|2)(ω)〉. (21)

It is shown in Appendix H that the tripartite parameter
S(0|1|2)(ω) is bounded from above by 2

√
2 [this is Eq. (H5)]

and that this bound is reached at ω = 0 and T = 0 [see
Eq. (H15)]. The behavior of S(0|1|2)(ω) at zero temperature
is displayed in Fig. 6 for different realizations of the wa-
terfall configuration. Although the bound 2

√
2 is reached in

the long-wavelength limit for all the configurations, even a
weak temperature is able to destroy the signal of nonlocality
as illustrated in Fig. 7. This is connected to the loss of pu-
rity of the finite-temperature system and can be understood
analytically, again in the long-wavelength limit, as discussed
in Appendix G. This sensitivity to a small finite temperature
probably precludes the experimental observation of tripartite
nonlocality by means of the observable (21). However, al-
though the zero-temperature behavior is certainly difficult to
observe, it is rich of fundamental insight on the nature of the
state of the system, as we now discuss.

As argued in Appendix E, the fact that at zero tempera-
ture and ω = 0 the system reaches the tripartite upper bound
(S(0|1|2) = 2

√
2; see Fig. 6) mathematically stems from the

fact that, under these conditions, the system is in a pure state
and displays perfect correlations in the following expectation

FIG. 6. Zero-temperature value of the tripartite parameter S(0|1|2)

plotted as a function of energy for different realizations of the wa-
terfall configuration, each being characterized by the upstream Mach
number mu. The inset displays a blowup of the figure at low energy.
The upper bound 2

√
2 is marked by a brown dot. It is reached at

ω = 0 in all configurations.

values [see Eqs. (E9), (E18), and (E19)]:〈
�̂(0)

y ⊗ �̂(1)
y ⊗ �̂(2)

z

〉 = 〈
�̂(0)

y ⊗ �̂(1)
z ⊗ �̂(2)

y

〉
= −〈

�̂(0)
z ⊗ �̂(1)

y ⊗ �̂(2)
y

〉
= 〈

�̂(0)
z ⊗ �̂(1)

z ⊗ �̂(2)
z

〉 = 1. (22)

All the other expectation values of products of three com-
ponents of the �̂ operator are zero. Since all the operators
in (22) have only ±1 as eigenvalues, this means that each
term must reach its extremal value and the vacuum mode of
zero frequency |0ω=0〉in must therefore be an eigenstate of the
operators appearing in (22):

�̂(0)
y ⊗ �̂(1)

y ⊗ �̂(2)
z |0ω=0〉in = +|0ω=0〉in, (23a)

�̂(0)
y ⊗ �̂(1)

z ⊗ �̂(2)
y |0ω=0〉in = +|0ω=0〉in, (23b)

�̂(0)
z ⊗ �̂(1)

y ⊗ �̂(2)
y |0ω=0〉in = −|0ω=0〉in, (23c)

�̂(0)
z ⊗ �̂(1)

z ⊗ �̂(2)
z |0ω=0〉in = +|0ω=0〉in. (23d)

FIG. 7. Same as Fig. 6 for a temperature T = 0.05 gnu. At vari-
ance with the zero-temperature situation the tripartite measure (21)
is here always less than or equal to 2.
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Relations (23) define a state which exhibits the GHZ paradox,
contradicting local hidden variable theories by means of a
single measurement (see, e.g., the discussion in Ref. [80]). In
the same line, the above noted fact that our system saturates
the upper bound 2

√
2 of the Svetlichny parameter is a char-

acteristic also shared by GHZ states. Another resemblance
lies in the fact that the GHZ states possess maximal tripartite
entanglement quantified by the residual tangle [81,82] while
similarly, in the domain of temperature and energy where
Eqs. (23) hold, the residual contangle [83] which measures
genuine tripartite entanglement in our continuous variable
system diverges [22]. Despite these clear similarities, there is a
significant difference between the state |0ω=0〉in and the GHZ
states commonly considered in quantum information theory:
they have different behaviors upon partial tracing. As is well
known, taking the partial trace over one of the three modes of
a GHZ state yields an unentangled mixed state. At variance,
partially tracing the state |0ω=0〉in over modes 0 or 1 leads to an
entangled two-mode mixed state, as discussed in Sec. III [see,
e.g., the values �(0|2)(ω = 0) and �(1|2)(ω = 0) in Fig. 3]. As
we now argue, the explanation of this conundrum lies in the
fact that, whereas the GHZ states are usually built on qubits,
the state we consider is an infinite sum of degenerate GHZ
states of a continuous variable system.

To tackle this issue it is convenient to expand the state
|0ω=0〉in over the eigenstates of the operators �̂

( j)
x ( j = 0, 1,

or 2). As discussed in Appendix D these eigenstates can be
written as |x±

n 〉 j : they are labeled by their eigenvalue (±1)
plus another integer index (n in the above expression) asso-
ciated to the infinite degeneracy of both eigenvalues. Indeed,
at variance with what occurs for a regular spin operator, the
projection of the pseudospin (16) over a given axis (here
�̂x) has infinitely degenerate eigenvalues, i.e., there exists an
infinite number of mutually orthogonal eigenstates with the
same eigenvalue (+1 or −1):

∀n ∈ N, �̂( j)
x |x±

n 〉 j = ±|x±
n 〉 j, (24)

whereas

∀(n, m) ∈ N2, j〈x±
n |x±

m 〉 j = δn,m. (25)

This can be shown by directly constructing the eigenstates
of �̂x from the number states [see Eqs. (D4) and (D5)]. The
expansion of |0ω=0〉in over the complete basis formed by these
states is of the form

|0ω=0〉in =
∑

σ0,σ1,σ2
l,m,n

Cσ0,σ1,σ2
l,m,n

∣∣xσ0
l , xσ1

m , xσ2
n

〉
. (26)

In the summation appearing in the above expression, σ0, σ1,
and σ2 = ± whereas (l, m, n) ∈ N3 and we dropped the in-
dices j = 0, 1, or 2 of the kets for legibility.

It follows from relations (23) and (D7) that

C−σ0,−σ1,−σ2
l,m,n = −σ0σ1 C−σ0,−σ1,−σ2

l,m,n

= −σ0σ2 C−σ0,−σ1,−σ2
l,m,n

= σ1σ2 C−σ0,−σ1,−σ2
l,m,n . (27)

This imposes that the only nonzero coefficients in expan-
sion (26) are those for which σ1 = σ2 = −σ0. For such

coefficients Eqs. (23d) and (D7) impose that

C+−−
l,m,n = C−++

l,m,n ≡ Cl,m,n. (28)

Expansion (26) thus simplifies to

|0ω=0〉in =
∑
l,m,n

Cl,m,n(|x+
l , x−

m , x−
n 〉 + |x−

l , x+
m , x+

n 〉), (29)

which shows that the vacuum |0ω=0〉in of the b̂ j (ω = 0) opera-
tors (the ingoing ground state) is an infinite sum of degenerate
GHZ states. It is this property which enables the reduced state
obtained after partial tracing over one mode to remain entan-
gled despite the GHZ nature of the system. Indeed, tracing
over mode 0 for instance leads to a reduced density matrix:

Tr(0)(|0ω=0〉in in〈0ω=0|) =
∑

m,n,μ,ν

C (0)
m,n,μ,ν (|x−

m x−
n 〉 〈x−

μ x−
ν |

+ |x+
m x+

n 〉 〈x+
μ x+

ν |). (30)

In this expression the kets and bras concern modes 1 and 2
(mode 0 has been traced out) and

C (0)
m,n,μ,ν =

∞∑
l=0

C∗
l,μ,νCl,m,n. (31)

If the eigenvalues +1 and −1 of operator �̂x were nondegen-
erate, this would impose m = μ and n = ν in expression (30)
and the corresponding reduced state would be clearly separa-
ble. Nothing similar occurs in our situation, and indeed the
reduced states are typically entangled, as shown in Sec. III.

Since we now understand the exact GHZ nature of the
zero-temperature and ω = 0 state of the system, it is of in-
terest to quantify to what extent this feature persists at finite
temperature and finite energy. To this aim, we use the genetic
algorithm presented in Appendix G to compute the optimum
of the Mermin parameter [84,85]

M (0|1|2)(ω) ≡ maxa,a′,b,b′,c,c′ |〈M̂ (0|1|2)(ω)〉|, (32)

where

M̂ (0|1|2)(ω) = − a · �̂
(0) ⊗ b · �̂

(1) ⊗ c · �̂
(2)

+ a · �̂
(0) ⊗ b′ · �̂

(1) ⊗ c′ · �̂
(2)

+ a′ · �̂
(0) ⊗ b · �̂

(1) ⊗ c′ · �̂
(2)

+ a′ · �̂
(0) ⊗ b′ · �̂

(1) ⊗ c · �̂
(2)

. (33)

We note here that Ŝ (0|1|2) = 1
2M̂ (0|1|2) + 1

2M̂ ′(0|1|2), where
M̂ ′(0|1|2) is the same as M̂ (0|1|2) with the prime reversed [79].

The largest possible value of the Mermin parameter (32)
is 4. This upper bound is reached for a state verifying the
relations (22), such as a GHZ state or the low-wavelength
component of the ground state of our system as just dis-
cussed.3 Indeed, at T = 0, M (0|1|2)(0) = 4 for all black-hole
configurations. This is illustrated in Fig. 8 in which M (0|1|2) is
plotted as a function of ω for different values of mu, at zero

3From (22) it is clear that at zero temperature and ω = 0 the max-
imum (32) is obtained when a = b′ = c′ = ez and a′ = b = c = ey

and reaches the upper bound 4.
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FIG. 8. Mermin parameter M (0|1|2)(ω) plotted for different water-
fall configurations. The continuous lines starting from M (0|1|2) = 4 at
ω = 0 are zero-temperature results and the thick dashed ones [with
M (0|1|2)(0) = 0] correspond to T = 0.1 gnu. The inset is a blowup of
the figure around the region M (0|1|2) = 2 for ω/	 � 0.6.

and finite temperature (T = 0 and 0.1 gnu). If the departure
of M (0|1|2) from its upper bound is taken as an indication of
how much the system differs from a GHZ state, this suggests
that the GHZ character of the state is restricted to the low-
energy and low-temperature sector. We stress however that
such a criterion is only indicative: the Svetlichny and Mermin
parameters provide useful bounds, but not proper measures.
This is illustrated by their poor effectiveness for evaluating
genuine tripartite entanglement: it is known [79] that if

M (0|1|2) > 2
√

2, (34a)

or S(0|1|2) > 2, (34b)

the system exhibits genuine three-mode entanglement. Fig-
ures 6 and 8 show that this type of entanglement is certainly
reached at T = 0 for low energy. However, the criteria (34)
are here too restrictive, since the computation of the residual
contangle done in Ref. [22] demonstrates that at T = 0 the
system is genuinely tripartite entangled for all energies and
all configurations. This general conclusion certainly cannot
be reached by inspecting in Figs. 6 and 8 in which domain
of energy and for which value of mu the criteria (34) are
met. However, these criteria are valid and can be useful, for
instance at finite temperature. In this case the state of the
system is not pure, the evaluation of the residual contangle
appears to be very difficult, and the criterion (34a) is the only
way we know how to demonstrate genuine tripartite entangle-
ment, which, as can be inferred from the tendency displayed
in Fig. 8, is reached at low T , low ω, and small values of mu.

Finally, the Mermin parameter (32) is also an interesting
witness of nonlocality. A local hidden variable theory predicts
that it should verify the Mermin-Klyshko inequality M (0|1|2) �
2. It can be seen from Fig. 8 that this inequality is violated at
zero temperature for all waterfall configurations. For T > 0
instead, M (0|1|2)(0) = 0. The Mermin parameter has the same
behavior as the Svetlichny parameter, for the same reason:

At finite temperature the state of the system is no longer
pure, and in this case all the expectation values of products of
three components of the pseudospin tend to zero in the long-
wavelength limit (see discussion in Appendix E). However,
contrarily to what occurs for the Svetlichny parameter, there
are accessible finite-temperature situations where the Mermin
parameter is larger than the nonlocality threshold M (0|1|2) = 2
(compare Figs. 7 and 8). In that respect, the Mermin parameter
may even prove more useful than the CHSH parameter (19).
For instance, at T = 0.1gnu, for mu = 0.3 the largest value of
M (0|1|2) is 2.19 (as seen from Fig. 8), higher than the largest
values reached by both CHSH parameters B(0|2) and B(0|1) in
the same situation (2 and 2.017, respectively).

V. CONCLUSION

In this paper we conducted a systematic theoretical study
of violation of bipartite and tripartite Bell inequalities in
an analog black hole realized in the flow of a quasi-one-
dimensional Bose-Einstein condensate. There is a reasonable
hope to witness bipartite entanglement in such systems, and
also possibly bipartite nonlocality whereas the observation of
signatures of genuine tripartite nonlocality would presumably
be more difficult. The reason is that violation of the Svetlichny
inequality does not resist much to an increase in temperature.
In that respect it is worth underlining that, from the three
black-hole configurations we have considered, the waterfall
configuration is the one for which the signature of nonlocality
is the less sensitive to an increased temperature: compare for
instance the finite-temperature signal of Fig. 8 with the one of
Figs. 15 and 16.

In an analog system, the essential ingredient for observing
Hawking radiation is roughly the same as the one initially
invoked by Hawking in the gravitational context [38]: the
vacuum of the outgoing modes is not the same as the vacuum
of the ingoing modes. In the BEC system we consider, this
is physically due to the fact that the asymptotic upstream
region is subsonic while the asymptotic downstream region
is supersonic. A flow of this type induces the mismatch of
the asymptotic dispersion relations illustrated in Fig. 1, with
additional (negative norm) channels in the downstream region,
resulting in the Bogoliubov transformation (5) from which
stems relation (8) between the ingoing and outgoing vacua.
The other important physical ingredient is the sonic character
of the dispersion relation in the long-wavelength limit. This
results in the low-energy divergence of the coefficients of
the S matrix involving the incoming negative norm mode
(the S j,2 coefficients with our notations) [86] and, in fine, in
the finite Hawking temperature [39,40]. This being said, the
Bogoliubov transform we consider is not an exotic one; it is
attached to a standard quadratic Bose Hamiltonian [35] and to
the production of correlated pairs of quasiparticles. This is the
reason why, as illustrated in Fig. 2, we can mimic our system
by a simple optical setup involving a standard parametric
down-conversion process. From this perspective the existence
of three and not simply two modes (which might be consid-
ered as atypical in the Bogoliubov context) simply stems from
the presence of a beam splitter in the optical setting. Going
back to the gravitational point of view, it has been argued in
Ref. [22] that this beam splitter embodies the scattering of
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Hawking radiation by the geometry of the black hole, i.e., it
effectively reproduces the graybody factor. The fact that such
a simple pair production process induces genuine tripartite
entanglement and genuine tripartite nonlocality is far from
being intuitive and is an important result of Ref. [22] and of
the present paper.

It results from our Bogoliubov treatment that we describe
the system as a Gaussian state. This is certainly a sensible
first-order hypothesis, but recent studies [87–90] showed that
nonlinear effects might significantly affect quantum emission
processes in the context of analog physics. It would then
be of great interest to evaluate in detail the amplitude and
the relevance of nonlinear back reaction effects on acoustic
Hawking radiation in the black-hole analogs we consider.

Within the Gaussianity assumption, the main theoretical
tool of our paper is the covariance matrix. As indicated in
Sec. II, indirect techniques have been used for measuring
some of the entries of this matrix in BEC physics. Other
systems, such as exciton polaritons in microcavities, or more
generally setups involving nonlinear light, could enable other
types of measurements, with possibly more direct access to
the phases of the averaged quadratures. Our approach can
be adapted with little modification to such systems. For the
quantities we are interested in, a key element is the long-
wavelength behavior of the dispersion relation (and of the
corresponding S matrix). For instance the GHZ nature of
the long-wavelength modes is generic in any system with
a soniclike low-energy dispersion relation. The observables
studied in the text might however be modified in a system
with a different long-wavelength behavior, for instance in the
presence of massive modes, as is the case in the polariton
context, but also in coherently coupled two-component BECs.

A fundamental outcome of our paper stems from a flaw
in the analogy. Our analog system breaks Lorentz invariance,
but paradoxically this apparent shortcoming (characteristic of
analog physics [91–94]) turns into an advantage: It opens the
possibility of tripartite entanglement and nonlocality, thanks
to the existence not only of a Hawking and a partner mode,
but also of a third mode we denote as the companion. This
peculiar nonlocal tripartite configuration, together with the
continuous nature of the degrees of freedom, induces a sur-
prising property of the system: the long-wavelength quantum
modes consist in a superposition of degenerate GHZ states
which, at variance with GHZ states built on qubits, remains
entangled after partial tracing. We expect this feature to be
generic, thus suggesting that condensed-matter analogs may
indeed open new prospects of robust information protocols
and provide efficient platforms to study the flow of multipar-
tite quantum information.
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APPENDIX A: DIFFERENT BLACK-HOLE
CONFIGURATIONS

In this Appendix we first briefly present the range of va-
lidity of expansion (2) and then introduce some stationary
solutions of the classical background field �(x) correspond-
ing to an analog black hole.

For a quasi-1D guided BEC transversely trapped by a har-
monic potential with angular frequency ω⊥, expansion (2) is
valid in the “1D mean field regime” [31] defined by(

a

a⊥

)2

� ntypa � 1, (A1)

where a is the three-dimensional s-wave scattering length,
a⊥ = √

h̄/mω⊥, and ntyp is the typical linear density (num-
ber of atoms per unit length). The left inequality in (A1)
ensures that the finite phase coherence length (induced by
long-wavelength quantum fluctuations) is exponentially large
compared to the healing length. The inequality at the right
ensures that the transverse degrees of freedom are frozen. For
a transverse trap of frequency 1 kHz, one gets (a⊥/a)2 =
1.7 × 10−5 and 2.6 × 10−4, for 23Na and 87Rb, respectively.
Hence the domain of validity of the 1D mean-field approx-
imation used in the present paper typically ranges over four
orders of magnitudes in density.

In the regime where (A1) holds, the background clas-
sical field � of Eq. (2) is solution of a Gross-Pitaevskii
equation which is the stationary and classical version of
Eq. (1):

− h̄2

2m
∂2

x � + [U (x) + gn − μ]� = 0, (A2)

where n = |�|2 and g = 2h̄ω⊥a. An analog black-hole hori-
zon is realized if the flow is subsonic far upstream (for x →
−∞ in our convention) and takes the form of a downstream
supersonic plane wave (for x > 0). The corresponding classi-
cal field behaves as

�(x) =
{√

nu exp(ikux) φu(x) for x � 0,
√

nd exp(ikd x) exp(iβd ) for x � 0.
(A3)

In this expression limx→−∞ φu(x) = exp(iβu), where βu is a
constant, as is βd . In all the text the indices u and d refer to
the upstream and downstream flow. For instance nu and nd

are the upstream and downstream asymptotic densities. Also
kα = mVα/h̄ (α = u or d), where Vu (Vd ) is the asymptotic up-
stream (downstream) flow velocity. The asymptotic velocities
of sound cu and cd are defined by mc2

α = gαnα , where4gu,d =
limx→−∞,+∞ g(x). The healing lengths and Mach numbers are
defined as ξα = h̄/(mcα ) and mα = Vα/cα , respectively. The
form of the flow pattern is specified by the value of the above
parameters and by the function φu(x). In the remainder of
this subsection we briefly describe the three configurations

4We consider a possible position-dependent nonlinear coefficient
for being able to treat the flat profile configuration of Ref. [95].
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FIG. 9. Schematic representation of the background density pro-
file of the waterfall configuration (upper plot) and of the delta peak
configuration (lower plot). The shaded region corresponds to the
interior of the analog black hole (see the main text). The whole x > 0
region is supersonic, while the upstream region is asymptotically
subsonic (i.e., in the limit x → −∞).

studied in the present paper and refer to Ref. [75] for a detailed
presentation of these configurations with the precise values of
the corresponding parameters.

The first configuration we consider is an idealized one,
introduced in Ref. [95], which we denote as “flat profile.” It
consists in a constant uniform plane-wave flow with φu(x) =
1, βd = 0, nu = nd ≡ n0, and ku = kd ≡ k0. Such a config-
uration can realize an analog black hole in the presence of
a piecewise nonlinear parameter g(x) = gu�(−x) + gd�(x),
supplemented by an also piecewise potential U (x), as ex-
plained in Refs. [75,95]. In the two other configurations we
consider g is a constant.

The second configuration is denoted as “waterfall”: the
potential U (x) is a step function and the upstream profile
φu(x) is half that of a dark soliton. It is close to the experi-
mental realization of the Technion group [20,21] and catches
important aspects of the density-correlation pattern reported
in Ref. [20], with nonetheless some caveats (see Ref. [55]).

The third and last configuration is denoted as “delta peak”:
the potential U (x) is a repulsive Dirac distribution located at
x = 0 and the upstream profile φu(x) is a part of a dark soliton,
but not exactly one half of it, as is the case in the waterfall
configuration. Both configurations are depicted in Fig. 9. In
this figure the region x > 0 is shaded in order to remind that
it corresponds to the interior of the analog black hole. It is
however important to recall that the precise location of the
horizon separating the interior and the exterior of an analog
black hole is ill defined (see, e.g., the discussion in Sec. II.A
of Ref. [22]).

Note that, while the upstream and downstream Mach num-
bers can be fixed independently in the flat profile configuration
(with the only constraint that mu < 1 < md ), these two quan-

tities are not independent in the waterfall and delta peak
configurations:

md = m−2
u for waterfall, (A4a)

md

mu
=
(

−1 + √
1 + 8m−2

u

2

)3/2

for delta peak. (A4b)

APPENDIX B: COVARIANCE MATRICES

The 6 × 6 covariance matrix σ defined in Eq. (12) can be
written in terms of 2 × 2 submatrices σi and εi j :

σ =

⎛
⎜⎝

σ0 ε01 ε02

εT
01 σ1 ε12

εT
02 εT

12 σ2

⎞
⎟⎠, (B1)

where

σi =
(

〈2q̂2
i 〉 〈q̂i p̂i + p̂i q̂i〉

〈q̂i p̂i + p̂i q̂i〉 〈2 p̂2
i 〉

)
, (B2)

and

εi j = 2

(
〈q̂i q̂ j〉 〈q̂i p̂ j〉
〈p̂i q̂ j〉 〈p̂i p̂ j〉

)
. (B3)

In the case we consider, the definitions (13) and the specific
form of the transformation (5) result in the following expres-
sions:

σi = (
1 + 2 〈ĉ†

i ĉi〉
)
12, (B4)

ε01 = 2

(
Re〈ĉ0 ĉ†

1〉 −Im〈ĉ0 ĉ†
1〉

Im〈ĉ0 ĉ†
1〉 Re〈ĉ0 ĉ†

1〉

)
, (B5)

and (for i = 0 or 1)

εi2 = 2

(
Re〈ĉi ĉ2〉 Im〈ĉi ĉ2〉
Im〈ĉi ĉ2〉 −Re〈ĉi ĉ2〉

)
. (B6)

In the limit of zero temperature the system is in a three-mode
pure Gaussian state. Its covariance matrix (B1) can accord-
ingly be brought by LLUBOs to a “standard form” in which
matrices σi are proportional to the identity [as they already
are; see (B4)] and matrices εi j are diagonal [83,96]. After this
operation the matrices εi j take the following form [22]:

ε01 = 2 |〈ĉ0 ĉ†
1〉|12, εi2 = 2 |〈ĉi ĉ2〉| σz, (B7)

where i ∈ {0, 1} and σz is the third Pauli matrix.
The situation at finite temperature is less simple. The sys-

tem is in a mixed state with no special symmetry, and the
covariance matrix (B1) cannot be put in a standard form where
the matrices εi j are all diagonal [83]. However, the situation
simplifies again if one is interested in bipartite entanglement
only (say, between modes i and j). In this case one should
trace out the third mode (let us denote it by k) which simply
amounts to removing from the total covariance matrix (B1)
the two rows and two columns where index k appears. The re-
maining 4 × 4 covariance matrix associated with the reduced
two-mode state reads

σ (i| j) =
(

σi εi j

εT
i j σ j

)
, (B8)
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where the 2 × 2 blocks are the same as the ones in (B1).
This reduced covariance matrix can always be brought by
LLUBOs to its standard form [96], in which the matrix εi j

takes again the form (B7) with here an average taken over
the finite-temperature state, as explained in the main text,
Sec. II B.

It has been argued in Ref. [22] that an efficient measure
of bipartite entanglement was given by the “PPT mea-
sure” �(i| j) ≡ 1 − ν−

(i| j) where ν−
(i| j) is the lowest symplectic

eigenvalue of the partial transpose of σ (i| j).5 The largest
entanglement corresponds to �(i| j) = 1 while separability
is reached when �(i| j) < 0. This separability condition can
be shown to be equivalent to the Peres-Horodecki crite-
rion [99,100]. Contrarily to other observables, such as the
Cauchy-Schwarz criterion or the generalized Peres-Horodecki
parameter which have been often used in the domain, the
PPT measure has the advantage of being an entanglement
monotone. Other observables have been used in the con-
text of analog gravity, which are monotonous measures of
entanglement, such as the entanglement entropy, the entan-
glement of formation, or the logarithmic negativity, but they
all have some drawbacks: the state our our system is mixed
in a finite-temperature situation, which discards the entan-
glement entropy as a possible measure. The entanglement
entropy generalizes for mixed states to the entanglement of
formation [101], but this quantity is not easily determined
in nonsymmetric two-mode Gaussian states such as the ones
we consider.6 The logarithmic negativity shares with the en-
tanglement of formation the drawback of possibly violating
monogamy inequalities [102]. This is a relatively mild draw-
back in the context of evaluating bipartite entanglement, but
becomes prohibitive in the tripartite context. The Gaussian
contangle was introduced in Ref. [102] as a quantity which
has none of the previous deficiencies. It has been studied in
the gravitational context [103] and also in analog gravity [22],
but it is not of very practical use as its determination re-
quires numerical minimization of a complex expression. The
PPT measure we use in the present paper was introduced
in Ref. [22] as a measure which mimics many aspects of
the Gaussian contangle but is much simpler to evaluate. Its
evaluation is as simple as the one of the above quoted quan-
tities albeit it shares none of their drawbacks. The explicit
expression of �(i|2)(ω) characterizing the coupling between
mode i = 0 or 1 and mode j = 2 is given in Eq. (15) of the
main text.

As clear from the above expressions (B4)–(B6), the theo-
retical evaluation of the components of the covariance matrix
relies on the computation of averages of two creation or

5The partial transposition corresponds to a mirror reflection in
phase space which inverts the pj coordinate, leaving qi, pi, and qj

unchanged [97]. The resulting covariance matrix can be brought by
means of a symplectic transform to a diagonal form [98]. The cor-
responding diagonal elements are the symplectic eigenvalues. They
are twice degenerate, and in our 4 × 4 case there are thus two such
eigenvalues: ν−

(i| j) and ν+
(i| j), with ν±

(i| j) ∈ R+ and ν−
(i| j) � ν+

(i j).
6In the situations we consider the reduced state of modes i and j is

nonsymmetric, since in general the mixednesses ai and aj [defined
in (E7)] are not equal.

annihilation operators of the outgoing modes. The relevant
expressions are determined from Eq. (5) and read (i = 0
or 1)

〈ĉ†
i ĉi〉 = |Si0|2n̄0 + |Si1|2n̄1 + |Si2|2(1 + n̄2),

〈ĉ†
2ĉ2〉 = |S20|2n̄0 + |S21|2n̄1 + |S22|2(1 + n̄2) − 1,

〈ĉ0ĉ†
1〉 = S00S∗

10n̄0 + S01S∗
11n̄1 + S02S∗

12(1 + n̄2),

〈ĉiĉ2〉 = Si0S∗
20n̄0 + Si1S∗

21n̄1 + Si2S∗
22(1 + n̄2), (B9)

where the n̄ j’s ( j = 0, 1, or 2) are the occupation numbers
of the incoming modes [see Eq. (14)]. The coefficients of the
S matrix appearing in the above formulas can be determined
numerically as explained in Ref. [75]. Expressions (B9) are
useful for computing the PPT measure of entanglement (15)
and the CHSH (19) and Svetlichny (21) parameters. As an
illustration we now indicate how to compute the PPT measure
�(i|2) at zero temperature. Using here the definition (C4) as a
shorthand notation one gets from (15)

�(i|2)(ω) =
√

[|Si2|2 + sinh2(r2)]2 + 4|Si2|2

− |Si2|2 − sinh2(r2). (B10)

It was shown in Ref. [75] that the ratio |Si2|2/ sinh2(r2) tends
to a constant when ω → 0. Let us denote by �i the value of
this constant (i = 0 or 1).7 A simple expansion of (B10) shows
that

lim
ω→0

�(i|2) = 2�i

1 + �i
. (B11)

In the waterfall configuration [75]

�0 = 4mu

(1 + mu)2
, (B12)

and from relation (6) it follows that �0 + �1 = 1. Hence, for
the waterfall configuration

lim
ω→0

�(0|2) = 8mu

1 + 6mu + m2
u

, (B13a)

lim
ω→0

�(1|2) = (1 − mu)2

1 + m2
u

. (B13b)

The maximum value of �(0|2) is always reached at ω = 0, thus
the T = 0 numerically determined value maxω�(0|2) plotted
in Fig. 4 is identical to (B13a). The maximum value of the PPT
measure of entanglement between modes 1 and 2 is reached at
ω = 0 only for mu � 0.18: the numerically determined value
maxω�(1|2) plotted in Fig. 4 is thus identical to (B13b) in this
range of values of mu.

APPENDIX C: AN ANALOG OPTICAL SYSTEM

As discussed in Ref. [22], the entanglement in the sys-
tem can be localized by a transformation involving effective

7�0 and �1 are the low-energy limits of the transmission and
reflection coefficients (γ0 and γ1, respectively) of the beam splitter
involved in the effective optical model depicted in Fig. 2 (see Ap-
pendix C). In the notations of Appendix C, �0 = limω→0 cos2 θ .
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modes f̂0, f̂1, and f̂2 schematically represented in Fig. 2.
These modes are related to the physical outgoing modes by

f̂0 = − sin θ ê0 + cos θ ê1, (C1a)

f̂1 = cos θ ê0 + sin θ ê1, (C1b)

f̂2 = ê2, (C1c)

where

ê0 = S∗
02

|S02| ĉ0, ê1 = S∗
12

|S12| ĉ1, ê2 = S22

|S22| ĉ2, (C2)

with

cos θ = |S02|
sinh r2

, sin θ = |S12|
sinh r2

, (C3)

and

r2(ω) = arsinh
√

|S22|2 − 1. (C4)

It has been shown in Ref. [22] that an incoming vacuum mode
of frequency ω relates to that of the effective f modes by

|0ω〉in = exp[r2( f̂ †
1 f̂ †

2 − f̂1 f̂2)]|0ω〉 f , (C5)

indicating that the T = 0 state of the system is, as far as
the f1 and f2 modes are concerned, a two-mode squeezed
vacuum with squeezing parameter r2(ω). The f1 and f2 modes
are mixed by a beamsplitter (see Fig. 2) of transmission and
reflection coefficients cos2 θ and sin2 θ , respectively. It has
been argued in Ref. [22] that the long-wavelength limit of the
transmission coefficient, �0 = limω→0 cos2 θ , plays the role
of the graybody factor of the analog black hole.

From definitions (C1) and (C2) and expressions (B9) it is a
simple matter to evaluate the following averages:

〈 f̂ †
0 f̂0〉 =

1∑
i=0

|S12S0i − S02S1i|2 n̄i/ sinh2 r2,

〈 f̂ †
1 f̂1〉 = cosh2 r2 n̄01 + sinh2 r2(1 + n̄2),

〈 f̂ †
2 f̂2〉 = sinh2 r2 n̄01 + cosh2 r2(1 + n̄2) − 1,

〈 f̂1 f̂2〉 = cosh r2 sinh r2(n̄01 + n̄2 + 1). (C6)

The occupation numbers n̄ j ( j = 0, 1, or 2) in the above
expressions are defined in (14) and use has been made of the
shorthand notation

n̄01 ≡ |S20|2
sinh2 r2

n̄0 + |S21|2
sinh2 r2

n̄1. (C7)

It is quite informative to quantify the entanglement between
the two effective modes f1 and f2 and the amount by which
the corresponding squeezed state violates the Bell inequality.
At T = 0 all the relevant quantities can be expressed in terms
of the squeezing parameter (C4) involved in the transforma-
tion (C5). For instance, the analogs for the modes f̂1 and f̂2,
of the PPT measure of entanglement and of the CHSH param-
eter defined for the modes ĉi and ĉ2 by Eqs. (15) and (19),
respectively, read

�( f1| f2 ) = 1 − exp(−2r2), (C8)

FIG. 10. B( f1| f2 ) (solid lines) and �( f1| f2 ) (dashed lines) plotted
as functions of ω for the two-mode squeezed state emulating the
waterfall configuration with md = 2.9. The values of the different
temperatures are indicated in units of gnu.

and [67]

B( f1| f2 ) = 2

√
1 + 4

π2
arctan2 [sinh(2r2)]. (C9)

The finite-temperature values of these quantities can be
obtained by replacing the ĉ operators by the f̂ ’s in expres-
sions (15) and (F8b) and using formulas (C6). They are
represented in Fig. 10 as functions of ω for a specific black-
hole configuration (waterfall with md = 2.9). As anticipated,
it appears that the violation of the Bell inequality is here
much more resilient to temperature than for the true Hawking-
partner pair or the companion-partner pair (compare with
Fig. 3). This is explained by the fact that the beam splitter
distributes and, so to say, dilutes the entanglement. This is
clear at T = 0: in this case the f0 mode is empty [see (C6)]
and the system is, as far as the f modes are concerned, in a
pure two-mode squeezed vacuum state. At ω = 0 for instance,
the system is maximally entangled (the squeezing parame-
ter r2 → ∞) and both �( f1| f2 ) and B( f1| f2 ) reach their upper
bounds (1 and 2

√
2 respectively). At variance, if working with

the true outgoing modes described by the ĉ (or equivalently
the ê) operators, for studying two-mode entanglement it is
necessary to trace the (occupied) third one. The resulting
density matrix is mixed, and in this case, entanglement and
violation of the Bell inequality are two different things, as
clear from Fig. 3.

Another way to tackle this issue consists in expressing the
PPT measure of entanglement (15) between the partner (mode
2) and mode i (i = 0 or 1) in terms of the parameters of the
equivalent optical system. Denoting as γ0(ω) = cos2 θ and
γ1(ω) = sin2 θ the transmission and reflection coefficient of
the beam splitter makes it possible to write, at zero tempera-
ture, the PPT measure (15) under the form

�(i|2)(ω) = (1 + γi ) sinh r2

×
⎧⎨
⎩
√

cosh2 r2 −
(

1 − γi

1 + γi

)2

− sinh r2

⎫⎬
⎭. (C10)
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Algebraic manipulations then show that, because γi � 1,
�(i|2) is always lower than �( f1| f2 ). This means that the en-
tanglement between modes i and 2 is always lower than the
entanglement between the modes issued from the parametric
down conversion represented in Fig. 2. The equality is reached
when γi = 1, and, since γ0 + γ1 = 1, in this case the other
channel (let us denote it as ı̄ = 1 − i) is not entangled with
mode 2: �(ı̄|2) = 0. So, indeed, the effect of the beam splitter
is, so to say, to dispatch the entanglement of the effective
squeezed modes f1 and f2 between modes c0, c1, and c2.

After discussing two-mode entanglement it is also in-
teresting to briefly consider tripartite entanglement in the
effective optical system depicted in Fig. 2. This system has
been designed—by means of a procedure called entangle-
ment localization [104]—in such a way that it concentrates
entanglement between the effective squeezed modes f1 and
f2. Therefore, it should be expected that, in the f basis, the
quantity 〈Ŝ ( f0| f1| f2 )〉, which is sensible to a genuine tripartite
nonlocality, will never reach values above 2. Indeed, in this
basis, at zero temperature one has〈

�̂( f0 )
r ⊗ �̂( f1 )

s ⊗ �̂
( f2 )
t

〉 = 〈
�̂( f0 )

r

〉〈
�̂( f1 )

s ⊗ �̂
( f2 )
t

〉
. (C11)

Since 〈
�̂( f0 )

z

〉 = 1,
〈
�̂( f0 )

x

〉 = 〈
�̂( f0 )

y

〉 = 0, (C12)

it is legitimate to take, for evaluating expression (H11), the
vector a+ = ±ez [taking a− = ±ez instead does not change
the result (C14) below]. This leads to

maxθ 〈Ŝ ( f0| f1| f2 )〉 = |〈b · �̂( f1 ) ⊗ c′ · �̂( f2 )〉
+ 〈b′ · �̂( f1 ) ⊗ c · �̂( f2 )〉|. (C13)

Then, noticing that at zero temperature 〈�̂( f1 )
z ⊗ �̂

( f2 )
z 〉 = 1

at all energies and that the vectors b, b′, c, and c′ are not
constrained with respect to each other, one can take these
vectors to be +ez, thus obtaining

S( f0| f1| f2 )(ω) =
T =0

2. (C14)

Of course the value of S( f0| f1| f2 ) decreases when the tem-
perature increases. This quantity is thus always lower than
2, indicating, as expected, that there is no genuine tripartite
nonlocality between the effective f modes.

From Eqs. (C11) and (C12) and also from the facts that
〈�̂( f1 )

s ⊗ �̂
( f2 )
t 〉 = 0 if s �= t and that, at ω = 0 and T = 0,〈

�̂( f1 )
x ⊗ �̂( f2 )

x

〉 = −〈
�̂( f1 )

y ⊗ �̂( f2 )
y

〉 = 1, (C15)

it is easily found that, at ω = 0, the optimized Mermin param-
eter (32) of the f modes is

M ( f0| f1| f2 )(0) =
T =0

2. (C16)

This shows that, at variance with the c modes, the effective
f modes do not violate the Mermin-Klyshko inequality and
certainly do not exhibit the GHZ paradox. Results (C14)
and (C16) were expected: since the f modes do not exhibit
tripartite entanglement they should violate none of the in-
equalities (34).

It follows from (B12) that when mu = 0 or 1, at ω = 0,
cos θ = 0 or 1, respectively. In this case Eqs. (C1)–(C3) in-
dicate that the f modes are connected to the c modes by

LLUBOs: the tripartite character of the true system thus disap-
pears in these two limiting cases, even when T = 0. However,
our results indicate that these two limits are singular, since
the GHZ character of the system is observed (at ω = 0 and
T = 0) for all mu ∈]0, 1[.

APPENDIX D: EIGENSTATES OF THE
PSEUDOSPIN OPERATORS

In this Appendix we list the properties of the eigenstates
of the pseudospin operators (16) which are useful in the main
text. We will consider a given one of the three modes ( j = 0,
1, or 2), always the same, and will omit the associated label ( j)
in order to lighten the notations. In a similar way, we do not
write the ω dependence which is implicit in all this Appendix.

From the definition (16c) it follows that the matrix ele-
ments of �̂z between two number states are

〈n|�̂z|m〉 = [(−)n + (−)m]
∫ ∞

0
dq ψn(q)ψm(q), (D1)

where ψn(q) = 〈n|q〉 = (2nn!
√

π )−1/2 exp(−q2/2)Hn(q) is a
normalized Hermite function (Hn is a Hermite polynomial).
The prefactor in the r.h.s. of (D1) imposes that n and m
have the same parity. Thus ψn and ψm are both even or odd
functions of q, which makes it possible to extend by symmetry
the integration range in the r.h.s. of (D1) to the whole real axis,
leading to

〈n|�̂z|m〉 = (−)nδn,m, (D2)

and thus

�̂z =
∞∑

n=0

(|2n〉〈2n| − |2n + 1〉〈2n + 1|). (D3)

Hence the eigenstates of �̂z are the number states, and they
have eigenvalue ±1 depending on their parity. In the following
we will denote them as

|z+
n 〉 = |2n〉, and |z−

n 〉 = |2n + 1〉. (D4)

Contrarily to usual spins 1/2, the two eigenvalues (here +1
and −1) are infinitely degenerate. This property is shared by
any projection of the pseudospin operator; it is in particular
true for the operator �̂x. We denote the eigenstates of �̂x asso-
ciated to the eigenvalue ±1 by |x±

n 〉. They can be constructed
by rotating the eigenstates |z±

n 〉 of �̂z by angles ±π/2 around
the y axis:

|x±
n 〉 = R̂y

(
±π

2

)
|z±

n 〉 = 1√
2

(1 ∓ �̂y)|z±
n 〉, (D5)

where R̂y(θ ) = exp(− i
2θ �̂y) is the operator of rotation of

angle θ around the y axis. The fact that |x±
n 〉 is an eigenstate of

�̂x with eigenvalue ±1 is easily checked by direct application
of �̂x to the left of expression (D5) and use of the relations

�̂r�̂s = i εrst �̂t , (D6)

where εrst is the totally antisymmetric Levi-Civita symbol and
(r, s, t ) = x, y, or z. By the same token it is also easily proven
that

�̂y|x±
n 〉 = ∓i|x∓

n 〉, and �̂z|x±
n 〉 = |x∓

n 〉. (D7)
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APPENDIX E: COMPUTING EXPECTATION VALUES OF
OBSERVABLES

The use of the technique of Wigner transform (see, e.g.,
Refs. [105,106]) is particularly well suited for determining
the different contributions of the pseudospin operator to the
CHSH measures (19) and (21). The reason is twofold: first,
we consider a Gaussian state and for computing the required
averages we thus just need to evaluate Gaussian integrals
weighted by the Wigner transforms of the spin operators, and
secondly the Wigner transforms of the pseudospins (16) are
simple enough that the relevant integrals can be evaluated
analytically.

We will consider n = 3 (and also n = 2) modes Gaussian
states and the computation of the average of an operator Â is
performed in an abstract dimensional phase space according
to

〈Â〉 =
∫

dnqdn pWρ̂ (q, p)WÂ(q, p). (E1)

In this expression Wρ̂ is the Wigner transform of the density
matrix. In the Gaussian case we consider it can be computed
from the knowledge of the covariance matrix [107]:

Wρ̂ (q, p) = 1

πn
√

detσ
exp

{
− 1

2
ξTσ−1ξ

}
, (E2)

where σ is the total (or reduced, as appropriate) covariance
matrix defined in Eq. (12). In this expression, n = 3 and
ξ = √

2 (q0, p0, q1, p1, q2, p2)T in the three-mode case. In the
reduced two-mode case, n = 2 and one should remove from
the expression of ξ the entries corresponding to the subscript
of the traced mode. The Wigner transform (E2) of a Gaussian
state is non-negative, and it was originally considered impos-
sible to violate Bell’s inequality under such conditions [108].
This was latter proven incorrect [109,110]. In particular,
Revzen et al. [111] proved that observables can be associated
to the violation of the Bell inequality over a Gaussian state
provided their Wigner transform takes values different from
the eigenvalues of the associated quantal operator. We will see
that the pseudospins (16) we consider belong to this class of
observables, denoted as “improper” in Ref. [111].

The other term involved in the integration (E1) is the
Wigner transform WÂ of the operator Â. It is a function defined
in phase space by means of an integration over “representation
space”:

WÂ(q, p) =
∫

dnz exp{ip · z}
〈
q − 1

2
z

∣∣∣∣Â
∣∣∣∣q + 1

2
z
〉
. (E3)

In this expression q (as well as z and p) is a vector in an ab-
stract n = 3 dimensional space (with basis e0, e1, e2). The kets
involved in (E3) are of the type |Q〉 = |Q0〉0 ⊗ |Q1〉1 ⊗ |Q2〉2

where Q = Q0e0 + Q1e1 + Q2e2 and |Q〉 j is the eigenstate of
operator q̂ j associated to the eigenvalue Q ( j = 0, 1, or 2). In
the case of a reduced two-mode Gaussian state n = 2 and the
vector Q is two-dimensional: the component associated to the
traced mode disappears, as it also does in |Q〉.

For evaluating expectation values such as those appearing
in Eqs. (19) and (21) we need to compute the Wigner trans-
forms of the components of the pseudospin operators. These
are to be evaluated in a two-dimensional phase space, since

operator �̂( j) concerns a single mode (mode j). The result is
independent of j and reads

W�̂x
(q, p) = sgn (q),

W�̂y
(q, p) = iδ(q)

∫ ∞

−∞
dx sgn (x) exp{−2ipx}

= δ(q)P (1/q),

W�̂z
(q, p) = πδ(q)δ(p), (E4)

where P denotes the principal value. It is shown in the main
text that the eigenvalues of the projections along a given axis
of the pseudospin operator �̂ are ±1. The above expressions
of the Wigner transforms thus demonstrate that, contrarily
to �̂x, operators �̂y and �̂z are “improper” in the sense of
Ref. [111]: they may be involved in violation of the Bell
inequality even for a state with a non-negative Wigner trans-
form, such as the Gaussian state we consider.

For evaluating the expectation values appearing in (19) we
need to compute integrals such as

〈
�̂(i)

z ⊗ �̂(2)
z

〉 = ∫
d2qd2 pW�̂z

(qi, pi )

× W�̂z
(q2, p2)Wρ̂ (q, p), (E5)

where q = (qi, q2) and p = (pi, p2) (i = 0 or 1). The explicit
calculation yields

〈
�̂(i)

z ⊗ �̂(2)
z

〉 = 1

aia2 − 4|〈ĉiĉ2〉|2 , (E6)

where

a j = 2〈ĉ†
j ĉ j〉 + 1 (E7)

is known as the local mixedness of mode j ( j = 0, 1, or 2).
The other terms involved in the determination of the CHSH
parameter (19) can be evaluated by the same technique. The
computation is similar to the one figuring in the Appendix of
Ref. [62]. One finds that all expectation values for which the
index z appears a single time cancel at all temperatures. The
values of the other nonzero averages are (i = 0 or 1)

〈
�̂(i)

x ⊗ �̂(2)
x

〉 = 2

π
arctan

2 Re 〈ĉiĉ2〉√
aia2 − 4(Re 〈ĉiĉ2〉)2

,

〈
�̂(i)

y ⊗ �̂(2)
y

〉 = −1

Ai2

〈
�̂(i)

x ⊗ �̂(2)
x

〉
,

〈
�̂(i)

x ⊗ �̂(2)
y

〉 = 2

π a2
arsinh

2 Im 〈ĉiĉ2〉√
Ai2

,

〈
�̂(i)

y ⊗ �̂(2)
x

〉 = 2

π ai
arsinh

2 Im 〈ĉiĉ2〉√
Ai2

, (E8)

where Ai2 is defined in Eq. (E10) below, and we recall that the
expression of the quantity 〈ĉiĉ2〉 is given in (B9).

For studying the Svetlichny observable it is necessary to
evaluate averages involving the Cartesian coordinates of three
pseudospins, of the type

Trst (ω) ≡ 〈
�̂(0)

r ⊗ �̂(1)
s ⊗ �̂

(2)
t

〉
, (E9)

where r, s, and t ∈ {x, y, z}. These quantities are zero if z is not
one of the indices or appears exactly twice. In order to write
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down tractable expressions in the other cases, it is convenient
to introduce new compact notations:

A01 =a0a1 − 4 |〈ĉ0ĉ†
1〉|2,

Ai2 =
i<2

aia2 − 4 |〈ĉiĉ2〉|2, (E10)

Z0 = −2a0〈ĉ1ĉ2〉∗ + 4〈ĉ0ĉ†
1〉〈ĉ0ĉ2〉∗,

Z1 = −2a1〈ĉ0ĉ2〉∗ + 4〈ĉ0ĉ†
1〉∗〈ĉ1ĉ2〉∗,

Z2 = −2a2〈ĉ0ĉ†
1〉∗ + 4〈ĉ1ĉ2〉〈ĉ0ĉ2〉∗, (E11)

and

δ = a0a1a2 + 16 Re{〈ĉ0ĉ†
1〉〈ĉ1ĉ2〉〈ĉ0ĉ2〉∗}

− 4a0|〈ĉ1ĉ2〉|2 − 4a1|〈ĉ0ĉ2〉|2 − 4a2|〈ĉ0ĉ†
1〉|2. (E12)

δ is the square of the determinant of the 6 × 6 covariance
matrix (B1). At T = 0 the system is in a pure state and
δ = 1 for all values of ω [112], whereas δ = O(1/ω) at finite
temperature, as can be shown on the basis of the low-energy
expansion of the matrix elements of the S matrix given in
Ref. [75].

The explicit theoretical evaluation of the quantities (E7)
and (E10)–(E12) is easily done from Eqs. (B9). A long com-
putation shows that the averages (E9) which are nonzero can
be expressed in terms of these quantities:

Tzxx = − 2

πa0
arctan

Re Z0√
A01A02 − (Re Z0)2

,

Txzx = − 2

πa1
arctan

Re Z1√
A01A12 − (Re Z1)2

,

Txxz = − 2

πa2
arctan

Re Z2√
A02A12 − (Re Z2)2

, (E13)

Tzyy = −a0

δ
Tzxx, Tyzy = −a1

δ
Txzx,

Tyyz = +a2

δ
Txxz, (E14)

A02Tzxy = A01Tzyx = arsinh

(
Im Z0√

a0δ

)
,

A01Tyzx = A12Txzy = arsinh

(
Im Z1√

a1δ

)
,

−A12Txyz = A02Tyxz = arsinh

(
Im Z2√

a2δ

)
, (E15)

and

Tzzz = 1

δ
. (E16)

The low-energy behavior of the quantities (E13) is dictated by
the one of the local mixednesses a0, a1, and a2 which diverge
as 1/ω for all temperature. As a result

lim
ω→0

Tzxx = lim
ω→0

Txzx = lim
ω→0

Txxz =
∀T

0. (E17)

On the other hand, the behavior of the quantities (E14) de-
pends on the behavior of the (square root δ of the) determinant
of the covariance matrix which is unity at T = 0 [112]. In this
case

Tzzz(ω) =
T =0

1, (E18)

and

lim
ω→0

Tzyy = lim
ω→0

Tyzy = lim
ω→0

Tyyz =
T =0

1. (E19)

The reason for this behavior is that, at T = 0, δ = 1 whereas
the arguments of all the arctan terms in (E13) diverge as ω−1/2,
as shown by detailed inspection based on Eqs. (B9), (E10),
and (E11), and the asymptotic expression of the coefficients
of the S matrix given in Ref. [75].

Alternatively, at finite temperature δ diverges at low energy
(as 1/ω) and the limits (E19) all cancel,

lim
ω→0

Tzyy = lim
ω→0

Tyzy = lim
ω→0

Tyyz =
T �=0

0, (E20)

as also does limω→0 Tzzz =
T �=0

0.

APPENDIX F: ANALYTIC MAXIMIZATION OF 〈B̂(i|2)〉
In this Appendix we present the maximization of the ex-

pectation value of the CHSH operator (18). We only state the
results useful for the main text but do not detail the proce-
dure because it is well known (see, e.g., Refs. [113,114]). In
particular, it can be shown that the CHSH parameter B(i|2)(ω)
defined in (19) reads

B(i|2) = 2
√

λ1 + λ2 , (F1)

where λ1 and λ2 are the two largest eigenvalues of matrix
TT T where T (ω) is the 3 × 3 matrix with entries

Trs = 〈
�̂(i)

r ⊗ �̂(2)
s

〉
, (F2)

with (r, s) ∈ {x, y, z}2. The results presented in Appendix E
show that in all the cases we consider the matrix T (ω) is block
diagonal:

T =

⎛
⎜⎝
Txx Txy 0

Tyx Tyy 0

0 0 Tzz

⎞
⎟⎠, (F3)

and thus

TT T =
⎛
⎝A C 0

C B 0
0 0 T 2

zz

⎞
⎠, (F4)

with

A = T 2
xx + T 2

yx, B = T 2
yy + T 2

xy,

C = TxxTxy + TyyTyx.
(F5)

The largest eigenvalues of matrix TT T are T 2
zz and

1
2 (A + B +

√
(A − B)2 + 4C2). (F6)

They can be computed from expressions (E6), (E8), and (F5).
Then Eq. (F1) determines the value of the CHSH parame-
ter (19).

One may also choose a different strategy for attempting to
maximize the expectation value of the operator B(i|2). Instead
of choosing to work in the basis of the c- modes, one may
perform a LLUBO for attempting to simplify the form of the
covariance matrix. As already stated in Appendix B, in the
bipartite case, the 4 × 4 covariance matrix (B8) associated
with the reduced two-mode state (i|2) can be brought by

063325-16



VIOLATION OF BELL INEQUALITIES IN AN ANALOG … PHYSICAL REVIEW A 109, 063325 (2024)

LLUBOs to a standard form where the matrices εi2 are diago-
nal [96]. Working in this basis does not alter the entanglement
properties of the system (they remain unaffected compared
to that of the c modes), but makes the computations easier
and may improve the signal of nonlocality. In this basis the
result (E6) is not affected and expressions (E8) modify to

Txx = 2

π
arctan

2 |〈ĉiĉ2〉|√
Ai2

= −Ai2Tyy,

Txy = Tyx = 0, (F7)

where Ai2 is defined in Eq. (E10). The matrix T is thus
diagonal and expression (F6) is equal to T 2

xx. Equation (F1)
then reads

B(i|2) = 2
√
T 2

xx + T 2
zz (F8a)

= 2

√
4

π2
arctan2

(
2|〈ĉiĉ2〉|√

Ai2

)
+ 1

A2
i2

. (F8b)

We note here that the difference between the result (F1) eval-
uated in the c-mode basis and expression (F8b) is always
small. The reason is that, in the c-mode basis, the off-diagonal
entries of the upper left blocks of matrix (F3) and (F4) are
always small compared to the diagonal ones, because at all
temperatures |Im 〈ĉiĉ2〉| � |Re 〈ĉiĉ2〉|. However, our numer-
ical checks always demonstrate a small increase of the Bell
parameter (F8b) compared to the one evaluated using (F1) in
the c-mode basis. We thus present our numerical results in
Figs. 3–5 and 10–12 using formula (F8b). To summarize, the
result (F8b) should be considered as an optimized value of the
witness of nonlocality B(i|2). We note here that we do not have
a general proof of the better efficiency of the method which
consists in using the basis in which the covariance matrix is in
its standard form, but we believe that a general mathematical
result of this type would be quite useful.

APPENDIX G: NUMERICAL MAXIMIZATION OF 〈Ŝ (0|1|2)〉
As explained in Sec. IV, the maximal value of the three-

mode Bell operator 〈Ŝ (0|1|2)〉 can be found by optimizing the
orientation of the unit vectors a, a′, b, b′, c, and c′. However,
solving this optimization problem analytically proves chal-
lenging due to the need to maximize a function depending on
12 real parameters. Indeed, the orientation of each of the six
previous normalized vectors in the three-dimensional physical
space corresponds to two degrees of freedom, leading in total
to 12 parameters.

Consequently, we resort to a numerical method to evaluate
the maximal violation of Bell inequalities and determine the
corresponding optimal orientations for the vectors a, a′, b, b′,
c, and c′. More explicitly, we use a genetic algorithm which
has proved very efficient for optimizing a function over a large
parameter space [115]. This algorithm is based on natural
selection: the code starts with a random set of solutions (in
our case each of them consists of 12 parameters) which form
all together what we call a population. We then compute, for
each set of vectors (a, a′, b, b′, c, c′), the expectation value
〈Ŝ (0|1|2)〉 by means of the technique exposed in Appendix E.
For instance the contribution of the term 〈a · �̂(0) ⊗ b · �̂(1) ⊗
c · �̂(2)〉 to 〈B̂(0|1|2)〉 can be evaluated from the knowledge of

the terms Trst defined in Eq. (E9):

〈a · �̂(0) ⊗ b · �̂(1) ⊗ c · �̂(2)〉 =
∑
r,s,t

arbsctTrst , (G1)

where the sum runs over the indices (r, s, t ) ∈ {x, y, z}3. At
variance with the bipartite case, at finite temperature it is
not possible to find a LLUBO enabling us to cast the 6 × 6
covariance matrix (B1) under a standard form where all the
εi j matrices are diagonal (see the discussion in Appendix B).
The expectation values are thus computed in the natural basis
of the c modes where the values of the Trst coefficients are
given by Eqs. (E13)–(E16).

At each step of the algorithm the code computes the ex-
pectation value 〈Ŝ (0|1|2)〉 for a set of vectors (a, a′, b, b′, c, c′)
and ranks the members of the population by computing a
fitness scaling function, a kind of selection rule: only the
members of the population with the lowest fitness value will
be retained—they are called the parents—and used to generate
new sets of solutions, called the children. Then, at the next
step, the selection rules are applied to the children, some of
them become parents in turn and engender a new generation.
The algorithm stops when all children look like their parents,
or, in other words, when

|v�+1 − v�| < δ, (G2)

where v� = (a, a′, b, b′, c, c′) is the set of solutions at step �

of the algorithm, and δ is the chosen convergence precision
fixed prior to the beginning of the selection process.

In our case, the fitness scaling function is simply the oppo-
site of the average 〈Ŝ (0|1|2)〉 of the three-mode Bell operator.
Trying to obtain the lowest fitness score is thus equivalent to
maximizing the Bell operator. For a given set of vectors v� at
step �, the next generation is computed as follows: v�+1 =
v� + w�, where w� is a random weight which controls the
mutations between the parents v� and the children v�+1, and
which tends to decrease when the code starts to converge. For
a detailed presentation of the algorithm we refer to Ref. [116].
Note finally that the procedure just presented is also used for
determining the optimized Mermin parameter (32).

APPENDIX H: TRIPARTITE CIREL’SON BOUND AND
ANALYTIC MAXIMIZATION OF 〈Ŝ (0|1|2)(ω = 0)〉

In this section we first study the upper bound of the quan-
tity S(0|1|2)(ω) defined in (21) and then study the possibility of
maximization of the average 〈Ŝ (0|1|2)〉 of the operator (20) by
an appropriate choice of the measurement directions a, a′, b,
b′, c, and c′.

Denoting as Â = a · �̂(0), Â′ = a′ · �̂(0), B̂ = b · �̂(1), etc.,
makes it possible to write the square of the tripartite
Svetlichny operator (20) as

4(Ŝ (0|1|2))2 = 8 + {Â, Â′} ⊗ {B̂, B̂′} ⊗ {Ĉ, Ĉ′}
− 2[Â, Â′] ⊗ [B̂, B̂′] ⊗ 1(2)

− 21(0) ⊗ [B̂, B̂′] ⊗ [Ĉ, Ĉ′]

− 2[Â, Â′]. ⊗ 1(1) ⊗ [Ĉ, Ĉ′], (H1)
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where [·, ·] and {·, ·} denote the commutator and the an-
ticommutator, respectively. From the SU(2) algebra of the
pseudospins it is easily proven that

[Â, Â′] = 2i(a × a′) · �̂(0), (H2a)

{Â, Â′} = 2(a · a′)1(0), (H2b)

with similar formulas for the quantities B̂ and B̂′ as well as Ĉ
and Ĉ′. Since the operators Â, B̂, and Ĉ operate in different
Hilbert spaces, one can assume without loss of generality that
all the vector products of type (H2a) appearing in (H1) are
collinear with ez. In this case all the unit vectors a, a′, b, b′, c,
and c′ lie in the xy plane. Denoting as θa the angle between a′
and a, θb the angle between b′ and b, and θc the angle between
c′ and c (all these angles being in [0, π ]), one gets

(Ŝ (0|1|2))2 = 2 + 2 cos θa cos θb cos θc

+ 2 sin θa sin θb �̂(0)
z ⊗ �̂(1)

z ⊗ 1(2)

+ 2 sin θb sin θc 1
(0) ⊗ �̂(1)

z ⊗ �̂(2)
z

+ 2 sin θa sin θc �̂(0)
z ⊗ 1(1) ⊗ �̂(2)

z . (H3)

It is a simple matter to check that when θa, θb, and θc run
through [0, 2π ]3 the eigenvalues of the operator appearing
in the right-hand side of the above formula are all com-
prised in [0,8]. The extremal values 0 and 8 are reached for
(θa, θb, θc) = (0, 0, π ) and (π/2, π/2, π/2), respectively. It
then follows that for any choice of the measurement directions
a, a′, b, b′, c, and c′

〈Ŝ (0|1|2)〉2 �
〈
(Ŝ (0|1|2))2

〉
� 8, (H4)

and thus the tripartite entanglement parameter (21) verifies

S(0|1|2)(ω) � 2
√

2. (H5)

This is the tripartite equivalent of the Cirel’son bound.
In the remainder of this Appendix we consider a related

but somehow different problem: in order to violate as much
as possible the Svetlichny inequality S(0|1|2) < 2 we aim at
choosing measurement directions a, a′, b, b′, c, and c′ which
maximize the expectation value of Ŝ (0|1|2). This can be done
numerically as explained in Appendix G. We show here that
this maximization can also be performed analytically in a
particular instance. Setting a · a′ = cos 2θ with θ ∈ [0, π/2],
we define two new unit vectors a± by

2 cos θ a+ = a + a′, 2 sin θ a− = a − a′, (H6)

where by definition a+ · a− = 0. In terms of the new vec-
tors (H6) the average of the three-mode operator (20) reads

〈Ŝ (0|1|2)〉 = (W + Z ) cos θ + (X − Y ) sin θ, (H7)

where

W = 〈a+ · �̂(0) ⊗ b · �̂(1) ⊗ c′ · �̂(2)〉,
X = 〈a− · �̂(0) ⊗ b′ · �̂(1) ⊗ c′ · �̂(2)〉,
Y = 〈a− · �̂(0) ⊗ b · �̂(1) ⊗ c · �̂(2)〉,
Z = 〈a+ · �̂(0) ⊗ b′ · �̂(1) ⊗ c · �̂(2)〉. (H8)

It is convenient to introduce temporarily notations

W + Z = A cos δ, X − Y = A sin δ, (H9)

which make it possible to cast (H7) under a simple form:

〈Ŝ (0|1|2)〉 = A cos(θ − δ). (H10)

The maximum value of this expression is A and thus

maxθ 〈Ŝ (0|1|2)〉 =
√

(W + Z )2 + (X − Y )2. (H11)

The next step of the maximization procedure is easily
performed at zero temperature and zero energy (ω = 0). The
reason is that, as illustrated in a typical case by (G1), the
explicit expressions of the W , X , Y , and Z coefficients in (H8)
and (H11) involve combinations of terms of the type Trst [as
defined in Eq. (E9)] that take on particularly simple values
at T = 0 and ω = 0. First, all the Trst with at least one
component along x vanish. Therefore, the contribution of the
components along x of the different vectors involved in (H8)
cancels. It is thus enough to perform the maximization only
considering vectors a±, b, b′, c, and c′ lying in the y-z plane. A
second simplification stems from the fact that, in the y-z plane,
all the Trst ’s with an odd number of y cancel at T = 0 and
ω = 0. In the waterfall and delta peak configurations8 the only
nonzero coefficients are (see the discussion in Appendix E)

Tzzz = Tyyz = Tyzy = −Tzyy = 1. (H12)

In this case, the particular choice

a+ = b = c′ = ez, a− = −b′ = −c = ey, (H13)

plugged into Eqs. (H8), leads to

W + Z = Tzzz + Tzyy = 2,

X − Y = −Tyyz + Tyzy = 2, (H14)

and expression (H11) then shows that the upper bound (H5) is
reached. It is therefore not possible that another arrangement
of vectors a, a′, b, b′, c, and c′ reaches a higher value and thus

S(0|1|2)(ω = 0) =
T =0

2
√

2. (H15)

The situation is completely different at finite temperature. In
this case, as explained in Appendix E all the averages of
the type (E9) cancel when ω → 0. It then follows that the
quantities (H8) behave in the same way and thus

S(0|1|2)(ω = 0) =
T �=0

0. (H16)

APPENDIX I: RESULTS FOR OTHER TYPES OF
ANALOG BLACK HOLES

The results we have obtained have been presented in the
main text for a waterfall configuration. The reason is that this
is the only one which has been realized experimentally so
far [20,21]. For completeness—and also for emphasizing the
typicality of the results presented in the main text—we present
in this Appendix some equivalent results for the delta peak and
flat profile configurations defined in Appendix A.

8The situation is slightly different in the case of a flat profile
configuration, where Tyyz = −1 and Tzzz = Tzyy = Tyzy = 1, with all
other coefficients also vanishing. Once this modification is accounted
for, the maximization procedure yields the same final result.
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FIG. 11. Same as Fig. 4 for zero-temperature delta peak config-
urations. The inset is a blowup at low mu.

It is in particular of interest to plot the equivalents of Fig. 4
for these alternative configurations. This is done in Figs. 11
and 12. In the flat profile configuration the value of md is
a free parameter. Thus, for comparing the results of the flat
profile configuration with Fig. 4 we impose md = 1/m2

u, as is
the case for the waterfall configuration [see Eq. (A4a)]. Such
a procedure is not required (nor possible) for the delta peak
configuration where fixing mu unambiguously determines md

[see (A4b)]. Figure 11 shows that the delta peak configuration
has a special feature: the EPR state formed by the companion
and the partner (see Sec. III) is only reached at extremely low
values of the upstream Mach number mu, whereas bipartite
nonseparability between the Hawking quantum and the part-
ner (modes 0 and 2, respectively) is significant in a wide range
of values of mu (roughly speaking, for mu � 0.2). Despite this
peculiarity, it is fair to say that Figs. 11 and 12 both display
the same general trend as Fig. 4, supporting the idea that the
behavior discussed in the main text is generic. We do not
produce finite-temperature figures equivalent to Fig. 5 in order
not to overload the paper and because, as expected, the delta

FIG. 12. Same as Fig. 4 for zero-temperature flat profile config-
urations with md = 1/m2

u.

FIG. 13. Same as Fig. 6 for zero-temperature delta peak config-
urations. The inset displays a blowup of the figure at low energy.

peak and the flat profile configurations behave similarly to
the waterfall configuration when the temperature is increased.
There is however a quantitative change which is worth notic-
ing: in these two alternative configurations the violation of the
bipartite Bell inequality does not persist as much as for the
waterfall configuration when T is increased.

It is also quite interesting to study genuine tripartite non-
locality in the delta peak and flat profile configurations by
computing the zero-temperature value of the Svetlichny pa-
rameter S(0|1|2)(ω) and by then presenting the equivalents of
Fig. 6. This is done in Figs. 13 and 14. Here again, the
phenomenology is the same as the one discussed in the main
text: There is a clear signal of nonlocality at T = 0, in a do-
main of energy typically more extended than for the waterfall
configuration, but as is the case for the waterfall configuration
this signal does not persist at small finite temperature (the
corresponding plots are not shown in order not to overload
the paper). Finally, it is also important to address the GHZ
character of the long-wavelength modes in the delta peak
and flat profile configurations. As argued in Sec. IV of the
main text, both configurations display the GHZ paradox at
ω = 0 and verify M (0|1|2)(0) = 4 at zero temperature. The
behavior of the optimized Mermin parameter M (0|1|2)(ω) (32)
is represented at finite and zero temperature in Figs. 15 and 16

FIG. 14. Same as Fig. 6 for zero-temperature flat profile
configurations.
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FIG. 15. Same as Fig. 8 for delta peak configurations at T = 0
(thin solid lines) and T = 0.1gnu (thick dashed lines).

which correspond to the delta peak and flat profile configu-
ration, respectively. At zero temperature the signal (34a) of
genuine tripartite entanglement is more pronounced for the
delta peak and flat profile configurations than for the water-
fall. This was also the case for the signal (34b) of genuine
tripartite nonlocality. However, this signal, although more
noticeable at T = 0, is less resilient to an increase of tem-
perature than for the waterfall configuration. The deleterious

FIG. 16. Same as Fig. 8 for flat profile configurations at T = 0
(thin solid lines) and T = 0.1gnu (thick dashed lines).

effect of temperature is particularly pronounced for the flat
profile configuration (see Fig. 16). However, although it is
clear that each configuration bares its specificities, it is also
clear that the general trend is the same: the departure from the
GHZ signal M (0|1|2)(0) = 4 increases at high energy. At finite
temperature, the GHZ behavior is lost. The Mermin parameter
nonetheless provides a signal of nonlocality if larger than 2.
For that matter, the signal is more pronounced at T �= 0 for
the waterfall configuration than for the two others.
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