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Résumé en français

Cette thèse porte principalement sur la théorie des fluides quantiques et
les phénomènes non linéaires dans les systèmes quantiques. Elle se concen-
tre en particulier sur les fluctuations quantiques collectives, c’est-à-dire les
ondes sonores, dans les condensats de Bose-Einstein (BEC) en écoulement
stationnaire présentant des horizons acoustiques, c’est-à-dire des transitions
d’écoulements subsoniques à supersoniques. Les phénomènes quantiques
générés par la présence de l’horizon sont étudiés. La thèse présente égale-
ment un bref excursus sur la turbulence quantique dans les fluides quan-
tiques d’excitons-polaritons.

Un premier chapitre introductif présente brièvement la gravité analogue,
les condensats de Bose-Einstein et les contraintes topologiques à la turbu-
lence quantique. Un deuxième chapitre 2 présente la modélisation des trous
noirs avec des systèmes analogues et un troisième chapitre 3 les trous noirs
analogues, réalisés dans desBECs, quenous considérons spécifiquement dans
ce travail. Un quatrième chapitre 4 fournit les résultats de notre étude de la
violation des inégalités de Bell dans notre système analogue. Un cinquième
chapitre 5 étudie la dérivation des équations de rétro-action dans des conden-
sats analogue et quelques résultats préliminaires sur les solutions station-
naires. Enfin, un dernier chapitre 6, sans rapport avec la gravité analogue,
présente l’ajustement numérique des données expérimentales obtenues à
partir d’une théorie phénoménologique pour la croissance et la décroissance
du nombre de tourbillons dans un fluide bidimensionnel quantique.

Plus précisément, le deuxième chapitre 2 et le troisième chapitre 3 sont
des chapitres d’introduction à la modélisation des trous noirs avec des sys-
tèmes analogues 2 et plus spécifiquement dans des quasi-condensats 1D 3.
Le troisième chapitre présente les trous noirs de Schwarzschild et la modéli-
sation de la dynamique des champs scalaires dans l’espace-temps courbe par
la propagation d’ondes sonores dans une métrique courbe effective donnée
par le champ moyen d’un écoulement non homogène. Il présente également
la dérivation du rayonnement de Hawking et de son analogue hydronymique.
Le quatrième chapitre présente les différentes configurations analogues de
trous noirs dans un quasi-condensat 1D utilisées dans cette étude, ainsi que
les transformations de Bololiubov définissant les modes entrants et sortants
comme des fluctuations quantiques émergeant de la linéarisation de Bogoli-
ubov de l’équation de Gross-Pitaevskii.

Le quatrième chapitre 4 ainsi que le cinquième chapitre 5 présentent les
recherches spécifiques que nous avons menées sur les corrélations quan-
tiques 4 et la rétro-action dans des trous noirs analogues 1D réalisés dans des
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BECs 5. Le quatrième chapitre 4, après une introduction aux inégalités de Bell
et au formalisme de la fonction de Wigner, se concentre sur l’étude des cor-
rélations quantiques entre les troismodes sortants de notre système et carac-
térise les conditions de non-localité pour les mesures de pseudospin GKMR
dans nos configurations analogues de trous noirs. Le cinquième chapitre 5
dérive les équations de rétro-réaction décrivant l’effet du rayonnement de
Hawking sur la métrique du trou noir analogue qui le génère : quelques ré-
sultats asymptotiques préliminaires sont fournis.

Le dernier chapitre 6 considère les contraintes topologiques sur la turbu-
lence quantique d’un fluide 2D d’excitons-polaritons. Un tel fluide est décrit
par une équation de Schrödinger non linéaire qui est analogue à l’équation de
Gross-Pitaevskii d’un BEC de vapeur atomique. L’étude montre que la crois-
sance et la décroissance du nombre de tourbillons sont régies par des con-
traintes topologiques dictées par les lois de conservation des nombres quan-
tiques.

***
Il apparaît donc que le domaine de la gravité analogue vise à pallier le

manque de théorie et d’expérience dans le domaine de la gravité quantique
en transposant certaines de ses principales questions et préoccupations à
des systèmes de matière condensée. En suivant cette stratégie, nous avons
étudié la non-séparabilité quantique, la non-localité et la rétro-réaction du
rayonnement acoustique de Hawking émis par un trou noir analogue réalisé
dans l’écoulement d’un quasi-condensat 1D.

Dans le chapitre 4, notre travail théorique prépare le terrain pour de fu-
tures études expérimentales en fournissant des prédictions quantitatives du
degré d’intrication et de violation des inégalités de Bell dans une configura-
tion analogue réaliste, à la fois pour les systèmes bi- et tri-partites. En ef-
fet, alors que le processus de Hawking relativiste n’implique, dans le cas sta-
tionnaire, que deux modes, un troisième mode est présent dans le système
étudié : tout en n’affectant pas l’analogie avec le rayonnement de Hawking,
le troisième mode conduit à une phénoménologie plus riche. Nous avons
donc mené une étude systématique du système, confirmant le caractère non
classique, c’est-à-dire non séparable et non local, du rayonnement de Hawk-
ing analogue grâce à des critères expérimentaux pertinents. En outre, notre
étude des différents critères de non-localité démontre que les modes quan-
tiques de grande longueur d’onde du système consistent en une superposi-
tion de versions dégénérées d’états GHZ à variables continues. Il est intéres-
sant de noter que la nature continue des degrés de liberté, à la différence des
états GHZ construits sur des qbits, permet à ces modes de rester intriqués
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après un traçage partiel. Cela confirme que l’information quantique à vari-
ables continues avec des modèles analogues de trous noirs ouvre de nou-
velles perspectives de traitement robuste de l’information dans une variété
de protocoles, tels que le partage de secrets ou le brouillage d’informations.

Dans le chapitre 5, nous avons dérivé des équations de rétro-action qui
sont génériquement valables pour l’écoulement d’un condensat inhomogène
dans n’importe quelle dimension. Nous les avons spécifiquement appliquées
à une configuration analogue de trou noir dans un quasi-condensat 1D. Nous
avons trouvédes solutions asymptotiques et fourni quelques résultats prélim-
inaires pour des choix cohérents de paramètres. Les travaux futurs seront
consacrés à l’étude de la dynamique exacte de l’horizon sous l’effet de la
rétro-action et à la détermination de la correction de la température de Hawk-
ing du système qui en découle. Étant donné que dans le cadre gravitation-
nel, la source quantique de la rétro-action s’est avérée difficile à évaluer, les
configurations hydrodynamiques analogues semblent être des systèmes pré-
cieux pour tester des modèles au-delà de la gravité (semi-)classique. Dans
cette perspective, puisque la dérivation de l’effet Hawking ne prend pas en
compte la rétro-action, un prolongement naturel de notre étude sera d’écrire
les équations de Bogoliubov modifiées avec un champ moyen intégrant la
rétro-action. L’effet de la rétro-réaction sur le rayonnement de Hawking, la
« rétro-rétro-réaction » pour ainsi dire, pourrait alors être étudié et la ther-
malité du rayonnement reconsidérée dans cette nouvelle perspective. Cela
ouvrirait de nouvelles perspectives sur la nature de l’information transportée
par le rayonnement de Hawking.

Enfin, dans le chapitre 6, nous avons mené une étude expérimentale et
théorique combinée de la cinétique des tourbillons dans un fluide quantique
compressible 2D composéd’excitons-polaritons. Ainsi, en considérant unmod-
èle phénoménologique minimal basé sur des contraintes topologiques, nous
avons dérivé des équations cinétiques de formation et d’annihilation depoints
critiques du champ de vitesse. Ces équations sont capables de reproduire le
taux de création et d’annihilation de tourbillons quantifiés observé expéri-
mentalement dans les phases de croissance et de décroissance de la turbu-
lence quantique. Ces résultats devront être approfondis par des simulations
numériques plus poussées. De plus, même si ce dernier chapitre n’est pas lié
à la gravité analogue, on peut penser à de futurs modèles 2D, impliquant la
vorticité, qui exploiteraient les contraintes décrites ici : dans cette perspective,
les charges topologiques considérées dans notremodèle phénoménologique
effectif de turbulence quantique, pourraient également s’avérer utiles pour
étudier la physique des trous noirs rotatifs analogues et de phénomènes tels
que la superradiance.
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1 - INTRODUCTION

1.1 . Outline of the thesis

This thesis is mainly about quantum fluid theory and non-linear phenomena in quantum systems.
It focuses especially on collective quantum fluctuations, i.e. sound waves, in stationary flowing Bose-
Einstein condensates (BECs) which exhibit acoustic horizons, i.e. transitions from subsonic to supersonic
flows. Quantum phenomena generated by the presence of the horizon are investigated. The thesis also
presents a brief excursus on quantum turbulence in quantum fluids of exciton-polaritons.

This chapter introduces Analog Gravity, Bose-Einstein condensates and quantum turbulence con-
straints. A second chapter 2 presents the modeling of black holes with analog systems and a third chap-
ter 3 the BEC analog black hole we specifically consider in this work. A fourth chapter 4 provides the
results of our inquiry of Bell’s inequalities violation in our BEC analog. A fifth chapter 5 investigates
the derivation of the back-reaction equations in our BEC analog and some preliminary results on sta-
tionary solutions. Finally, a last chapter 6, unrelated to analog gravity, presents the numerical fitting of
experimental data obtained from a phenomenological theory for the growth and decay of the number
of vortices in a quantum two-dimensional fluid.

More specifically, the second chapter 2 and third chapter 3 are introductory chapters to themodeling
of black holes with analog systems 2 and more specifically in 1D quasi-condensates 3. The third chapter
presents Schwarzschild black holes and the modeling of scalar field dynamics in curved-space time by
sonicwaves propagation in an effective curvedmetric givenby anon-homogenously flowing background.
It also presents the derivation of Hawking radiation and of its hydronymical analog. The fourth chapter
presents the different analog black hole configurations in a 1D quasi-condensate used in the current
study, as well as the Bololiubov transformations defining the ingoing and outgoing modes emerging as
quantum fluctuations from the Bogoliubov linearization of the Gross-Pitaevskii equation.

The fourth chapter 4 and fifth chapter 5 presents the the specific researchwe conducted on quantum
correlations 4 and back-reaction in an analog 1D BEC black hole 5. The fourth chapter 4, after providing
an introduction to Bell’s inequalities and Wigner function formalism, focuses on the study of the quan-
tum correlations between the three outgoing modes of our system and characterizes the non-locality
conditions for GKMR pseudospin measurements in our analog black hole configurations. The fifth chap-
ter 5 derives the back-reaction equations describing the effect of Hawking radiation on the analog black
hole metrics which generates it : some preliminary asymptotic results are provided.

The final chapter 6 considers the topological constraints on the quantum turbulence of a 2D fluid of
exciton-polaritons. Such a fluid is described by a non-linear Schrödinger equation which is analog to the
Gross-Pitaevskii equation of an atomic vapour BEC. The growth and decay of the number of vortices are
found to be driven by topological constraints dictated by quantum number conservation laws.

1.2 . Introduction to Analog Gravity

From black holes to non-locality

The Lorentzian invariance of the speed of light in vacuum asserted by Einstein’s Special Relativity (1905)
constrained causality in the past and future light cones of an event. Einstein’s theory of General Relativ-
ity (1915), reformulating Newtonian gravity as a geometric theory of gravitation, generalized the causal
constraint to the Riemannian geometry of curved space-time [1, 2]. In 1916, Schwarzschild [3] found a
solution to the non-linear field equations of Einstein’s theory, defining the metric of a gravitational field
generated on its outside by a a non-charged spherical mass distribution with null angular momentum :
the Schwarzschild metric. If this mass distribution were to collapse to a radius rm smaller than a critical
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radius, the Schwarzschield radius, all the mass would end up in a finite time into the singularity r = 0

of the metric. As soon as rm < rs, the interior of the the sphere of radius rs would become a causally
disconnected region with respect to the exterior, no signal emitted in the interior being able to propagate
outwards because of the gravity enforced tilting of the light cones 1. The interior region is then called a
black hole2.

In 1935 Einstein, Podolsky and Rosen [4] published a paper questioning the definition of reality im-
plied by quantum mechanics. In this paper, the existence of states appearing to give an inconsistent
definition of reality was seen as a proof of the incompleteness of quantum mechanics. Soon after,
Schrödinger [5] named such states verschränkt states, i.e. entangled states, while Bohr [6] argued quan-
tummechanics to be perfectly complete and consistent in its contextual definition of reality, the very ex-
istence of complementary (or conjugate) observables, that could not be both simultaneously measured
with arbitrary precision, implying to define as real only what was actually measured. The non-locality of
such entangled states, i.e. their exhibiting correlations that appeared to contradict the light-cone causal-
ity constraints of special relativity, was also seen by Bohr as consistent with a wave function formalism
describing a composite system as an irreducible whole.

According to Einstein-Podolski and Rosen, in order for such correlations to be local and therefore
congruent with special relativity, one should think at them as being in some way predetermined : but
this is impossible when one does not know in advance which one of two non-commutingmeasurements,
e.g. momentum and position, would be performed since these two measurements cannot have simul-
taneous reality and cannot therefore both be predetermined in advance. Then, appearing to violate
realism and locality, quantum mechanics should be considered as incomplete3. In 1964 Bell [7] defined
a mathematical constraint, known as Bell’s inequality, through the violation of which non-locality and/or
non-realism can be revealed [8]. Throughout the 70s and 80s, quantum mechanics was experimentally
found to violate Bell-type inequalities for some entangled states and non-commuting measurements4.
Thus, such and similar violations are signatures of fully quantum, i.e. highly non-classical, regimes. In
the framework of the hydrodynamic analogs of black holes, where the full system can be measured, the
non-locality of bipartite and tripartite correlations in the radiated waves can be investigated.
1970s : Quantum Field Theory in Curved Space-Time

At the end of the 60s, Parker showed how, through the Bogoliubov transformation formalism, the time-
dependence of the metric in an expanding universe would yield particle creation out of the vacuum. In
the first 70s Pennrose and Floyd predicted that energy could be extracted from a rotating black hole and
Misner prooved that a rotating black hole could amplify incident waves, a phenomenon known as super-
radiance [9]. Also relying on Quantum Field Theory (QFT) in curved-space-time (CSP), Hawking demon-
strated in 1974-75 the existence of a thermal radiation from the event horizon of a non-rotating black
hole , the emission of such a radiation leading eventually to the total evaporation of the black-hole [10, 11].
This thermal radiation, generated by the time-dependence of the metric during the gravitation collapse
forming the black hole, is predicted tohave a Planck spectrum emitted at a temperature TH known as
Hawking temperature and only determined by themass, the angular momentum and the electric charge
of the black hole.

These radiation phenomena such as superradiance and Hawking radiation all rely on stimulated or
spontaneous particle emission processes through the existence of negative energy particles absorbed
by the black-hole. In the Hawking process, each particle of the thermal emission is entangled with a
negative energy particle falling in the black-hole. Similar to the Hawking effect is the Unruh effect (1976),
according to which an accelerating observer sees a thermal radiation proportional to its acceleration [12].
1The reverse is not true : the causal disconnection between the two regions is asymmetric.2The possibility of the existence of black holes, as massive objects generating gravitational fields with escape ve-locity higher than the speed of light, had already been considered in the 18th century by Laplace and Michell. Thephysics of black holes can nevertheless only be apprehended by the geodesic modeling of light ray trajectoriesas theorized by Einstein’s General relativity.3By realism we loosely refer to any theory that postulates the outcome of a measurement to be predetermined.4See section 4.1 for a more detailed treatment of Bell’s inequalities.
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The temperature TH of the Hawking thermal radiation should be for a black hole of solar mass, of order
10−8 K, which makes it imperceptible within a Cosmic Microwave Background (CMB) of order 3 K. Thus,
since astrophysical observation is not nowdays within reach, other ways of testing such predictions had
to be devised. It is in this perspective that one can resort to hydrodynamic experiments simulating these
gravitational predictions.
1980s-2020s : Hydrodynamical models

Indeed, the domain of analog gravity aims at providing laboratory models for gaining insight on general
relativity phenomena that cannot be directly observed in the usual gravitational context or for which
there exists no complete theoretical framework. Two such phenomena are black hole superradiance
[13, 14, 15] and Hawking radiation [10, 16]. In 1981, Unruh noticed that sound waves in a fluid behave like
a massless scalar field propagating in a curved Lorentzian geometry [16]. His article gave birth to Analog
Gravity. Indeed, noticing that the mathematical formalism for describing the propagation of a perturba-
tion in a fluid can be presented in terms of a an effective curved space-time metric [17], transsonic flows
can be thought of and implemented experimentally both for classical and quantum systems. Such inho-
mogeneous systems, where in a supersonic (subsonic) region the fluid flows at a speed higher (lower)
than the speed of a sonic wave in the fluid at rest, can then mimic the Schwarzschild metric with light
cones and light horizons becoming sound cones and sonic horizons respectively. We will then be facing
an acoustic analog of a gravitational black hole.

Let us consider a fluid with a (in)homogeneous flow of speed v in the laboratory frame. In the refer-
ence frame where the fluid is locally at rest, the space-time interval is locally defined as

ds2resting = c2sdt
2 − dx2 (1.1)

whereas in the laboratory frame, i.e. in the reference frame where the fluid is flowing, the same interval
is given

ds2flowing = c2sdt
2 − (dx− vdt)2 (1.2)

for a Galilean transformation5 [9], with therefore an effective metric
gµν =

(
c2 − v2 vT

v 1

)
(1.3)

with vT the transposed of the column vector v and 1 a 3 × 3 identity matrix. Where the flow is locally
supersonic, i.e. where c2 − v2 < 0, sound waves can no longer propagate against the local flow. It is
then possible to induce flowing configurations with acoustic horizons that sound waves can only cross in
one direction : one side of the horizon is then causally disconnected from the other with respect to sound
cones, in the sense that no event of the supersonic side can influence the subsonic side.

The fluid must be considered at large length scales, where the system can be described in the hydro-
dynamic limit, i.e. bymacroscopic hydrodynamical variables. In this limit, only low energy excitations, i.e.
with large wave length, can be appropriately described. The simplest models that can be experimentally
realized are one-dimensional flows of classical or quantum fluids6. As an example7, event horizons have
been implementedwith surface waves [18, 19, 20, 21, 22, 23] and acoustic waves [24], nonlinear optical sys-
tems [25, 26, 27, 28], cavity polaritons [29, 30, 31] and Bose-Einstein condendates (BECs) of atomic vapors
[32, 33, 34, 35]. Because of their low temperature and coherence properties BECs appear particularly
well suited for demonstrating quantum features.

Furthermore, Unruh [16] noticed that the existence of an acoustic (optical) horizon implied the exis-
tence of an acoustic (optical) radiation analogous to Hawking radiation. However, even experimentally,
5We consider v << c with c the speed of light. x→ x− vt.6Quantumfluids are systems that showmacroscopic quantumeffects such as superfluidity. In such systems the deBroglie wave length must be greater than the averaged distance between particles. When this is so, the wave-likebehavior of the particle can indeed no longer be ignored.7See Ref. [9] for a brief review of other hydrodynamical models, such as the ones for particle creation in an ex-panding universe.
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this radiation is extremely hard to be detected since it is "hidden" in the thermal noise of the system.
For this reason, non-local methods of two-point density-correlation functions [36], robust with respect
to the thermal noise of the fluid, have been considered to detect the correlation between the unique
phonon propagating against the current (detected in the subsonic region) and the two phonons propa-
gating with the current (detected in the supersonic region) [37] [38]. In Bose-Einstein condensates (BECs)
a signal that could correspond to an analog Hawking radiation is claimed to have been detected in 2016,
and more convincingly in 2019 (see Fig. 1.1), by Steinhauer in a fluid of ultra-cold rubidium atoms [33].

Figure 1.1: Two-point density-correlation functionG(2)(x, x′) = ⟨: n̂(x, t)n̂(x′, t) :⟩−⟨n̂(x, t)⟩⟨n̂(x′, t)⟩. LeftPlot : Experimental signature of Analog Hawking radiation (2019) [34]. Right Plot : Theoretical simulationof Analog Hawking radiation (2020) [39]. The condensate is flowing from the positive x or x′ region to thenegative x or x′ region : the positive region is subsonic and the negative region is supersonic. The dottedlines in the two plots represent the line of correlation between an outgoing phonon in the exterior orsubsonic region (positive x′) and an outgoing phonon in the interior or supersonic region (negative x),with the acoustic horizon at x, x′ = 0. The main diagonal x = x′ line just represents self-correlationsinduced by short-range two-body repulsion. The off-diagonal signal is not at 45 degrees since the twophonons propagate at two different effective speeds, approximately Vu − cu for the upstream phonon(Hawking phonon) and Vd − cd for downstream phonon (partner phonon) : the correlation in positionis given by the ratio of these two effective speeds. A more detailed inspection of the figure reveals athird correlation line in the x, x′ > 0 region, which relates to the existence of a third outgoing phononin the interior or supersonic region propagates at approximately Vd + cd. These speeds are computedtaking the limit ω → 0 of the group velocity dω/dQ, with Q the wavevector, of the three branches ofthe dispersion relation that generate outgoing (with respect to the horizon) phonons. The ratios of thuscomputed speeds fit the experimental correlations lines since most of analog Hawking physics unfold inthe long wavelength regime.

1.3 . Introduction to BECs

Theory and Experiments with BECs

Phase transitions to higher ordered states ofmatter are often symmetry-breaking processes. In the same
manner as crystallisation breaks the translation symmetry of a homogeneous fluid, the Bose-Einstein
condensate (BEC) phase transition is associated with the breaking of the U(1) symmetry of the global
phase. In 3D the complex scalar order parameter describing the BEC can be identified to themacroscopic
wavefunction of the condensate, associated to the off-diagonal long-range order in the one body-density
matrix of the system [40].

The Bose-Einstein statistical distribution was defined in 1924 by Bose and Einstein as describing the
mean number of non-interacting identical bosons occupying a same quantum state [41, 42]. At a suffi-
ciently low temperature, a macroscopic fraction of bosons occupies the same quantum state of lower
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energy, then generating a macroscopic state of matter called a Bose-Einstein condensate. The theory was
later extended to systems of interacting bosons by Bogoliubov [43] and others.

The superfluidity of liquid helium was experimentally achieved in 1938 by Allen and Misener [44]
and simultaneously by Kapitza [45]. Soon after, London established the connection between BECs and
superfluidity [46]. In 1947, Bogoliubov modeled small excitations in a weakly interacting gas as phonons
of the BEC and connected their dispersion relation to superfluidity [43]. Within the theoretical research
on quantum vortices, superfluidity and liquid helium pioneered by Landau in 1941, Onsager in 1949 [47],
Penrose in 1951 [48] and Feynman in 1955 [49], in 1961 the Gross-Pitaevskii equation was theorized by
Gross and Pitaevskii [50, 51] for the description of weakly interacting systems 8.

It is nevertheless only in 1995 that the first BECs are experimentally realized in a gas of rubidium
atoms by Cornell andWieman [52]9, and in a gas of sodiumatoms by Ketterle [53]. The BECs experiments
in AnalogGravity [54, 33, 34] conducted in the last decadehave to be framed in this tradition of theoretical
and experimental knowledge [37].
2010s : Analog experiments in one-dimensional quasi-condensates

There is no true Bose-Einstein condensation at low dimension: thermal or quantum phase fluctuations
prevent off-diagonal long range order in a 1D or 2D Bose system. At finite temperature this can be seen
as resulting from Hohenberg-Mermin-Wagner theorem [55, 56], and at T = 0 from its generalization by
Pitaevskii and Stringari [40]. Nevertheless, a 1D mean-field theory [57] can be applied as long as d < ξ,
with d the average distance between particles and ξ the healing length of the system. In 1D, where the
transverse motion is freezed, the zero temperature one-body density matrix behaves as

⟨Ψ̂†(x)Ψ̂(x′)⟩ ∝ exp

(
− mc

2πℏn1
ln
r

ξ

)
(1.4)

with r = |x − x′|, c the speed of sound and n1 the linear density. In the above expression (1.4) a low
energy approximation is made, relying on a hydrodynamic description valid only for distances r much
greater than the healing length ξ and involving momenta up to ℏ/ξ. Expression (1.4) corresponds to a
phase coherence length

ℓϕ = ξ exp

[
π
√
n1a2⊥/2a

]
(1.5)

where a is the 3D s-wave scattering length and a⊥ =
√
ℏ/mω⊥, ω⊥ being the angular frequency of the

transverse trapping potential. It turns out that experimental conditions can be worked out such as to
extend the long-range order to macroscopic distances [58]. Indeed, as long as quantum correlations are
measured over distances which are smaller than the phase coherence length ℓϕ one can still be, at zerothorder in the expansion of the field operator, in a 1D meanfield regime10. Hence, for a quasi-1D guided BEC,
the Bogoliubov approximation, i.e. the expansion of the field operator in a classical mean field term
and a small quantum fluctuation term (see (3.3) in Chapter 3), is valid in the “1D mean field regime” [57]
defined by (

a

a⊥

)2

≪ ntypa≪ 1 (1.6)
where ntyp is the typical linear density (number of atoms per unit length). The left inequality in (1.6)
ensures that the phase coherence length ℓϕ is exponentially large compared to the healing length, see.
(1.5). The inequality at the right ensures that the transverse degrees of freedom are frozen 11. For a
8In a weakly interacting system the scattering length characterizing the interactions is smaller than the averagedistance between particles.9The signature of Bose-Einstein condensation was recognized in a narrow peak exhibiting "a nonthermal,anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap" over abroad isotropic thermal velocity distribution [52].10Corrections to this leading order approximation will be considered in Chapter 5.11Taking the kinetic energy per particle Ekin to be of the order of ℏ2n21/2m and the interaction energy per particle
Eint to be of the order of g1Dn1 ∼ 2aℏωperp and imposing and imposing Eint ≪ ℏω⊥ and Eint ≪ Ekin, oneretrieves the relations given in (1.6).
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transverse trap of frequency of 1 kHz, one gets (a⊥/a)
2 = 1.7 × 10−5 and 2.6 × 10−4, for 23Na and

87Rb, respectively. Hence the domain of validity of the 1D mean field approximation used in the present
work typically ranges over four orders of magnitudes in density. In the regime where (1.6) holds, the
background classical field Φ of expansion (3.3) is solution of a Gross-Pitaekskii equation which is the
stationary and classical version of Eq. (3.2), where the non-linear interaction parameter g is defined as
g = 2ℏω⊥a.The experimental realization of an analog black hole by the Technion Group [34, 35] is close to what
is here called the "waterfall" configuration (see Chapter 3). With this theoretical configuration, where
the potential U(x) is a step function and the upstream profile ϕu(x) is half that of a dark soliton, onecan reproduce important aspects of the experimental density-correlation pattern reported in [34]12. In
the experiment, a trapped quasi 1D BEC13 of 8000 87Rb atoms14 is swept from right to left at constant
velocity 0.18mmsec−1 by a potential step created by a laser beam15. In the laser frame, the BEC is then
flowing from right to left. The apparent velocity of the flow in the laser frame is, by current nv conser-
vation, in the the upstream and downstream asymptotic regions vu ∼ 0.2mm.s−1 and vd ∼ 0.9mm.s−1

respectively. The upstream density and upstream speed of sound are of the order nu ∼ 90µm−1 and
cu ∼ 0.5mm.s−1 respectively, the downstreamdensity and downstream speed of sound of nd ∼ 20µm−1

and cd ∼ 0.3mm.s−1. The BEC is therefore subsonic upstream and supersonic downstream. Measure-
ments are performed in a region of the order 100µm and the measured analog Hawking temperature is
of the order of TH ∼ 0.35 nK16.

1.4 . Introduction to the topology of quantum vortices

In classical fluids the identification of topological critical points proves helpful for classifying flow
patterns [59, 60] and studying two-dimensional spatio-temporal chaos and turbulence [61, 62, 63, 64, 65].
As they do in the classical context [66, 67, 68, 69, 70], vortices plays a major role in the route to two-
dimensional quantum turbulence [71, 72, 73, 74, 75, 76, 77, 78, 79]. Indeed, in 2D quantum fluids, vortices
are both topological singularities and the building blocks of turbulent scaling regimes. The quantization
of vorticity was already understood in the 50’s by Onsager, Feynman, Gross and Pitaevskii [47, 49, 50, 51]
as part of a broader theoretical research on Bose-Einstein condensation, superfluidity and liquid helium.
In the study presented in Chapter 6 we describe the onset and decay of 2D quantum turbulence through
a temporal study of the number of critical points and show that a topologically constrained kinetic theory
gives an excellent account of the experimental survey of the group of Dario Ballarini at Lecce Institute of
Nanotechnology.

Indeed, we present here a new approach to two-dimensional quantum turbulence that incorporates
key topological constraints previously overlooked in the field. While quantum turbulence is typically
associated with the proliferation of quantum vortices, in two-dimensional systems, fundamental topo-
logical rules demand the involvement of additional critical points indentified by specific sets of topological
charges, namely the vorticity index IV and the Poincaré-Hopf index IP . We enumerate these points in a
compressible polariton superfluid and identify their elementary creation mechanisms. This allows us to
develop a model that accurately captures the formation kinetics of vortices and of all the critical points.
Our results highlight the crucial role of topological conservation laws in both the growth and decay of
two-dimensional quantum turbulence.

12There are nonetheless some caveats, see [39] for a discussion.13The condensate is trapped radialy by a laser beam of 3.6µm waist and 812 nm. "The radial trap frequency of 140Hz is greater than the maximum interaction energy of 70 Hz, so the behavior is 1D" [33].14In the state F = 2,mF = 2.15"The horizon is created by a very sharp potential step, achieved by short-wavelength laser light (0.442µm), andhigh resolution optics (NA 0.5)"[33]. In order to create the step potential the Gaussian beam is half blocked.16The experimental temperature of the BEC is difficult to evaluate but the theoretical two-point density correlationfunction can fit the experimental data up to two times the Hawking temperature [39].
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2 - MODELING BLACK HOLES WITH ANALOG SYSTEMS

In this section we will consider the mathematical formalism that justifies the analogy between grav-
itational systems and hydrodynamical flows. We intend to show how the evolution of a perturbation in
a fluid can be modeled mathematically in terms of propagation in an effective curved space-time met-
ric. To this end, we will start from Einstein equations and recall their expression in vacuum in order to
define from them the Schwarzschild metric. The Klein-Gordon equation for a massless scalar field in a
Schwarzschild curved space-time will then be mapped to the evolution of a sonic wave in a fluid in order
to justify the hydrodynamical analogy in classical and quantum fluids. Then, Hawking radiation will be
derived in the gravitational framework by considering the simplest case of a collapsing mass distribu-
tion, i.e. the Vaidyametric. Finally the expression of the the analog Hawking radiation in hydrodynamical
systems will also be derived, thus completing the analogy.

2.1 . THE SCHWARZSCHILD BLACK HOLE

2.1.1 . From Einstein Equations to Schwarzschild Black Hole
Einstein equations [1, 2] are given by the tensorial equations1

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (2.1)

where Rµν is the Ricci tensor, R = gµνRµν the scalar curvature, gµν the metric tensor, G Newton’s gravi-
tational constant, c the speed of light in vacuum and Tµν the energy-momentum tensor2. Greek indices
refer to the four components of the position four-vector. On the left hand side, the Ricci tensor is given
by

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂µΓ

ρ
µρ + Γρ

µνΓ
σ
ρσ − Γρ

µσΓ
σ
νρ (2.2)

where Rρ
µρν = gσρRσµρν is the Riemann curvature tensor, with the Christoffel symbols given by

Γµ
νρ =

1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ) (2.3)

This means that the left hand side of (2.1) is only a function of the metric tensor gµν and of its first and
second derivatives. Contracting (2.1) with gµν one gets

R = −8πG

c4
T

with T = gµνTµν . Replacing this expression of R in (2.1) one gets another covariant expression of the
same Einstein equations (2.1), i.e.

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
(2.4)

For a non-rotating electrically-neutral macroscopic matter distribution of total mass M considered as
punctual and fixed at the origin, all the components of the energy-momentum tensor are zero for any
x(t) ̸= 0, which means that in vacuum Einstein equations reduce to

Rµν = 0 (2.5)
Then, for our mass distribution, it can be shown after some algebra3 that the most general spherically
symmetric vacuum (i.e. outside themass) solution of the Einstein field equations (2.5) is themetric tensor
1We neglect here the term+Λgµν , with Λ the cosmological constant, that should also appear on the left-hand-sideof equation (2.1).2In General Relativity the tensors gµν , Rµν and Tµν are all symmetric, which means that for any tensor Xµν oforder 2 one hasXµν = Xνµ.3For example, see Refs. [[1], [2]]. The computation is performed knowing that :(1) in General Relativity, the choiceof coordinates system is arbitrary ; (2) in the limit cases where there is no mass (M → 0) or when we are far fromit (r → ∞) one must retrieve the Minkowski space-time with signature (+ − −−) ; (3) the different components
gµν of the metric tensor must of course verify Einstein equations in vacuum (2.5); (4) the limit of weak field mustbe compatible with Newton’s potential ϕ = −MG/r withM the global mass of the punctual body.
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gµν defining, in spherical coordinates, the interval ds2 = gµνdx
µdxν as

ds2 =
(
1− rs

r

)
c2dt2 − 1

1− rs
r

dr2 − r2dΩ2

dΩ2 = sin2(θ)dϕ2 + dθ2

rs =
2MG

c2

(2.6)

where rs is the Schwarzschild radius or gravitational radius. This metric is called the Schwarzschild metric.
It is immediately seen that for rs = 0 thismetric reduces to the pseudo-euclidianmetric, i.e. toMinkowski
space-time. On the contrary, when rs ̸= 0 this metric has two singularities : one in r = 0 and the other
in r = rs. Furthermore, if r > rs the signature (i.e. the sign of the gµµ) of the metric is (+−−−) whereas
if r < rs the signature is (−+++). Therefore rs constitutes an horizon that distinguishes two regions ofspace-time : in one (r > rs) the variable t if of type time and the variable r of type space whereas in theother (r < rs) it is the other way around with t of type space and r of type time.Of the two singularities, the one at r = rs is unphysical, i.e. it is only related to the choice of the
coordinate system. Defining

cdt̄ = cdt+

√
rs/r

1− rs
r

dr (2.7)
the metric (2.6) can be expressed in the so-called Painlevé-Gullstrand coordinates

ds2 =
(
1− rs

r

)
c2dt̄2 − 2

√
rs
r
c dt̄ dr − dr2 − r2dΩ2 (2.8)

where it can be seen that the singularity at r = rs has disappeared and the only singularity left is the oneat the origin.
The Schwarzschild observer is a far observer. The Painlevé-Gullstrand observer is a free-falling ob-

server. By definition for the propagation of a light beam one has ds2 = 0, which implies that a radial null
geodesic, i.e. ds2 = 0 for dΩ = 0 (purely radial trajectory), is described in our two reference frames as4

c
dt

dr
= ± 1

1− rs
r

c
dt̄

dr
=

1

±1−
√

rs
r

(2.9)
As expected when r → ∞ the light-cones are just the 45 degrees slopes of the Minkowski space-time.
But, according the Schwarzschild observer, as one comes closer to rs then the slopes get steeper with
the conemerging in a vertical line at rs. This means that an observer located in theMinkowski-like region
of the metric, i.e. at Robs ≫ rs, will never see ingoing rays crossing rs because of the infinite gravitational
red-shift exhibited by any light ray leaving the Schwarzschild gravitational field. Indeed in this reference
frame, one can define a local proper time at the ri position as

dτi =

√
1− rs

ri
dt (2.10)

with t the proper time at infinity, and then the ratio of the frequencies νa and νb (measured in their
respective proper times) of an outgoing light ray emitted at ra and propagating to rb, with rs < ra < rb,will be given by

νb
νa

=
dτa
dτb

=

√
1− rs

ra√
1− rs

rb

< 1 (2.11)
since ra < rb. For ra = rs, the ratio (2.11) goes to zero and the red-shift is infinite.
4The given expressions are obtained just by solving ds2 = 0 as a second order equation for dt/dr and dt̄/drrespectively .
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According to the Painlevé-Gullstrand observer, which can be taken, contrary to the Schwarzschild
observer, as a local observer at rs, we see from (2.9) that an ingoing light ray can freely pass (inwards)
through rs but no outgoing ray emitted at r < rs can pass (outwards) through rs. We will therefore say
that a neutral non-rotating spherical mass distribution whose total mass M concentrates in a sphere
of radius lower than the Schwarzschild radius rs generates a stationary black hole that is named a
Schwarzschild Black Hole, with the Schwarzschild radius rs being the event horizon of the Schwarzschildblack-hole5. Then the mass of the body collapses to the origin in what is called a gravitational singularity.
The name black hole refers to the fact that there is no way out once any massive or massless particle
penetrates the region r < rs. A non-rotating neutral black-hole is completely determined by its mass.

Finally, the surface gravity κ [80], which has the dimension of an acceleration, is computed by evalu-
ating at rs the variation of dr/dt̄ with respect to r for a null radial geodesic

κ =

(
c
d

dr

dr

dt̄

)
r=rs

=
c2

2 rs
(2.12)

We will see that the Hawking temperature TH of the Hawking radiation is proportional to the surface
gravity κ of the black hole.

2.1.2 . Klein-Gordon equation in curved space-time
We are interested in the propagation of a massless scalar field in the Schwarzschild space-time. The

dynamics of such a field is obtained through the Klein-Gordon equation. This equation is simply obtained
by promoting to quantum operators the terms E → iℏ∂t and p → −iℏ∇ in the Einstein’s relation E2 =

(mc2)2 + (pc)2. For a massless scalar field ψ(t, r) one obtains[
1

c2
∂2t −∆

]
ψ = 0 (2.13)

where 1
c2
∂2t − ∆ is the d’Alembert operator. Using ηµν = diag(+1,−1,−1,−1) and xµ = (ct,x), this

relation can be rewritten as
ηµν∂µ∂νψ = 0 ⇒ ∂µ∂

µψ = 0

which corresponds to a dynamics determined by a pseudo-euclidian metric. In curved space-time the
partial derivatives ∂µ have to be promoted to covariant derivates∇µ defined as

∇µA
ν = ∂µA

ν + Γν
ρµA

ρ (2.14)
with Aµ a contravariant four-vector. When ν = µ, one can show [1] that

∇µA
µ =

1√−g∂µ
(√−gAµ

) (2.15)
with g the (negative) determinant of themetric tensor gµν . Knowing that∇µ = gµν∇ν and∇νψ = ∂νψ for
ψ a scalar, one gets∇µψ = gµν∇νψ = gµν∂νψ. But∇µψ is a contravariant four-vector just as Aµ. Hence,
substituting Aµ in the last relation by our expression of ∇µψ, one obtains eventually the d’Alembert
operator in curved space-time

∇µ∇µψ =
1√−g∂µ

(√−ggµν∂νψ
) (2.16)

With the d’Alembert operator so defined, the Klein-Gordon equation for a massless scalar field in curved
space-time reads

∇µ∇µψ = 0 (2.17)
5Let us recall that the Schwarzschild metric is valid for describing the vacuum around any neutral non-rotatingspherical mass distribution. The radius of this mass distribution does not have to be smaller than rs. If it does,the mass distribution collapses to the r = 0 singularity of the metric, thus generating a black-hole.
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2.2 . ACOUSTIC ANALOGS OF SCHWARZSCHILD METRIC

Now that we have our dynamic equation for a scalar field in curved space-time and that we can
implement this equation with the Schwarzschild metric, we are going to see how a sonic perturbation in
a fluid can indeed be modeled by such a formalism. We will then quickly see how BECs dynamics can fit
in this hydrodynamical approach.

2.2.1 . Fluid equations and acoustic approximation
As already said, Unruh [16] noticed that a sonic wave in a fluid behaves as a massless scalar field in

curved-space time. Therefore, taking gµν to be the Schwarzschild metric generating a curved space-time
close to a black hole horizon, we can use (2.17) to study the behavior of a massless scalar field ψ near
the horizon. Furthermore, if one considers a flow where there is a subsonic region and a supersonic
region, the sonic waves will propagate in an effective curved space-time with the supersonic region being
the acoustic analog (i.e. a dumb hole) of a gravitational black hole [37]. Likewise the immaterial frontier
between subsonic and supersonic flow will be an acoustic analog of the event horizon of a gravitational
black hole.
Knowing that a sonic wave is a massless scalar field, for a non-relativistic non-viscous barotropic6 fluid,
the dynamics is described by equations

∂tρ+∇ · (ρv) = 0 (2.18)
∂tv + (v · ∇)v = −1

ρ
∇p (2.19)

p = p(ρ) (2.20)
where ρ(t, r) is the density of the fluid, v(t, r) its speed and p(t, r) the pressure field. The first equation
(2.18) is the equation for mass conservation, the second one (2.19) is the Euler equation whereas the third
one (2.20) allows for closing the systemby defining the pressure p as an increasing function of the density
ρ. One wants also the fluid to have null vorticity, which means that for every t, one must have∇∧v = 0.
This last expression allows to set v = ∇ψ with ψ(t, r) a scalar field that can be identified with the velocity
potential [37].
We can now resort to perturbation theory in order to model the propagation of small fluctuations in a
fluid. For (ψ0, ρ0, p0) an exact solution of previous equations (2.18), (2.19) and (2.20), we look for a generalsolution (ψ, ρ, p) at first order of the formψ(t, r)ρ(t, r)

p(t, r)

 =

ψ0(t, r)
ρ0(t, r)
p0(t, r)

+ ε

ψ1(t, r)
ρ1(t, r)
p1(t, r)

 (2.21)

with (ψ1, ρ1, p1) the perturbation and ε a small dimensionless parameter. We then linearizes the fluid
equations [37]. After some algebra, setting dp(ρ0)/dρ = c2(ρ0) = c2 with c the sound speed in the
moving fluid frame, one obtains, without loss of information, a unique partial differential equation of
second order

∂t

(ρ0
c2

(∂tψ1 +∇ψ0 · ∇ψ1)
)
= ∇ ·

(
ρ0∇(ψ1)−

ρ0
c2

(∂tψ1 +∇ψ0 · ∇ψ1)∇(ψ0)
) (2.22)

The resolution of (2.22) for ψ1 allows then to find ρ1 and p1. One can also notice that for a non flowing
fluid, i.e. for∇ψ0 = 0, the relation (2.22) reduces to(

1

c2
∂2t +∆

)
ψ1 = 0

which is, as expected, the Klein-Gordon equation in flat space-time for a massless scalar field, i.e. here
the d’Alembert equation for the velocity potential of an acoustic perturbation propagating at speed c in
a static medium.
6In a barotropic fluid the lines of equal pressure (isobar) are parallel to the lines of equal density (isopycnal).
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2.2.2 . Sonic wave in a fluid as a massless scalar field in curved space-time
In order to demonstrate (see Refs. [37] and [17]) that the propagation of sonic waves in a fluid is anal-

ogous to the dynamics of massless scalar fields in curved space-time, we will denote the temporal index
t as 0 and the spatial indices as i or j and will use Einstein’s convention for sommation over repeated
indices. Relation (2.22) thus becomes
∂0

(ρ0
c2
∂0ψ1

)
+ ∂0

(ρ0
c2
∂j(ψ0)∂j(ψ1)

)
+ ∂i

(ρ0
c2
∂i(ψ0)∂0ψ1

)
+ ∂i

(
ρ0∂

j(ψ0)∂
i(ψ0)− ρ0c

2δji

c2
∂j(ψ1)

)
= 0

We can then compare this last relation to
∂0
(√−gg00∂0ψ1

)
+ ∂0

(√−gg0j∂j(ψ1)
)
+ ∂i

(√−ggi0∂0ψ1

)
+ ∂i

(√−ggij∂j(ψ1)
)
= 0 (2.23)

which is nothing else but ∇µ∇µψ1 = 1√
−g
∂µ (

√−ggµν∂νψ1) = 0 with ∇µ∇µ the d’Alembert operator in
curved space-time (2.16) and g the determinant of the matrix gµν . Consequently, a term-to-term identifi-
cation between our two relations allows for determining the 4× 4matrix gµν as

gµν =
ρ0
c

((
c2 −V2

)
Vj

Vi −δij

)
(2.24)

where V = ∇ψ0 and V i = ∂iψ0. One immediately recognizes the metric of curved space-time with
signature (+−−−) expressed in cartesian coordinates. Then, for a speedV purely radial, i.e. for Vθ = 0

and Vϕ = 0, one sees that the metric has same shape as the gravitational Painlevé-Gullstrand metric
(2.8), since it generates an interval of the form

ds2 =
ρ0
c

[(
c2 − Vr

2
)
dt̄2 − 2Vrdt̄dr − dr2 − r2dΩ2

] (2.25)
The choice of coordinates being arbitrary, one can modify the time origin by setting

dt = dt̄− Vr
c2 − V 2

r

dr (2.26)
One then recovers an interval analogous to the Schwarzschild interval (2.6)

ds2 =
ρ0
c

[(
1−

(
Vr
c

)2
)
c2dt2 − 1

1−
(
Vr
c

)2dr2 − r2dΩ2

]
(2.27)

Indeed, ρ0/c being only a multiplying factor, one can see that here 1− (Vr/c)
2 plays the role of 1− (rs/r)in (2.6), with Vr the speed of a radial transsonic flow [16]. Close enough to the horizon, i.e. at zero order,

ρ0(r) can be considered as a constant ϱ, and since c is a function of ρ0(r), it will be constant too. Onecould therefore manipulated the metric (2.27) without worrying about the constant multiplying factor.
Finally, for a one-dimensional flow along the x axis and towards positive x, our analog Schwarzschild
metric reduces to

gµν =
ϱ

c

((
c2 − V 2

)
0

0 − 1

1−(V
c )

2

)
(2.28)

which, in Painlevé-Gullstrand coordinates, corresponds to
gµν =

ϱ

c

((
c2 − V 2

)
−V

−V −1

)
(2.29)

2.2.3 . Gross-Pitaevskii equation and curved space-time
In this work, we will be interested in a one-dimensional quasi-condensate, whose dynamics is de-

scribed by the time-dependent Gross-Pitaevskii equation for the field operator Ψ̂(x, t) of an indistiguish-
able bosonic many-particle system :

iℏ∂tΨ̂ = − ℏ2

2m
∂2xΨ̂ + [U(x) + g0n̂]Ψ̂ (2.30)
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with U(x) an external potential, g0 a coupling constant7 and n̂ = Ψ†Ψ. In the classical mean-field approx-
imation of our field operator one can set

Ψ̂(x, t) → ψ0(x, t) =
√
ρ(x, t)eiθ(x,t) (2.31)

using the density-phase representation of the complexmean-field. It is then easily shown that this equa-
tion can be recast in such a way as to describe the propagation of a real massless scalar field in an curved
effective metric modeling the curvature of a space-time gravitational metric [81]. Indeed, in the density-
phase representation, the previous time-dependent Gross-Pitaevskii equation reduces to the continuity
equation and Euler equation of hydrodynamics for an irrotational inviscid fluid

∂tρ+ ∂xρv = 0

ℏ∂tθ = − ℏ2
2m(∂xθ)

2 − ℏ2
2m

∂2
x
√
ρ√

ρ − gρ− U(x)

(2.32)

where v = ℏ
m∂xθ and where the second term on the right hand side represents a "quantum pressure".

Taking into account small first-order fluctuations ρ1 and θ1 around the mean-field defined by ρ0 and θ0,i.e.
ρ(x, t) → ρ0(x, t) + ρ1(x, t)
θ(x, t) → θ0(x, t) + θ1(x, t)

(2.33)
the density-phase Gross-Pitaevskii equations (2.32) can be expanded at first order. When the system is
considered at scales much larger than the healing length ξ8, i.e. in the hydrodynamic approximation,
after some algebra (see [81]), an equation for the scalar field θ1, representing the dynamics of the con-
densate phase fluctuations, is obtained. This dynamics is given by a curved space-time equation

1√−g∂µ
(√−ggµν∂νθ1

)
= 0 (2.34)

with
gµν =

ρ0
mc0

((
c20 − v0

2
)

−v0
−v0 −1

)
(2.35)

which is nothing else but our analog Schwarzschild metric in Painlevé-Gullstrand coordinates (2.29),
parametrized by the zeroth-order mean-field density ρ0 and velocity v0 (given by v0 = (ℏ/m)∂xθ0 where
θ0 is the velocity potential) of the condensate, with c0 (given by mc20 = g0ρ0) the speed of sound in the
condensate. Hence, the Gross-Pitaevskii equation can be transposed in the curved space-time formalism
in order to study the dynamics of a scalar field evolving in an effective metric. The sign of c20−v20 changesfrom+1 to−1 when the system is brought from a subsonic regime to a supersonic regime respectively.
One will have an acoustic horizon at c0 = v0 and the system will be referred to as an acoustic black-hole.

2.3 . HAWKING RADIATION

2.3.1 . Klein-Gordon inner product
The Klein-Gordon inner product in curved space-time is defined as :

(f1, f2) = −i
∫
Σ
dΣµ(f1∂µf

∗
2 − f∗2∂µf1) (2.36)

7In the Gross-Pitaevskii equation the coupling constant is usually referred to simply as g. We named it here g0 inorder to avoid confusion with the determinant of the metric tensor that we already referred to as g.8The healing length ξ of the system can be defined either as : (1) the typical length-scale over which, for a trappedcondensate, the uniform density in the bulk of the system varies in order to vanish at the confining borders ;(2) the wavelength at which the dispersion relation of the excitations of the system goes from a linear regime(collective excitations) to a quadratic regime in the wavevector (quasi-particle regime) [58].
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with Σ a Cauchy hyper-surface, i.e. a hyper-surface of constant time, and dΣµ = dΣnµ the volume
element where nµ is a future directed unit normal vector to Σ. In Minkowski flat spacetime the Klein-
Gordon inner product reduces to9

(f1, f2) = −i
∫
d3x(f1∂tf

∗
2 − f∗2∂tf1) (2.37)

It has been proven, using Gauss’s theorem, that the Klein-Gordon inner product is independent of the
chosen Cauchy hyper-surface [82]. Defining a positive energy function as

fω =
e−iωt

2πr
√
2ωc

e±ikr (2.38)
with ω = ck and c the speed of light, one obtains straightforwardly in Minkowski spacetime

(fω, fω′) = δ(ω − ω′)
(fω, f

∗
ω′) = 0

(f∗ω, f
∗
ω′) = −δ(ω − ω′)

(2.39)

for ω and ω′ two positive energies. Then {fω, f∗ω} constitutes (see section 2.3.5) a complete orthonor-
mal basis for the space of positive/negative energy/norm solutions of the flat spacetime Klein-Gordon
equation (2.17).

2.3.2 . Bogoliubov transformation and Hawking radiation
In a curved spacetime, contrary to the flatMinkowski spacetime, there is no natural splitting ofmodes

between positive and negative frequency solutions : different choices may lead uppon quantization to
different vacua [82]. Consequently, there is no clear way to formalise a definite particle state. However,
when the spacetime is asymptotically stationary one can define a natural notion of positive frequency
mode in the asymptotic regions. For ξµ a timelike vector field, a natural notion of positive frequency
modes ui is given by

ξµ∇µuj = −iωjuj (2.40)
with wj > 0 [82]. In Minkowski spacetime the Killing time t obeys ξµ∇µt = 1 for ξ0 = ∂t. Then one can
define a positive frequency mode uj ∝ exp−iωjt, with (2.40) reducing to

∂

∂t
uj = −iωjuj (2.41)

Hence, in his 1974 paper Black hole explosions ? [10], Hawking considers, "in an asymptotically flat
space time containing a star which collapses to produce a black hole", a massless Hermitian scalar field
ϕ̂ obeying the Klein-Gordon equation in curved spacetime 2.17 and given by

ϕ̂ =
∑
i

[fiâi + f∗i â
†
i ] (2.42)

with âi and â†i being respectively the annihilation and creation operator for incoming scalar particles and
fi complex functions of space x⃗ and time t for a given positive energy ωi

10, with f∗i the complex conjugate
of fi. The initial vacuum state is defined as the state containing no incoming particles, that is to say, for
all i,

âi |0in⟩ = 0 (2.43)
The fi are a complete orthonormal family of complex valued solutions of the wave equation (2.17). On
past null infinity I−, i.e. in u = ct − r = −∞ for the black-hole singularity located in r = 0, I− these
fi are asymptotically in-going and positive frequency, which means that at I− they contain only positive
frequencies.
9Just by taking nµ = (1, 0, 0, 0), one is left with dΣ0 = dxdydz.10Here, as in Hawking’s paper [10], the energy space is discretized but one can easily take ∑i →

∫
dω withoutmodifying the reasoning.
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One can also express ϕ̂ in terms of outgoing waves pi and waves qi crossing the event horizon
ϕ̂ =

∑
i

[pib̂i + p∗i b̂
†
i + qiĉi + q∗i ĉ

†
i ] (2.44)

The pi are solutions of the wave equation (2.17) which are zero on the event horizon and are asymp-
totically outgoing, positive frequency waves, i.e. positive frequency on future null infinity I+, i.e. in
v = ct+ r = +∞ The qi are solutions of the same wave equation which contain no outgoing component,
i.e. they are zero on future null infinity I+. It is of course possible to write the pi and the qi as linearcombinations of the fi and f∗i , that is to say as

pi =
∑
j

αijfj + βijf
∗
j

qi =
∑
j

γijfj + ηijf
∗
j

(2.45)

Then, in theHawking effect, the timedependenceof themetric during the collapsewill cause a certain
amount ofmixing of positive and negative frequencies, which means that the βij and ηij will not bezero. Equating the ingoing and outgoing definitions of ϕ̂, i.e. writing

ϕ̂ =
∑
i

[fiâi + f∗i â
†
i ] =

∑
i

[pib̂i + p∗i b̂
†
i + qiĉi + q∗i ĉ

†
i ] (2.46)

one finds, by simply rearranging the terms of this last relation, that
âj =

∑
i

αij b̂i + β∗ij b̂
†
i + γij ĉi + η∗ij ĉ

†
i

â†j =
∑
i

βij b̂i + α∗
ij b̂

†
i + ηij ĉi + γ∗ij ĉ

†
i

(2.47)

This last expression is a Bogoliubov transformation. Then one has∑
j

[α∗
hj âj − β∗hj â

†
j ] = b̂h (2.48)

as long as ∑
j α

∗
hjαij − β∗hjβij = δih

∑
j α

∗
hjβ

∗
ij − β∗hjα

∗
ij = 0∑

j α
∗
hjγij − β∗hjηij = 0

∑
j α

∗
hjη

∗
ij − β∗hjγ

∗
ij = 0

(2.49)

The definitions of b̂†h, ĉh and ĉ†h are obtained in a similar way. Now, if there are no incoming particles, i.e. if
the initial state is |0in⟩, one has by definition

⟨0in| â†i âi |0in⟩ = 0 (2.50)
But one can see that in b̂†i b̂i a term (summed over h and j) in âj â†h appears. Since this term is nothing but
â†j âh + δjh, taking the average of b̂†i b̂i on the same initial state |0in⟩ one is left with

⟨0in| b̂†i b̂i |0in⟩ =
∑
jh

δhjβijβ
∗
ih =

∑
j

βijβ
∗
ij =

∑
j

|βij |2 (2.51)

Therefore if βij ̸= 0 the vacua of âi and b̂i are not the same : there is particle creation, i.e. presence of
outgoing particles without ingoing particles. In order to compute the βij , one must consider the Klein-
Gordon inner product (pi, f∗j ). Indeed from relation (2.45), one obtains, with the Klein-Gordon inner
product (2.36),

(pi, f
∗
j ) = −βij (2.52)

The previous Klein-Gordon inner product is defined on a given Cauchy surface of constant time. The
difficulty of evaluating such an inner product relies in the fact that an asymptotic outgoing solution must
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be traced back to the ingoing region (or vice versa) in order to evaluate its inner product with an ingoing
mode defined in this region. In the case of a black-hole, I+ alone is not a Cauchy surface since the
asymptotic future is given by I+ ∪ IH , with IH representing the future of the ingoing modes falling
in the black hole and I+ the future of the ingoing modes escaping at r = +∞ after crossing r = 0.
Therefore, the best Cauchy hyper-surface over which to evaluate the inner product (2.52) is I−.

Ignoring the ĉi and ĉ†i in Rel. (2.47), this last relation can be applied to the vacuum |0in⟩ of the âi,leading to
âj |0in⟩ = 0 ⇒ αij b̂i |0in⟩ = −β∗ij b̂†i |0in⟩ (2.53)

with implicit summation on index i. Writing
|0in⟩ = Ŝ |0out⟩ (2.54)

with Ŝ some generic invertible operator, one obtains
b̂kŜ = −Vkib̂†i Ŝ (2.55)

with implicit summation on index j andVki = [(αT )−1]kj [β
†]ji amatrixwhereαT and β† are the transpose

of α and the hermitian conjugate of β, respectively. Then, recalling that [x̂, p̂] = iℏ and that for bosons
[b̂, b̂†] = 1 with p̂ = −iℏ∂x̂ in position representation, one can write b̂k = ∂

b̂†k
, thus obtaining, for ∂

b̂†k
b†q =

δkq ,
∂
b̂†k
Ŝ = −Vkib̂†i Ŝ ⇒ Ŝ = N exp

(
−Vqib̂†ib†q

) (2.56)
with N a normalization constant. The in-vacuum |0in⟩ is therefore obtained by squeezing the out-
vacuum |0out⟩, with Ŝ the squeezing operator, i.e.

|0in⟩ = N e
∑

q,i −Vqib̂
†
i b

†
q |0out⟩ (2.57)

If β = 0 it can then be seen, according to the definition of the matrix V , that |0in⟩ = |0out⟩.
2.3.3 . Eddington-Finkelstein coordinates

In order to deriveHawking radiation in the Swarzschildmetric several coordinate changes are needed.
As we have seen in (2.9), in Schwarzschild coordinates radial null geodesic are given by

c2
dt2

dr2
=
(
1− rs

r

)−2 (2.58)
Then, one can define for r ̸= rs

r∗ = r + rs ln
|r − rs|
rs

(2.59)
where r∗ is called the Regge-Wheeler or tortoise coordinate. The absolute value |r − rs| implies that r∗ is
defined for any r greater or smaller than rs and is such that

r∗ =
r=0

0 lim
r→ rs

r∗ = −∞ lim
r→+∞

r∗ = +∞ (2.60)
One has therefore

dr∗

dr
= 1 +

rs
r − rs

=
r

r − rs
=
(
1− rs

r

)−1 (2.61)
both for r > rs and r < rs, which leads to(

c
dt

dr∗

)2

= 1 ⇒ cdt = ± dr∗ (2.62)
This last relation implies

d(ct∓ r∗) = 0 (2.63)
One then usually defines new coordinates v and u such that any fixed value of variables v and u given
by

v = ct+ r∗ u = ct− r∗ (2.64)
will represent an ingoing radial null geodesic and an outgoing radial null geodesic respectively11. Taking
the ingoing radial null geodesic12, one can therefore parametrize the non-angular part of the Schwarzschild
11One has cdt/dr∗ = −1 for v and cdt/dr∗ = +1 for u : hence ingoing and outgoing respectively.12One could take the outgoing radial null geodesic as well.
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metric with (v, r) or (t, v) instead of (t, r), since from the definitions (2.64) and (2.59) one can take v and
r as independent variables and consider t to be fixed as a function t(v, r) or v and t as independent
variables and considered r to be fixed as a function r(t, v). Considering that one has by definition

dv = cdt+ dr∗ = cdt+
(
1− rs

r

)−1
dr (2.65)

one obtains13 in the first case
ds2(v, r, θ, ϕ) =

(
1− rs

r

)
dv2 − 2drdv − r2dΩ2 (2.66)

and in the second case
ds2(t, v, θ, ϕ) = −

(
1− rs

r

) (
dv2 − 2cdtdv

)
− r2dΩ2 (2.67)

Dropping the angular part it can then be notice that
det gµν(v, r) = −1 det gµν(v, t) = −

(
1− rs

r

)2 (2.68)
Hence, whereas the second metric gµν(v, t, θ, ϕ) is not invertible both in r = 0 and r = rs since there
det gµν(t, v, θ, ϕ) = 0, the firstmetric, while still diverging in the gvv component for r = 0, is now invertible
in r = rs where the determinant is finite. Therefore the metric gµν(v, r) is now regular at rs, with no
divergence appearing when going from r+s to r−s . Let us therefore take this metric where v/c is a time
coordinate.

In this metric parametrized by coordinates (v, r, θ, ϕ), usually referred to as the ingoing (or advanced)
Eddington-Finkelstein coordinates, with v the time coordinate, we are interested in time-like and null-like
geodesics. We want therefore ds2 ≥ 0, that is to say for radial geodesics,(

1− rs
r

)
dv2 − 2drdv ≥ 0 (2.69)

and therefore, after dividing by dv2 which doesn’t change the inequality sign,(
1− rs

r

)
≥ 2

dr

dv
(2.70)

We are interested in future oriented geodesics, i.e. dv > 0. The left-hand-side of the inequality is strictly
positive for r > rs, which means that dr can have both positive and negative values. But for r < rsthe left-hand-side of the inequality is strictly negative and this implies that the right-hand-side must be
negative : in this case the propagation of any (be it massive or massless) particle can therefore only
occur towards r = 0. Furthermore, since there is no more divergence in r = rs, the propagation from
the region r > rs to the region r < rs can occur and the surface r = rs can be crossed : since once thissurface crossed for any particle there is no way back, the only possible direction of propagation being
inwards, the region r < rs is called a black-hole. The surface of the sphere of radius r = rs is called the
future event horizon of the black hole, the term future referring to the fact that this horizon is located at
constant u = +∞.

An analogous reasoning for the metric parametrized by coordinates (u, r, θ, ϕ), usually referred to as
outgoing (or retarded) Eddington-Finkelstein, with u the time coordinate, leads to the interval

ds2(u, r, θ, ϕ) =
(
1− rs

r

)
du2 + 2drdu− r2dΩ2 (2.71)

and to the radial geodesic relation
ds2 ≥ 0 ⇒

(
1− rs

r

)
≥ −2

dr

du
(2.72)

where the region r < rs allows only for outwards propagation. In thismetric the region r < rs is thereforecalled a white-hole and the surface of the sphere of radius r = rs is referred as the past event horizon ofthe white hole, the term past referring to the fact that this horizon is located at constant v = −∞. In
both set of coordinates the horizon is therefore located at infinity with respect to the time coordinate (u
or v) of the metric. The Kruskal coordinates can bring the horizons to a finite value (see [82]).
13The coordinate v represents time in one case and space in in the other.
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2.3.4 . Collapse in Vaidya spacetime
Vaidya spacetime is the simplest exact solution to Einstein’s equation that describes the formation of

a black hole and hence the simplest non-stationary spacetime describing particle creation from a black
hole [82]. In (v, r) coordinates, the mass M in (2.6) is taken to be v dependent, and the stress-energy
tensor Tvv is considered to be proportional to dM/dv =Mδ(v − v0). Therefore, since14

M(v) =MΘ(v − v0) (2.73)
the black hole is considered to be formed by a collapse of matter modeled by an ingoing null shock wave
at time v0. Before the formation of the black hole, i.e. for v < v0, one has the usual Minkowski space-
time. Since there is no black-hole this space-time is obtained from the Schwarzschild space-time (2.6) by
setting rs = 0 and therefore r∗ = r from Eq. (2.59). We will call this region "IN" and write it as

ds2in = c2dt2in − dr2in − r2indΩ
2

= dv2in − 2dvindrin − r2indΩ
2

= du2in + 2duindrin − r2indΩ
2

= duindvin − r2indΩ
2

(2.74)

Once the black-hole is formed, i.e. for v > v0, we are in the stationary configuration of the Schwarzschildblack-hole, i.e. rs ̸= 0 and r∗ ̸= r. This region, that we call "OUT", is most easily written, using (2.61), as
ds2out =

(
1− rs

rout

)(
c2dt2out − (dr∗out)

2
)
− r2outdΩ

2

=

(
1− rs

rout

)(
dv2out − 2dvoutdr

∗
out

)
− r2outdΩ

2

=

(
1− rs

rout

)(
du2out + 2duoutdr

∗
out

)
− r2outdΩ

2

=

(
1− rs

rout

)
duoutdvout − r2outdΩ

2

(2.75)

Since the Schwarzschild metric is parametrized by r, with r(r∗, t), r(v, t), r(u, t) or r(u, v)15, the continuity
of the metric imposes a matching at v = v0, i.e. at vin = vout = v0. This matching condition is written

rin(v0, tin) = rout(v0, tout) (2.76)
or

rin(v0, uin) = rout(v0, uout) (2.77)
according to the chosen coordinate system. For the sake of clarity, let us rewrite relations (2.64) defining
r∗ in each region when working with the (u, v) coordinates. One has in the "IN" region

rin(vin, uin) =
vin − uin

2
(2.78)

since here r∗in = rin because (2.59) is defined for rs = 0 in region "IN". In the "OUT" regions one has
instead

r∗out(vout, uout) =
vout − uout

2
= rout(vout, uout) + rs ln

( |rout(vout, uout)− rs|
rs

)
(2.79)

Applying the matching condition (2.77) in the previous relation (2.79) evaluated at v0, yields straightfor-wardly
v0 − uout

2
= rin(v0, uin) + rs ln

( |rin(v0, uin)− rs|
rs

)
(2.80)

14Here Θ is the usual unit step function.15Of course r(r∗, t) = r(r∗) since the metric is stationary.
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and eventually, applying (2.78),
uout = uin − 2 rs ln

( |v0 − uin − 2 rs|
2 rs

)
(2.81)

Now uout is a function of uin. We have seen that the horizon is located at u = +∞ (what we called the
future horizon, i.e. the horizon of a black hole) in a Schwarzschild metric. Here our metric is such in the
"OUT" region and therefore the horizon is located at uout = +∞. From expression (2.81) we can see that
when uin = −∞ one has uout ≈ uin which means that at early times uout = −∞, i.e. long before the
black hole was formed, a positive frequency mode of frequency ω/2π is not altered when going from the
first region to the second : because the whole space is a Minkowski space when uout = −∞, there is no
scattering and hence no mixing of frequencies. But the more uin gets closer to vH = v0 − 2rs the more
uout differs from uin since one has uout → +∞ when uin → vH .

2.3.5 . Real Massless Scalar Field in Vaidya space-time
This space-timewe considered is the simplest space-time for the Hawking effect. The simplest field to

quantize in such a space-time is a real massless scalar field. This field obeys the Klein-Gordon equation
in curved space-time given in (2.17). Since the configuration is spherically symmetric one can write the
massless scalar field ψ as

ψ(xµ) =
∑
l,m

fl(r, t)

r
Y m
l (θ, ϕ) (2.82)

with Y m
l the spherical harmonics. In the "OUT" region the equation (2.17) can easily be computed with

the (r∗, t) coordinates and, after some algebra, it reads16
(
∂2t − ∂2r∗ + Vl(r)

)
fl(r, t) = 0 Vl(r) =

(
1− rs

r

)( l(l + 1)

r2
+
rs
r3

)
(2.83)

In the "IN" region, the equation is obtained from the previous (2.83) just by setting rs = 0, i.e. r∗ = r : in
this region, the equation is simply the one of flat space. The heart of the Hawking process takes place at
the horizon where the potential Vl(r) vanishes in both regions for l = 0. We will therefore take here the
potential Vl(r) to be identically zero everywhere in both regions and rename fl as f , with f solution of(2.83) with Vl(r) identically zero everywhere in both regions. A positive frequency solution will be given
by a harmonic time dependence in f(r, t), i.e.

f(r, t) = e−iωtf(r) (2.84)
which leads straightforwardly to

d2f(r)

dr∗2
+ ω2f(r) = 0 (2.85)

with r∗ = r in the "IN" region. One can also solve (2.17) using (u, v) coordinates. Then the equation
reads17

(4∂u∂v + Vl(r)) fl(r, t) = 0 (2.86)
with Vl(r) as defined in Eq. (2.83). With the potential Vl(r) taken to be identically zero everywhere in bothregions, one can then define

f(r, t) = F (u) +G(v) (2.87)
which is solution of equation

∂u∂vf(r, t) = 0 (2.88)
16The relation r2∇2Y m

l = −l(l + 1)Y m
l for spherical harmonics has been used, with ∇2 the Laplacian in sphericalcoordinates. Relation (2.61) must also be used since r∗(r).17Equation(2.86) is obtained straightforwardly from (2.83) just by applying relations ∂r∗ = ∂u−∂v and ∂t = ∂u+∂v.
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2.3.6 . Hawking radiation in Vaidya space-time
On past null infinity I−, the ingoing asymptotic solutions fω of (2.88) defined as

ψin
ω =

gω
r

=
e−iωvin/c

4πr
√
ωc

(2.89)
are such that18

(ψin
ω , ψ

in
ω′) = −4π i

∫
I−
dvin r

2(ψin
ω ∂vinψ

in
ω′

∗ − ψin
ω′

∗
∂vinψ

in
ω ) = δ(ω − ω′) (2.90)

Similarly, we define on future null infinity I+, the outgoing asymptotic solutions fω of (2.88)
ψout
ω =

fω
r

=
e−iωuout/c

4πr
√
ωc

(2.91)
are such that19

(ψout
ω , ψout

ω′ ) = −4π i

∫
I+

duout r
2(ψout

ω ∂uoutψ
out
ω′

∗ − ψout
ω′

∗
∂uoutψ

out
ω ) = δ(ω − ω′) (2.92)

In the Schwarzschild black hole metric the past null infinity I− is a Cauchy surface where the βωω′ coef-
ficients can be determined from20

βωω′ = −(ψin
ω , ψ

out
ω′

∗
) = 4π i

∫
I−
dvin r

2(ψin
ω ∂vinψ

out
ω′

∗ − ψout
ω′

∗
∂vinψ

in
ω ) (2.93)

once the mode ψout
ω has been traced back to this region. To do so, we have to consider a last condition.

Because of the spherical symmetry of the problem, while working in the (r, t) space-time a light ray
that is crossing r = 0 (before the black-hole is formed) "reflects" at 45° on the t-axis and one must
therefore have in region "IN" the condition

f(r = 0, t) = 0 (2.94)
The ingoing light ray v0 represents the shock wave of the black hole formation and the ingoing light

ray vH , with vH < v0 the last ray to escape to infinity without falling in the black hole : it is the ray that
generates the horizon along uout = +∞. These two rays reach r = 0 at ctH and ct0 respectively with
ct0 − ctH = 2rs as can be seen from Fig. 2.1, hence, using (2.63), v0 − vH = 2 rs. Before vH/c the scalarfield is constituted by both ingoing modes (not yet "reflected" on r = 0) and outgoing modes (already
"reflected" on r = 0). After vH there are no more outgoing modes since all the ingoing modes fall in the
black hole. Since nothing happens when crossing r = 0, the "reflected" outgoing mode uout(uin) is just
uout(vin) with the function uout defined in (2.81)21. Then, condition (2.94), implies

ψout
ω =

e−iωuout(uin)/c

4πr
√
ωc

− e−iωuout(vin)/c

4πr
√
ωc

Θ(vH − vin) (2.95)
At early times, i.e. when vin → −∞, one has

uout(vin) ≈
vin→−∞

vin uout(uin) ≈
vin→−∞

uin (2.96)
18Let us remark that v/c is a time coordinate whereas v is a space coordinate. On I−, the space coordinate variesfrom −∞ to +∞, with uout = −∞. The integration over sin θdθdϕ has already been performed, leading to thefactor 4π.19Rigorously, the following definition would only be true in a Minkowski spacetime where I+ is indeed a Cauchysurface at vout = +∞. In a black hole configuration the Cauchy surface is I+ ∪ IH , with IH the horizon drawnby the last outgoing light ray escaping to infinity before the creation of the black hole. This is the reason why wehave to choose I− as a Cauchy surface for evaluating the βωω′ coefficients. Let us also remark that rin = rout = r.20The Cauchy surface I− is defined far all vin and vout when uout → −∞. But for v > vH , i.e. for vout, all theingoing null rays fall into the null horizon uout = +∞ and there are no "reflect" modes to I+, hence here ψout

ω .The integration over I− can then be taken on the vin at uout = −∞.21The "reflection" at r = 0 happens only in the (r, t) coordinates : in an (x, t) coordinate the vin light ray would justcontinue to go straight. This is why one has just to change vin ↔ uin in the function uout when crossing r = 0.
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Figure 2.1: Penrose diagram of a Vaidya space-time. Due to spherical symmetry, the (ct, x) plane hasbeen folded in the the (ct, r) plane, with r the radial coordinate centered at the black-hole singularity,with rs the Schwarzschild event horizon. The lines of constant u and v define ingoing and outgoingnull rays, respectively (see (2.64)). The ingoing light ray v0 represents the shock wave of the black holeformation (it separates the "IN" region from the "OUT" region of spacetime) whereas vH represents thelast ingoing ray escaping u = +∞ : therefore the u constant black line is the null horizon of the blackhole. The thick dashed dark line is the black hole singularity : every ingoing ray emitted after vH falls intothe singularity. At early times an ingoing positive frequency mode ω is mapped to an outgoing mode ofidentical frequency (blue dashed arrows). At late times, close to vH , an outgoing positive energy modegets infinitely blue shifted (see (2.98)) when traced back to an ingoing mode (red dashed arrow to bluedashed arrow).
and upon "reflection" at r = 0 an ingoing positive frequency ω is mapped to the same outgoing positive
frequency ω. There is no particle creation and from (2.81) one has

βωω′ ≈
vin→−∞

0 (2.97)
At late times, i.e. when uout → +∞ and vin → vH , one must also have uin → vH , i.e.22

uout(uin) ≈
vin→vH

vH − 2 rs ln

( |vH − uin|
2 rs

)
uout(vin) ≈

vin→vH
vH − 2 rs ln

( |vH − vin|
2 rs

) (2.98)

An outgoing positive frequency ω is no longer mapped, upon "reflection" at r = 0, to an ingoing positive
frequency ω, since uout(vin) ̸= vin and uout(uin) ̸= uin. Hence,

βωω′ ̸=
vin→−vH

0 (2.99)
and one has particle creation. The explicit computation of the βωω′ can be found in Ref. [82]. It leads to

|αωω′ |2 = eℏω/kBTH |βωω′ |2 with TH =
ℏc

4πkBrs
(2.100)

22With vH = v0 − 2 rs by definition.
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Introducing a discretized ωi
23 and taking into account24∫ ∞

0
dω′ [|αωiω′ |2 − |βωiω′ |2

]
= 1 (2.101)

one obtains25
⟨b̂†i b̂i⟩in =

∫ ∞

0
dω′|βωiω′ |2 = 1

eℏωi/kBTH − 1
(2.102)

which corresponds to a thermal spectrum of temperature TH .
2.3.7 . Analog Hawking temperature

In order to conclude this section on the hydrodynamical analogy for Hawking radiation, we will show
how an analogous Hawking temperature for the analogous thermal radiation can indeed be well defined
in the hydrodynamical frame. In fact, considering quantum field theory in curved space-time, Hawking
theorized the existence of a thermal black body radiation emitted from a gravitational black hole. By
virtue of vacuum quantum fluctuations close to the event horizon, a black hole radiates at

TH =
ℏc3

8πkBGM
=

ℏ
2πkBc

κ (2.103)
where c is the speed of light in vacuum , ℏ the reduced Planck constant , kB Boltzmann’s constant, G
Newton’s constant ,M themass of the black hole and κ the surface gravity of the black hole. The surface
gravity is by definition the gravitational acceleration at the event horizon. For a Schwarzschild black hole,
the surface gravity was given in (2.12) and one obtains eventually the Hawking temperature

TH |Schwarz. =
ℏc

4πkBrs
(2.104)

One clearly sees that the smaller the radius (or the mass) the higher the temperature of the black hole.
Knowing that the thermal radiation of a solar mass black hole is of order 10−8 K whereas the Cosmic Mi-
crowave Background is of order 3K, any astronomical observation of Hawking radiation is highly unlikely.
On the contrary, experiments in Analog Gravity can allow an experimental verification of the analog ra-
diation.
Indeed, comparing (2.27) and (2.6), one can define an analog Hawking temperature [83]. To this end, let
us arbitrarily state that the flow becomes supersonic in R and let us, from (2.27), expand with respect to
r to first order f(r) = 1 − (Vr(r)/c(r))

2 around R. Close to R one has f(r) ≈ f(R) + f ′(R)(r − R) =

f ′(R)(r−R) since, by definition of the acoustic horizon, Vr(R)/c(R) = 1 and therefore f(R) = 0. Hence,
having

f ′(R) = −2VrVr
′c2 − 2Vr

2cc′

c4
= 2

c′(R)− Vr
′(R)

c

and also, from (2.6), expanding with respect to r to first order g(r) = 1 − rs/r around rs, i.e. g(r) ≈
g(rs) + g′(rs)(r − rs) = g′(rs)(r − rs) since by definition g(rs) = 0, with g′(rs) = 1/rs, one clearly seesthat 2(c′ − Vr

′)/c plays the same role in the acoustic frame as the one played by 1/rs in the gravitationalframe. Therefore, looking at (2.12), one can define an acoustic analog surface gravity term
κac = c(R)

∣∣∣∣∂ (c− Vr)

∂r

∣∣∣∣
R

(2.105)
Eventually this analog surface gravity leads to a well defined acoustic analog Hawking temperature

TH |Acoustic =
ℏ

2πkBc
κac (2.106)

23With a continuous normalization of the modes, the quantity ⟨b̂†ω b̂ω⟩in would represent the Hawking flux at fre-quency ω integrated for all times : it would then be infinite [82].24See (2.49).25See (2.51).
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This completes our acoustic analogy and allows us to state, in Unruh’s words, that indeed " [t]hemodel of
behavior of quantum field in a classical gravitational field is the motion of sound waves in a convergent
fluid flow " [16]. The radial dimension can then be modeled by a one dimensional flow along the x axis
with an acoustic horizon in xh defined by c(xh) = v(xh)

26 and with a one-to-one mapping of the relevant
physical observables between the analog system and the gravitational one. This bijective mapping is
summarized in Table 2.1.

Gravitational Black Hole Acoustic Black Hole
light speed c sound speed c(x)

radius rs = 2GM/c2 xh such that V (xh) = c(xh)

surface gravity κ = c2/2rs κac = c(xh)|∂(c− V )/∂x|xh

temperature TH ∝ κ TH |Acoustic ∝ κac

Table 2.1: Analogy terms between a gravitational Schwarzschild black hole ofmassM , withG thegravitational constant, and an acoustic black hole implemented in a fluid as a one-dimensionalflow with an acoustic horizon located at xh and V (x) the velocity of the flow. Clearly, if thecentral symmetry of the gravitational configuration is lost in such an analog configuration, thisacoustic model still captures the relevant radial dynamics of the gravitational black-hole.

2.3.8 . Limit of the Analogy
As a final remark, we will just signal themain limit of the analogy : the existence of supersonic modes

due to the violation of Lorentz invariance. The Doppler shifted Bogoliubov dispersion relation (see Rel.
(3.24) and Fig. 3.2 in Chapter 3) generates, due to dispersion effects, a zoology of modes that is richer
than in the gravitational framework. The analog system is thus tripartite where the gravitational one is
bipartite. This is a drawback of the analogy but, by considering the analog hydrodynamic system per se,
it is a nice feature that allow to study tripartite entanglement and nonlocality.

Furthermore, the existence of these supersonic modes allows us to translate the emission process
generated by the gravitational collapse into a stationary scattering process on the horizon. Due to the
dispersion effects, the physics of the analog Hawking radiation is mainly driven by long wavelength phe-
nomena. Then, the Hawking temperature that is given by the analog surface gravity (2.105) can also be
obtained by considering the scattering coefficient S02 of the "in" partnermode (2) onto the "out" Hawking
mode (0), as can be seen in Chapter 3. Indeed, the far exterior region of our one-dimensional black hole
is given by the asymptotic region x → −∞, where the average energy current at zero temperature [38]
reads

Π0 = −
∫ Ω

0

dω

2π
ℏω|S02(ω)|2 (2.107)

The transmission coefficient |S02(ω)|2 is directly related to the presence of the acoustic horizon and existsonly for ω < Ω. This coefficient is a signature of the analog Hawking radiation [38] and it can be fitted by
a thermal spectrum Γ× nTH

with Γ a constant27 and nTH
(ω) the thermal Bose occupation number

nTH
(ω) =

1

exp
(

ℏω
kBTH

)
− 1

(2.108)

where TH is the analog Hawking temperature. Because of the cut-off energy Ω the fitting to a thermal
spectrum is only partial. Indeed, as can be seen from Fig. 2.2 the fitting at low energy is quite good
and becomes less precise when ω → Ω because of the cut-off. The given estimations of the Hawking
26An infinte one-dimensional systemwillmimic the relevant physics generatedby the presence of the event horizonbut, contrary to the gravitational configuration, will have no singularity at r = 0.27It is the "greybody factor". At Γ = 1 the radiation is the purely thermal radiation of a black body.
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temperature TH and greybody factor Γ can therefore be considerably improved by considering only a
long wavelength expansion of |S02|2.

Figure 2.2: Fit of |S02(ω)|2 by aBose thermal spectrumnTH
(ω)of temperatureTH for the Flat Profile, DeltaPeak and Waterfall configurations (see Chapter 3. The values of the fitting parameters are : Γ = 1.143and kBTH/mc2u = 0.067 for Flat Profile, Γ = 0.997 and kBTH/mc2u = 0.125 for Delta Peak, Γ = 0.924and kBTH/mc2u = 0.142 for Waterfall. For a description of the three analog black hole configurations seeChapter 3.

35



36



3 - BECs ANALOG BLACK HOLES

BECs are promising analog systems. One can enumerate at least four main reasons for this : (1)
BECs are quantum systems and therefore exhibits quantum fluctuations, which are the core of Hawking
radiation phenomenon ; (2) in such systems, the two-point density correlation function allows for a ro-
bust signature of the Hawking radiation [36]1 ; (3) 1D configurations can be theoretically devised, which
make the phenomenon mathematically easier to study ; (4) some of such 1D configurations have been
experimentally implemented [33, 34], thus allowing for comparison between theoretical predictions and
experimental data. In this chapter we will review, within the Bogoliubov approximation, such zeroth or-
der background configurations as well as the first order quantum excitations defining the ingoing and
outgoing modes in the scattering process on the acoustic horizon.

3.1 . THE GROSS-PITAEVSKII EQUATION AND THE BOGOLIUBOV APPROXIMATION

3.1.1 . The 1D meanfield
The dynamics of BECs is well described by the Gross-Piatevskii equation [58]. This non-linear equa-

tion allows for a precise characterization of the zeroth order mean-field and first order quantum fluctua-
tions. We consider here a stationary flow of a 1D Bose-Einstein-Condensate described by 1D Heisenberg
field operator

Ψ̂(x, t) = Φ̂(x, t)e−iµt/ℏ (3.1)
where µ is the chemical potential fixed by boundary conditions at infinity. This field operator is solution
of the Gross-Piatevskii field equation :

iℏ∂tΦ̂ = − ℏ2

2m
∂2xΦ̂ + [U(x) + g(x)n̂− µ]Φ̂ (3.2)

where U(x) is an external potential, n̂ = Φ̂†Φ̂ the density operator and g > 0 a nonlinear parameter
which accounts for a repulsive effective two body-interaction and for a transverse harmonic trapping. In
the quasicondensate regime, i.e. in the so-called 1D mean-field regime [57], the Bogoliubov approxima-
tion for stationary flows consists in writing the quantum field as

Φ̂(x, t) = Φ(x) + δΨ̂(x, t) (3.3)
where the quantum field operator Φ̂ has been split in a stationary classical contributionΦ describing the
background flow pattern and a small quantum fluctuation Ψ̂. Whereas the decomposition (3.3) is legiti-
mate in 3D, it has a finite range of validity in the 1D configurations we consider; however, its conditions
of applicability are commonly met in standard experimental situations [84].

The classical contribution Φ(x) is solution of the classical stationary Gross-Pitaevskii equation
µΦ = − ℏ2

2m
∂2xΦ+ [U(x) + g(x)|Φ|2]Φ (3.4)

An acoustic analog black hole configuration is defined as an inhomogeneous stationary flow exhibiting
an asymptotic subsonic upstream flow in the x < 0 region, an asymptotic supersonic downstream flow
in the region x > 0 and, close to x = 0, the acoustic horizon where the local velocity of the flow V equals
the local speed of sound c. The chosen potential U(x) and parameter interaction g in (3.4) will shape
different configurations. Several such flows have been considered in the past. The so-called “waterfall
configuration” is close to the experimental realization of Refs. [33, 34].
1In the gravitational case Hawking radiation is completly lost in the Cosmic Microwave Background (CMB). In theBEC even if the temperature is very low, the analog Hawking radiation has a temperature very low compared tothe one of the BEC. But in an analog black hole the interior (supersonic) region is not precluded tomeasurements :the two-point densisty correlation function provides a robust measure of the signal.
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Using the subscript u for upstream (subsonic) and d for downstream (supersonic) we can write
Φ(x) =

{ √
nu exp(ikux)ϕu(x) for x < 0√
nd exp(ikdx)ϕd(x) for x > 0

(3.5)
In order for nu and nd to be respectively the upstream and downstream asymptotic densities, we define
limx→−∞|Φu| = 1 and limx→+∞|Φd| = 1, i.e. limx→−∞Φu = exp(iβu) and limx→−∞Φd = exp(iβd) with
βu,d a constant. Hence, an analog black hole horizon is realized if the flow takes asymptotically the form
an upstream subsonic and downstream supersonic plane wave. The functions ϕu(x) and ϕd(x) specifythe precise form of the flow pattern. In all our three configurations treated below we have

ϕd(x) = exp(iβd) (3.6)
meaning that ϕd(x) is a constant and that the downstream flow pattern is flat with constant density and
velocity. Finally, we define, for α = u or d, the upstream and downstream asymptotic flow velocities Vα,asymptotic speed of sound cα, healing lengths ξα, and Mach numbersmα as

ℏkα = mVα mc2α = gαnα mcα = ℏ/ξα mα = Vα/cα (3.7)
For a black hole configuration, one has, by definition, mu < 1 and md > 1. Since a stationary flow
requires equality of asymptotic chemical potentials one can plug (3.5) in (3.4) and get a first asymptotic
relation. Knowing that a stationary flow also requires current conservation, we get a second asymptotic
relation2. One finally gets respectively

ℏ2k2α
2m

+ Uα + gαnα = µ nuVu = ndVd (3.11)
3.1.2 . Flat Profile configuration

In the Flat Profile configuration [85, 38] the flow pattern is flat with constant density and velocity, i.
e. Vu = Vd = V0 and nu = nd = n0. Therefore, in order for this configuration to be an acoustic
black hole, one must have cd < Vd = Vu < cu. Since the density is flat everywhere one can also take
ϕu(x) = ϕd(x) = 1, i.e. βu = βd = 0. This means that (3.5) reduces for all x to ϕ(x) = √

n0 exp(ik0x) with
k0 = mV0/ℏ. By virtue of (3.7) one has immediately :

cd
cu

=
mu

md
=
ξu
ξd

(3.12)
Taking a steplike configuration for U(x) and g(x), that is

U(x) =

{
Uu for x < 0
Ud for x > 0

and g(x) =

{
gu for x < 0
gd for x > 0

(3.13)
with gu > gd in order to fulfill the second relation in (3.7) for cu > cd, one finally gets, by virtue of the firstrelation of (3.11),

Uu + gun0 = Ud + gdn0 (3.14)
and thefore Uu = n0(gd − gu) + Ud < Ud since gu > gd

3. High sensitivity to total atom number [38] and
complexity of local monitoring of g(x) make this configuration experimentally unrealistic.
2In the mean-field approximation, the current is both upstream and downstream given by

jα(x, t) =
ℏ
m
Im(Ψ∗∂xΨ) = Vαnα − t

m
nα|ϕα(x)|2∂xµ (3.8)

Then taking
∂xµ = 0 (3.9)

one has a stationary flow with jα(x, t) = jα(x) since Vα and nα are asymptotic constants. Then current conserva-tion implies
ju(x) = jd(x) (3.10)

3Note that if one takes smooth profiles forU(x) and g(x) imposing toU(x)+g(x)n0 to be a constant as required bythe first relation in (3.11) then Ψ̂(x, t) can only be determined numerically whereas it can be determined analyticallyfor the steplike configuration of U(x) and g(x)
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3.1.3 . Delta Peak configuration
If one imposes g(x) = g to be a constant and U(x) = Λδ(x) to be a repulsive δ peak with Λ > 0, a

transonic stationary profile, i.e. an acoustic black hole configuration, can also be obtained. In this case,
one gets [38] for x < 0 a portion of a dark soliton profile

ϕu(x) = cos θ tanh

(
x− x0
ξu

cos θ

)
− i sin θ (3.15)

with 0 < sin θ = mu < 1, which implies that one can take θ ∈]0, π/2[, and therefore limx→−∞ ϕu(x) =

− exp(iθ), that is to say βu = π+ θ. Furthermore, with g a constant and Uu,d = 0, one gets from (3.11) and
(3.7) that

mV 2
α

2
+ gnα = Cst

and then, setting
nu
nd

=
Vd
Vu

= y

from the second relation of (3.11) and factorizing out gnu in the first relation of (3.11), that
1 +

m2
u

2
=
m2

u

2
y2 +

1

y

This last relation can be rewritten as
(1− y)

(
m2

u

2
y2 +

m2
u

2
y − 1

)
= 0

whose positive solution, ignoring the solution y = 1 that is not compatiblewith a black hole configuration,
is

y =
1

2

(
−1 +

√
1 +

8

m2
u

)
This being set, from (3.7), one obtains immediately

nu
nd

=
Vd
Vu

= y
md

mu
= y

3
2

cd
cu

=
1√
y
=
ξu
ξd

(3.16)
Sinceϕd(x) = exp(iβd) is constant, by continuity of thewave function inx = 0onehasϕ(0) = √

nuϕu(0) =√
ndϕd(0), i.e. √yϕu(0) = cosβd + i sinβd, and therefore, by identification of the imaginary part on each

side, −√
y sin θ = sinβd, and by identification of the real part on each side,

−√
y cos θ tanh

(
x0
ξ0

cos θ

)
= cosβd

Hence cosβd < 0. Knowing that
cosβd = −

√
1− sin2 βd =

√
1− y sin2 θ =

√
1− ym2

u

we obtain
cos θ tanh

(
x0
ξ0

cos θ

)
=

√
1

y
−m2

u = mu

√
y − 1

2

Therefore one has finally
βd = π − arcsin(−mu

√
y)

x0
ξu

=
1

cos θ
tanh−1

(√
y − 1

2
tan θ

) (3.17)

From the appropriate matching of its derivative
∂xϕ(0

+)− ∂xϕ(0
−) = 2mℏ−2ϕ(0)

and from the relations (3.17) one finally gets
Λ =

ℏ2λ
mξu

with λ = mu

√
y − 1

2
(3.18)

In this configuration one has Vu < cd < cu < Vd.
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Figure 3.1: Schematic representation of the background density profile of the waterfall configuration(upper plot) and of the delta peak configuration (lower plot). The shaded region corresponds to theinterior of the analog black hole (see the main text). The whole x > 0 region is supersonic, while theupstream region is asymptotically subsonic (i.e., in the limit x→ −∞).

3.1.4 . Waterfall configuration
Here one imposes g(x) = g to be a constant and U(x) = −U0Θ(x) with U0 > 0 and Θ the Heaviside

function. The ϕu(x) profile is as defined in (3.15) for the δ peak configuration but with x0 = 0 which
means that here ϕu(x) is exactly one half of a dark soliton. One still has sin θ = mu and therefore, fromthe continuity of the order parameter ϕ in x = 0, one gets num2

u = nd, from which one can obtain
exp iβd = −i knowing that ϕd(x) = √

nd exp iβd. Using first current conservation and then first relationin (3.11) one finally comes to
Vd
Vu

=
nu
nd

=
1

m2
u

= md =

(
ξd
ξu

)2

=

(
cu
cd

)2 U0

gnu
=
m2

u

2
+

1

2mu
− 1 (3.19)

In this configuration one has Vu = cd < cu < Vd.
The delta peak and waterfall configurations are depicted in Fig. 3.1. In this figure the region x > 0

is shaded in order to remind that it corresponds to the interior of the analog black hole. It is however
important to recall that the precise location of the horizon separating the interior and the exterior of an
analog black hole is ill-defined, see, e.g., the discussion in Sec. II.A of Ref. [86].

3.1.5 . First order fluctuations around the stationary condensate
In order to study spontaneous quantum effects let us first consider δΨ̂ in (3.2) as a small time-

dependent classical field composed of normal modes of the form
δΨ(x, t) = eikαx

[
ūα(x, ω)e

−iωt + v̄∗α(x, ω)e
iωt
] (3.20)

with α = u for x < 0 and α = d for x > 0. Linearizing the classical Gross-Pitaevskii field equation (3.2)
to first order in δΨ(x, t) and setting Xα = x/ξα (which implies kαx = mαXα) and εα = ℏω/gαnα, oneobtains

Lα

(
ūα
v̄α

)
= εα

(
ūα
v̄α

)
(3.21)

where Lα is the Bogoliubov-de Gennes Hamiltonian defined as

Lα =

Hα − imα∂Xα ϕ2α

−(ϕ∗α)
2 −Hα − imα∂Xα

 (3.22)
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with
Hα = −1

2
∂2Xα

+ 2|ϕα|2 − 1

Taking the eigenvectors of Bogoliubov-de Gennes equation (3.21) forXα ∈ R to be of the form(
ūα(x, ω)
v̄α(x, ω)

)
= eiQlXα

(
Ul(x)
Vl(x)

)
(3.23)

with Ul(x) and Wl(x) constant when ϕα(x) is constant, i.e. when |x| → ∞, the dimensionless wave
vectors Ql must be solutions of

(εα −mαQl)
2 = ω2

B(Ql) (3.24)
where

ωB(Ql) = Ql

√
1 +

Q2
l

4
(3.25)

is the dimensionless Bogoliubov dispersion relation in a condensate at rest. The different branches of
this dispersion relation are represented in Fig. 3.2.

The wavevectorsQl are dimensionless and defined asQl = qlξα. When the solutionsQl are complex,
one should discard the wave vectors with Im(Ql) > 0 for α = u and Im(Ql) < 0 for α = d in order
to avoid divergence and keep only the evanescent solutions. The index l identifies the branch of the
dispersion relation to which the excitation pertains and is actually a double index. Indeed, calling in (out)
a branch whose group velocity points towards (outwards) the horizon and eva an evanescent mode, for
α = u one has l ∈ {0|in, 0|out, 0|eva} whereas for α = d one has l ∈ {1|in, 1|out, 2|in, 2|out} if ω < Ω

and l ∈ {1|in, 1|out, 2|eva} if ω > Ω, with Ω a threshold that exists only for a supersonic flow and is
defined by the positive energy εd(Q∗

d) = Ωd for Ωd = mdQ
∗
d − ωB(Q

∗
d) being a maximum (FIG. 3.2), with

Ωd = Ω/gdnd.Thus Ω corresponds to the value of Ql defined as

q∗ξd = Q∗
d =

(
−2 +m2

d +
md

2

√
8 +m2

d

) 1
2 (3.26)

The 0 and 1 in/out modes are positive norm eigenvectors whereas the 2 in/out modes are negative
norm eigenvectors. The group velocity of each mode is given by ∂ω/∂q < 0. A mode is therefore "in"-
going when propagating towards x = 0 and "out"-going when propagating away from x = 0 [38]. Hence
at Ql = Q∗

d one has exactly ∂ωB/∂Ql = md. But for Ql > Q∗ one has ∂ωB/∂Ql > md, which means that
the excitations have here a dimensionless group velocity larger than the dimensionless flow velocity
md > 1 : these are supersonic modes.

One can check that if (ūα, v̄α)T is a solution of (3.21) for the eigenvalue εα so is (v̄∗α, ū∗α)T for−εα. Andsince both solutions describe the same excitation (3.20), we can take ω ∈ R+ without loss of generality.
This is related [87] to the fact that |Ul|2 − |Vl|2 can be positive, negative or null, this sign being the same
as the one of El = εα − mαQl. Finally, it has been shown [88] that the current Jl associated to the
eigenvector (ūα, w̄α)

T is a conserved quantity defined by
Jl =

i

2
c [f∂Xαf

∗ − f∗∂Xαf + g ∂Xαg
∗ − g∗∂Xαg] (3.27)

with f = eimαXα ūα and g = e−imαXα v̄α.
3.1.6 . Downstream and Upstream Eigenvectors

Downstream, where the flow is supersonic, the Ul(x) and Wl(x) of the eigenvectors (3.23) of the lin-
earized Gross-Pitaevskii field equation (3.21) are, for all configurations (flat profile, delta peak, waterfall),
given by [38] Ul(x)

Vl(x)

 =
1

Cl


(
Q2

l

2
+ El

)
eiβd(

Q2
l

2
− El

)
e−iβd

 (3.28)
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Figure 3.2: Graphical representation of the positive frequency part of the dispersion relation (3.24) in thefar upstream subsonic (upper plot) and downstream supersonic (lower plot) regions. The backgroundcolor of the lower plot is greyed for recalling that it concerns the interior of the analog black hole. In bothplots the horizontal dashed line represents the angular frequencyω of a given excitation. In the upstreamregion there are two channels of propagation associated to each value of ω. In the downstream regionthere are four (two) propagation channels when ω is smaller (larger) than the threshold Ω defined in Eq.(3.26). The channels are denoted as 0, 1 or 2, with an additional “in” (“out”) label indicating if the wavepropagates towards (away from) the horizon. The direction of propagation of each channel is markedwith an arrow.

with El = εd −mdQl and Cl a normalization constant. Defining the group velocity [38] as
Vg(Ql) =

∂ω

∂ql
= cα

∂εα
∂Ql

= Vα + cα
Ql

(
Q2

l /2 + 1
)

El
(3.29)

one can set the normalization constant to
Cl = |2Re(E∗

l Q
2
l )Vg(Ql)|

1
2

in order to have the normalization
|Ul |2 − |Wl |2 =

±1

|Vg(Ql)|2
(3.30)

This normalization allows Jl = ±1 in (3.27) for all non-evanescent modes.
Upstream, where the flow is subsonic, the Ul(x) and Wl(x) are not the same for all configurations.

For the flat profile, the two components are the same as in the downstream region, with index d replaced
by index u. On the contrary, for the other two configurations (delta peak and waterfall), one has [38]Ul(x)

Wl(x)

 =
1

Dl


[
Ql

2
+ εu/Ql + iχ(Xu)

]2
[
Ql

2
− εu/Ql + iχ(Xu)

]2
 (3.31)

withDl a normalization constant and χ(Xu) = cos θ tanh [(Xu −X0) cos θ] forX0 = x0/ξu. We choose to
evaluate Dl at Xu → −∞. In order to obtain again Jl = ±1, the normalization constant is found to be,
for real Ql,

Dl =
√
8i
Ql

|Ql|
|ElVg(Ql)|

1
2

∣∣∣∣ εuQl

∣∣∣∣ (3.32)
The choice of the phase of Dl allows the eigenvectors in (3.31) to have the same shape as the upstream
eigenvectors of the flat profile configuration in the limit ω → 0 and is therefore motivated by practical
and aesthetic reasons4.
4For completeness, the normalization for Ql complex, is given by

Dl = |Vg(Ql)|
1
2

∣∣∣∣8Re[El(εu/Ql)
2] + 4εu(cos

2 θ)
(Ql −Q∗

l )
2

|Ql|2
+ 2iεu(cos θ)

Ql −Q∗
l

|Ql|2
[Q2

l + (Q∗
l )

2]

∣∣∣∣ 12
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3.2 . THE "IN" AND "OUT" BASES FOR QUANTUM FLUCTUATIONS

3.2.1 . The quantum fluctuation operator δΨ̂
Considering the previous section 3.1, the normal modes defined in (3.20), can be written in the form(

ūj|ine
imαXα

)
e−iωtbj +

(
v̄j|ine

−imαXα
)∗
eiωtb∗j (3.33)

for the ingoing modes and in the form(
ūj|oute

imαXα
)
e−iωtcj +

(
v̄j|oute

−imαXα
)∗
eiωtc∗j (3.34)

for the outgoing modes for modes j = 0, 1. Because of the negative norm |Ul|2 − |Vl|2 the mode 2must
be written (

ū2|ine
imαXα

)
e−iωtb∗2 +

(
v̄2|ine

−imαXα
)∗
eiωtb2 (3.35)

for the ingoing mode and (
ū2|oute

imαXα
)
e−iωtc∗2 +

(
v̄2|oute

−imαXα
)∗
eiωtc2 (3.36)

for the outgoing mode. This specific treatment of mode 2 will be required upon quantization by the
fluctuation field δΨ̂ fulfilling the bosonic commutation relation

[δΨ̂(x, t), δΨ̂†(x′, t)] = δ(x− x′) (3.37)
The outgoing coefficients can then be expanded in the ingoing basis according to

cj =
j=0,1

Sj0 b0 + Sj1 b1 + Sj2 b
∗
2

c∗2 = S20 b0 + S21 b1 + S22 b
∗
2

(3.38)

The evanescent modes must be considered as outgoing modes, i.e.(
ūj|evae

imαXα
)
e−iωtcevaj +

(
v̄j|evae

−imαXα
)∗
eiωt[cevaj ]∗ (3.39)

for j = 0, 2. Then one obtains
cevaj =

j=0,2
Seva
j0 b0 + Seva

j1 b1 + Seva
j2 b∗2 (3.40)

Upon the quantization procedure bj → b̂j and b∗j → b̂†j with b̂j and b̂†j the annihilation and creation
operators respectively of the ingoing scattering modes j = 0, 1, 2, the quantum fluctuation operator δΨ̂
given in (3.3) can now be expanded as

δΨ̂(x, t) = eikαx
∫ ∞

0

dω√
2π

∑
L=0,1

[
ūL(x, ω)e

−iωtb̂L(ω) + v̄∗L(x, ω)e
iωtb̂†L(ω)

]

+ eikαx
∫ Ω

0

dω√
2π

[
ū2(x, ω)e

−iωtb̂†2(ω) + v̄∗2(x, ω)e
iωtb̂2(ω)

] (3.41)

with ūL and v̄L for L = 0, 1, 2 being linear combinations of ūl and v̄l given by the coefficients Sij and
Seva
ij , as can be explicitly seen from relation (3.46)5. One has the usual bosonic commutation relations

[b̂L(ω), b̂
†
L′(ω)] = δL,L′δ(ω − ω′) (3.42)

The expression of the scattering coefficients Sij and Seva
ij is determined by the matching conditions.

5This expansion does not take into account the zero energy modes that are necessary to obtain the right bosoniccommutation relation (3.37) for the field operator δΨ̂ (see Refs. [87, 89, 90]).
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3.2.2 . Matching conditions and scattering modes
From the normal mode (3.20) and the eigenvectors (3.23) definitions, one can define

Ξl(x, ω) =

(
ul(x, ω)
vl(x, ω)

)
=

(
exp ((iQl +mα))Ul(x)
exp ((iQl −mα))Vl(x)

)
(3.43)

Calling ΞL
u a linear combination of the Ξl in the upstream region, i.e. with l ∈ {0|in, 0|out, 0|eva}, and Ξda linear combination of the Ξl in the downstream region, i.e. with l ∈ {1|in, 1|out, 2|in, 2|out} if ω < Ω

and l ∈ {1|in, 1|out, 2|eva} if ω > Ω, one can define the two matching conditions as
ΞL
u (x = 0, ω) = ΞL

d (x = 0, ω)

ℏ
2m

[
dΞL

d

dx
(x = 0, ω)− dΞL

u

dx
(x = 0, ω)

]
= ΛΞL

u (x = 0, ω)

(3.44)

with Λ = 0 for the flat profile and waterfall configurations. These two conditions correspond to the
(dis)continuity of the wavefunction and its first derivative implied by the Gross-Pitaevskii field equation
(3.2). Then, the scattering modes ΞL(x, ω) are defined to be the three modes L = 0, 1, 2 generated by
the scattering of the three ingoing modes l = 0, 1, 2 on the potential U(x). They read

ΞL(x, ω) =

(
ūL(x, ω)e

imαXα

v̄L(x, ω)e
−imαXα

)
(3.45)

with ūL(x, ω) and v̄L(x, ω) appearing in (3.41). In the upstream and downstream region, the three linear
combination Ξ0, Ξ1 and Ξ2 are given by6

Ξ0
u = Ξ0|in + S00 Ξ0|out + Seva

00 Ξ0|eva

Ξ0
d = S10 Ξ1|out +Θ(Ω− ω)S20 Ξ2|out +Θ(ω − Ω)Seva

20 Ξ2|eva

Ξ1
u = S01 Ξ0|out + Seva

01 Ξ0|eva

Ξ1
d = Ξ1|in + S11 Ξ1|out +Θ(Ω− ω)S21 Ξ2|out +Θ(ω − Ω)Seva

21 Ξ2|eva

Ξ2
u = Θ(Ω− ω)

(
S02 Ξ0|out + Seva

02 Ξ0|eva
)

Ξ2
d = Θ(Ω− ω)

(
Ξ2|in + S12 Ξ1|out + S22 Ξ2|out

)

(3.46)

where Θ is the Heaviside function and the |Sll′(ω)|2 are the scattering coefficients of transmission or re-
flexion from l′-ingoingmode at energy ℏω to l-outgoingmode at same energy ℏω. Defining the scattering
matrix

Sω<Ω =

S00 S01 S02
S10 S11 S12
S20 S21 S22

 (3.47)
the current conservation can be written as

S†ηS = η = SηS† η = diag(1, 1,−1) (3.48)
which is implied by the bosonic canonical commutation relations that the creation and annihilation op-
erators must fulfill. Note that the Seva

ij coefficients do not appear in the S matrix since, being related to
evanescent modes, they are not involved in current conservation. Note also that for ω > Ω the mode 2

becomes evanescent and therefore the matrix S becomes the 2× 2matrix
Sω>Ω =

(
S00 S01
S10 S11

)
(3.49)

with current conservation S†S = SS† = diag(1, 1).
6The x and ω dependence has been dropped for legibility.
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3.2.3 . Propagation channels and quantummodes
In order to summarize the main points of our approach, it must recall that the decomposition (3.3)

is meaningful in a regime of small quantum fluctuations where the operator Ψ̂ can be treated within a
Bogoliubov approach. In this case Ψ̂ is naturally expanded along the asymptotic ingoing and outgoing
channels of the flow. The dispersion relation of elementary excitations (3.24) in the asymptotic upstream
subsonic and downstream supersonic regions (x → −∞ and +∞, respectively) is of Bogoliubov type,
with a Doppler shift accounting for the finite velocity of the background.

From the identification of the relevant channels and of their direction of propagation it is possible
to define quantum modes forming a basis enabling to describe all the elementary excitations of the
background flow. To each such mode is associated a quantum operator: b̂†i (ω) and b̂i(ω) (i = 0, 1 or 2)
are the creation and annihilation operators of an excitation of energy ℏω which is ingoing in channel i|in
and scattered by the horizon onto the three outgoing channels 0|out, 1|out and 2|out. Since each b̂mode
is associated with a single ingoing channel, it is denoted as an “ingoingmode”. It is also relevant to define
“outgoing modes” associated with a single outgoing channel. The corresponding operators are denoted
as ĉi(ω) and ĉ†i (ω). For instance ĉ†0 is the creation operator of an excitation where the three ingoing
channels are implied and form an outgoing excitation in channel 0|out. The corresponding quantum
mode is the analogous Hawking mode. As can be seen from the quantization of the coefficients in (3.38),
the outgoing modes are related to the incoming ones via the scattering matrix S(ω):ĉ0ĉ1

ĉ†2

 =

S00 S01 S02
S10 S11 S12
S20 S21 S22


b̂0b̂1
b̂†2

 , (3.50)

where all the ω dependencies have been omitted for legibility. The modes b̂2 and ĉ2 are particular in thesense that they have a negative norm and should be quantized inverting the usual role of the creation
and annihilation operators [87] in order to satisfy the standard Bose commutation relations. The mode
ĉ2 is analogous to what is called the partner is the context of Hawking radiation. We denote the mode
associated with ĉ1 the companion; Lorentz invariance prevents such a mode to exist in a gravitational
black hole, but it is unavoidable in an analog system.

The fact that the outgoing operators fulfil the canonical commutation relations implies that the scat-
tering matrix S(ω) obeys the skew-unitarity condition (3.48).For ω > Ω the mode with subscript 2 (the
partner) disappears because the corresponding ingoing and outgoing channels do (cf. Fig. 3.2) and the
S-matrix becomes 2× 2 and unitary. In this case the vacuum of the outgoing modes (the ĉ’s) is identical
to the vacuum of the incoming ones (the b̂’s) and the analogous Hawking effect disappears. The value
of the corresponding threshold energy is given in (3.26). It has been shown in Ref. [86] that the three-
mode system describing the analogous black hole horizon can be modeled by an optical setup simply
composed of a parametric amplifier and a beam splitter, as depicted in Fig. 4.1.

45



46



4 - VIOLATION OF BELL INEQUALITIES IN AN ANALOG BLACK
HOLE

In this chapter we conduct a theoretical study of violation of bipartite and tripartite Bell inequalities
in an analog black hole implemented in the flow of a quasi-one dimensional Bose-Einstein condensate1.
In the BEC system we consider, the asymptotic upstream region is subsonic while the asymptotic down-
stream region is supersonic. Such a flow induces the mismatch of the asymptotic dispersion relations
illustrated in Fig. 3.2. In the downstream region, the appearance of additional (negative norm) channels
gives rise to the Bogoliubov transformation (3.50) which enforces the mismatch (4.82) between the in-
going and outgoing vacua. Therefore, in an analog system, the Hawking radiation appears to be driven
by the very same mechanism as the one suggested by Hawking for the radiation of a gravitational black
hole [11] : the vacuum of the outgoing modes is not the same as the vacuum of the ingoing modes.

The Bogoliubov transform we consider is attached to a standard quadratic Bose Hamiltonian [87]
and to the production of correlated and entangled pairs of quasi-particles. In this perspective, the sonic
character of the Doppler-shifted dispersion relation in the long wavelength limit not only results in the
low energy divergence of the coefficients of the S matrix involving the incoming negative norm mode,
i.e. the Sj,2 coefficients, [92] and in a finite analog Hawking temperature [93, 94], but also in the existence
of three and not simply two quasi-particle modes. It will be shown that such a three-quasi-particle sys-
tem can then be mimicked by a simple optical setting involving a standard parametric downconversion
process and the presence of a beam-splitter as illustrated in Fig. 4.1. In this setup, the presence of the
beam-splitter incorporates the greybody factor which - from a gravitational perspective - accounts for
the back-scattering of Hawking radiation by the curved geometry surrounding the black hole [86].

We will not address here the question of the actual experimental demonstration of quantum en-
tanglement in a BEC analog black hole (see, e.g., Ref. [86] for a recent discussion) but rather take the
theoretical analysis a little further by asking: which general insight can we reach by studying quantum
correlations of the Hawking signal emitted by an analog black hole? A natural approach for such an in-
vestigation is a test of nonlocality via violation of Bell inequality. The epistemological query of refutation
of local hidden variable theories has already received an unambiguous answer in many contexts (see,
e.g., Ref. [95] and references therein) and important progresses have also been achieved in the field of
BEC matter waves [96, 97, 98, 99] we consider here. Such a test is nonetheless a nontrivial extension
of the scope of analog gravity and would constitute a primer for continuous variables entanglement in
a matter wave environment (see also Refs. [100, 101, 102] for related proposals). In view of future ex-
perimental studies it is relevant to quantitatively evaluate in realistic configurations to what extent Bell
inequalities can be violated in BEC analogs. This is a natural question to ask, all the more so as we argue
in the following that in some (exotic) limits the analog black hole we consider exactly realizes a Einstein-
Podolsky-Rosen (EPR) pair. Furthermore, as will be shown, the specifics of the system provide a natural
testing ground for genuine tripartite nonlocality. Our theoretical investigation of the matter reveals an
unexpected generic feature of black hole analogs: in the long wave-length limit, the state of the system
realizes an infinite sumof degenerate Greenberger-Horne-Zeilinger (GHZ) states. Interestingly, thanks to
the continuous nature of its degrees of freedom, and despite the clear GHZ nature of its long wavelength
modes, the analog system remains entangled after partial tracing.

4.1 . BELL INEQUALITIES : A SHORT HISTORY

4.1.1 . Premisses
In quantum mechanics two canonically conjugate variables cannot be determined simultaneously

with arbitrary precision, i.e. for "two physical quantities described by non-commuting operators, the
1Regarding the entanglement properties of our system, a primary reference for this chapter is Ref. [86]. Further-more, a preliminary work on bipartite violation of Bell inequalities is to be found in the unpublished Ref. [91].
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knowledge of one precludes the knowledge of the other" and either "these two quantities cannot have
simultaneous reality" or the quantum wave function encoding our knowledge of the system provides
an incomplete description of reality [4]. It is then not possible to construct a state in which they are
both perfectly known, viz. well-defined simultaneously. With two non-commuting observables, such as
position and momentum, the measurement (i.e. the experimental setting) decides which one is real
or definite and which one is not, since reducing the uncertainty (i.e. the variance) of one increases the
uncertainty of the other. According to Einstein, Podolsky and Rosen this is on its own a puzzling outcome
and their famous 1935 paper [4] is mainly about the inconsistent definition of reality implied by the
existence of non-commuting observables. The Gedankenexperiment of the non-factorizable two-particle
state that is presented there, is brought into as a proof of the inconsistency of quantum mechanics
formalism.

To this end, Einstein, Podolsky and Rosen (EPR) define a criterion taken "not as a necessary, but
merely a sufficient, condition of reality", which reads : "[a] sufficient condition for the reality of a
physical quantity is the possibility of predicting it with certainty, without disturbing the system"
[4]. In quantum mechanics this is possible : (1) when the measurement is performed on an eigenstate
of the measured quantity ; (2) when after the measurement of one subsystem the state of the other
subsystem is known with certainty from the outcome of the first measurement. When dealing only with
one-particle system, the commutation relation, for example, between the position x̂ and themomentum
p̂x is given by

[x̂, p̂x] = iℏ (4.1)
In the {|x⟩} basis, on can define the one-particle wave-function ψ0 as

ψp0(x) = eip0x/ℏ p̂x = −iℏ∂x
p̂xψp0(x) = p0 ψp0(x)

(4.2)

and consider the EPR criterion to be fulfilled since ψp0 is here an eigenfunction of the momentum opera-
tor p̂x. Then one can say that, when the system is in state |ψp0⟩, the physical quantity p0 is "an element of
physical reality" since p̂x can take a "particular value" : one says that the particle associated to the wavefunction ψp0 has a definitemomentum p0. But taking the position operator x̂ for the particle in state |ψp0⟩one obtains by definition

x̂ ψp0(x) = xψp0(x) (4.3)
with x being indefinite since corresponding to any real value. Therefore ψp0(x) is not an eigenfunction ofoperator x̂ and hence position is not in this case "an element of physical reality" since its measurement
"disturbs the particle and thus alters its state" yielding a random (i.e. impredictable) outcome [4]. For
non-commuting observables, measuring one observable in the eigenstate of the other alters the system
state, which implies that "when the operators corresponding to two physical quantities do not commute
the two quantities cannot have simultaneous reality" [4] or that the quantum wave function formalism is
incomplete.

And here comes the Gedankenexperiment of the two-particle non-factorizable state to make things
worse. Indeed, for a two-particle system described by the wave function Ψ(x1, x2) one can define the
observables

X̂± = x̂1 ± x̂2 P̂± = p̂1 ± p̂2 (4.4)
It can be easily checked that X̂− and P̂+ commute thus making it possible for state |Ψ⟩ to be simultane-
ously eigenvector of both X̂− and P̂+, let us say for eigenvalues u and 0 respectively, i.e.

X̂− |Ψ⟩ = u |Ψ⟩ P̂+ |Ψ⟩ = 0 (4.5)
Thus, knowing that the initial state ⟨x1, x2|Ψ⟩ = Ψ(x1, x2) is characterized by definite relative position uand definite total momentum 0, it can be inferred from (4.4) that measuring x̂1 or p̂1 on system 1 (one
particle) will immediately constrain system 2 (the other particle) to be either in x2 = x1−u or in p2 = −p1respectively. Let us say that the measurement on subsystem 1 (either x̂1 or p̂1) and themeasurement on
subsystem 2 (either x̂2 or p̂2 respectively) are space-like events, i.e. that they are causally disconnected.
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Then one faces a contradiction unless quantum mechanics is incomplete. Indeed : (1) both x1and p1 are random outcomes ; (2) based on the random outcome of its own measurement of position
or momentum, observer 1 now knows "with certainty" and "without disturbing the system" what will be
the outcome of the measurement of position or momentum (respectively) by observer 2, i.e. observe 1

knows that if x1 is measured then x2 = x1 − u and if p1 is measured then p2 = −p1 ; (3) since, due to themeasurement on the first subsystem, the second subsystem ends up either in a state of definite position
or definite momentum while not knowing which measurement has been performed on subsystem 1, its
definite values must have been settled from the start, thus making the subsystem 2 in a state of definite
position x2 and definite momentum p2 ; (4) but this is forbidden by non-commutativity and is therefore
contradictory unless the xi and pi (with i = 1, 2) are some functions xi(λ) and pi(λ) of some unknown
or hidden possibly random2 variable λ that would justify the correlations by making at the same time
quantum formalism incomplete.

The contradiction arises from the fact that the two measurements are causally disconnected and
that the collapse of the wave function after measurement 1 appears to be as a non-local phenomenon.
We will therefore consider a process to be non-local if not governed by relativistic causality. This does
not mean that it violates relativistic causality (indeed, it does not) but that the correlations exhibited
by the system cannot be explained by any (classical) relativistic propagation of information and must
therefore be of quantum nature. This being said, it appears clearly that what really bothers Einstein,
Podolski and Rosen, is not non-locality per se but rather quantum contextuality3, the phenomenon of
non-locality being for them just (so to say) a proof of inconsistency of quantum mechanics. Indeed,
what seems to be really inconceivable for Einstein, Podolski and Rosen is that the "same reality", i.e. the
state of system 2 and therefore the "reality" of its momentum or position, "depend upon the process
of measurement carried out on the first system" which should "not disturb the second system in any
way" : in other words, they simply deny, by their reasoning, that "two or more physical quantities can be
regarded as simultaneous elements of reality only when they can be simultaneous measured or predicted "
[4]. From there, they conclude that the very existence of non-commuting observables in the formalism
of quantum mechanics implies that "the quantum mechanical description of reality given by the wave
function is not complete" [4]. It is therefore worth stressing that the question of non-locality of quantum
mechanics is not addressed per se in the EPR paper but is rather considered as a decisive inconsistency
in a more general inspection about the notion of "reality" implied by the existence of non-commuting
observables in quantum mechanics formalism.

As it is well known Bohr (1935) disagreed with the previous argumentation by Einstein, Podolsky and
Rosen [6]. Understanding that the real physical question asked by the EPR paper [4] was the one of
the "criterion of reality" defining "physical reality", he argued that quantummechanics provides a "com-
pletely rational description of physical phenomena" [6]. This is why, according to Bohr, the fact that one
can never "attach definite values to both of two canonically conjugate variables" is not an argument for
incompleteness of quantum mechanics but rather implies "a final renunciation of the classical ideal of
causality" and a "radical revision" of what is "physical reality", hence a notion of "individuality completely
foreign to classical physics" [6]. Considering position and momentum, he claims that quantummechan-
ics is nothing else than "a rational discrimination between essentially different experimental arrange-
ments and procedures which are suited either for an unambiguous use of the idea of space location,
or for a legitimate application of the conservation theorem of momentum" : this characteristics he calls
"complementarity", specifying that it has to do with a "free choice on what we want to measure" and not
"with an ignorance of the value of certain physical quantities, but with the impossibility of defining these
quantities in an unambiguous way" [6]4.
2It has to be not random if one wants to restore determinism.3We will refer by "quantum contextuality" to the fact that it is the chosen quantum measurement that selectswhat has to be taken as real. According to quantum contextuality, the definition of reality is then contextual tothe undertaken experiment. This is related mathematically to the non-commutativity of canonically conjugatedobservables.4"The last remarks apply equally well to the special problem treated by Einstein, Podolsky and Rosen, which hasbeen referred to above, and which does not actually involve any greater intricacies than the simple examplesdiscussed above. The particular quantum-mechanical state of two free particles, for which they give an explicit
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If the answer by Bohr is generically about the completeness of quantum mechanics, the one by
Schrödinger (1935) is specifically about the entangledness of the EPR state [5]5. The fact that two systems
that have interacted cannot be described by two independent wave functions but must be apprehended
as a unique (entangled) state, is considered by Schrödinger as being not "one but rather the characteristic
trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought" :
only a measure on one subsystem (after which the state of the other subsystem can be "inferred si-
multaneously") can disentangle them since a new measurement of the first subsystem will no longer
simultaneously affect the second one [5]6. As can be seen entanglement is defined by Schrödinger as
characterizing the state of a systemwhere ameasurement of a subsystem can instantly modify the state
of the other subsystem no matter how remote the two subsystems are. Interestingly, after a first mea-
surement on one subsystem, the two subsystems are disentangled since a secondmeasurement on one
of the two subsystems would not modify the state of the other.

The question of non-locality raised by the EPRpaper is explicitly addressed byBell in his 1964 paper [7]
in which he gave amathematical formulation of the locality constraints of the phenomenon, thusmaking
it possible to test local-hidden-variable theories experimentally (see 4.1.3). Indeed, in 1957, Bohm and
Aharonov [103] had already suggested to test in a realistic discrete setting the EPR paradox through the
"polarization properties of pairs of photons". Instead of spin singlet state (at first considered), discrete-
variable two-photon states were implemented in experiments relying on photon counting [8, 104]. Then,
the 1964 argument by Bell [7] to rule out hidden-variable theories was generalized in 1969 by Clauser et.
al. [105] in the (here adopted) CHSH inequality for the study of "the polarization correlation of a pair of
optical photons". Therefore, whereas the EPR paradox was first thought in a continuous variable set-
ting, Bell inequalities were first derived in a discrete variable setting7. Thus, experiments confirming the
completeness of quantum mechanics were performed [107], among others, by Freedman and Clauser
in 1972 [108], with time-varying analyzers by Aspect, Dalibard and Roger in 1982 [109] for two-particle sys-
tems and in 2000 by Zeilinger et al. [110] with an entangled three-photon GHZ state and an experimental
setting relying, in this last case, on a Mermin-type argument [111, 112] for the refutation of the EPR incom-
pleteness assumption rather than on a Bell-type inequality. If, in the wake of these experiments, the EPR
paradox and Bell inequalities were understood to be an invaluable resource for quantum technologies
[107], nowadays the question is not only investigated with small systems of a few particles but also in
"massive many-particle systems", among which atomic Bose-Einstein condensates (BECs) appear to be
"particularly well suited to investigate nonclassical phenomena at the quantum-to-classical boundary"
throughmeasurement of collective spin correlations [99]8, therefore similarly towhatwas first suggested
mathematical expression, may be reproduced, at least in principle, by a simple experimental arrangement, com-prising a rigid diaphragm with two parallel slits, which are very narrow compared with their separation, andthrough each of which one particle with given initial momentum passes independently of the other. If the mo-mentum of this diaphragm is measured accurately before as well as after the passing of the particles, we shall infact know the sum of the components perpendicular to the slits of the momenta of the two escaping particles, aswell as the difference of their initial positional coordinates in the same direction; while of course the conjugatequantities, i.e., the difference of the components of their momenta, and the sum of their positional coordinates,are entirely unknown. In this arrangement, it is therefore clear that a subsequent single measurement either ofthe position or of the momentum of one of the particles will automatically determine the position or momentum,respectively, of the other particle with any desired accuracy; at least if the wave-length corresponding to the freemotion of each particle is sufficiently short compared with the width of the slits. As pointed out by the namedauthors, we are therefore faced at this stage with a completely free choice whether we want to determine the oneor the other of the latter quantities by a process which does not directly interfere with the particle concerned"[6].5It is indeed (see [8]) Schrödinger himself that introduced the notion of entanglement in his answer [5] to the EPRpaper [4].6"Another way of expressing the peculiar situation is : the best possible knowledge of a whole does not necessarilyinclude the best possible knowledge of all its parts, even though they may be entirely separated and thereforevirtually capable of being "best possibly known", i.e. of possessing, each of them, a representative of its own" [5].7The question of translating Bell inequalities in terms of continuous unbounded variables is still an open one [8].Most of the works testing Bell inequalities with continuous variables rely on some discretization procedure of thepossible outcomes. This is for example the case with the GKMR pseudospins used in this work [106].8More specifically, what is considered is the splitting of one BEC in two BECs that exhibit bipartite entanglementbetween the collective spins of each BEC [99].
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by Bohm for spin correlations [103]. We will not dive further in the history of Bell inequalities and just
stress that experiments such as Colciaghi’s [99] suggest that the pseudospin approach of our work can
eventually be translated to a realistic experimental setting9.

Before considering the violation of Bell inequalities in our analog black-hole (from 4.2 on), we will
present in the following : the notions of entanglement and non-locality with continuous variables as
stated by the EPR paper (see 4.1.2) ; the mathematical constraints on local realism implied by Bell in-
equalities (see 4.1.3) ; the measures of genuine bipartite and tripartite entanglement and nonlocality
(see 4.1.4).

4.1.2 . The 1935 EPR : Entanglement and Non-locality with Continuous Variables
In EPR the notion of entanglement appears without any reference to a discrete variable setting. The

thought experiment is indeed conducted within a fully continuous variable approach, with the position
x̂ and momentum p̂ non-commuting operators involved. As a matter of fact, in the two-particle state
invoked in the paper, the two particles are correlated in position and momentum. Thus, despite later
insightful research based on discrete variable systems, the notion itself of entanglement came out from
a continuous variable setting after being more explicitly introduced by Schrödinger in his reply to the
EPR paper [8]. Indeed, as stated in 4.1.1, the two particles sharing the entangled state (4.11) are perfectly
correlated in their positions and momenta, thus making it possible to infer (with absolute certainty) the
outcome of a position (momentum) measurement on particle 2 from a position (momentum) measure-
ment on particle 1 and without disturbing the state of the second particle since the first measure has
indeed disentangled the state of the full system. Then, because EPR’s realism postulates an objective
reality and refuses the idea of an action at a distance, it is inferred that both position and momentum
of the second particle must be predetermined. But such states of both definite position and momen-
tum are forbidden by quantummechanics and consequently, according to the EPR reasoning, quantum
mechanics formalism must be incomplete.

In order to understand the quantum structure of such a state, let us define, as usual, the single-
particle position {|x⟩} and momentum {|p⟩} representations

|x⟩ = 1√
2π

∫ +∞

−∞
dp e−ipx |p⟩ |p⟩ = 1√

2π

∫ +∞

−∞
dx eipx |x⟩ (4.6)

and
⟨x|p⟩ = 1√

2π
eipx ⟨x′|x⟩ = δ(x− x′) ⟨p′|p⟩ = δ(p− p′)

∫ +∞

−∞
dp eipx = 2π δ(x) (4.7)

with x and p dimensionless and δ the Dirac-function. The two-particle state vector is then written
|ψ⟩ =

∫ +∞

−∞
dx1dx2 ψ(x1, x2) |x1, x2⟩ =

∫ +∞

−∞
dp1dp2 ψ̄(p1, p2) |p1, p2⟩ (4.8)

Considering [5] the state (4.8) as being the eigenstate of operators X̂− = x̂1 − x̂2 (relative position) and
P̂+ = p̂1 + p̂2 (total momentum) for real eigenvalues u and 0 respectively (see (4.4)), i.e.

X̂− |ψ⟩ = u |ψ⟩ P̂+ |ψ⟩ = 0 [X̂−, P̂+] = 0 (4.9)
one can define, for u some real constant and C some vanishing normalization constant, the unphysical
and unnormalizable state

⟨x1, x2|ψ⟩ = ψ(x1, x2) = C δ(x1 − x2 − u) ⇔ ⟨p1, p2|ψ⟩ = ψ̄(p1, p2) = C δ(p1 + p2) e
ip2u (4.10)

i.e.
|ψ⟩ = C

∫ +∞

−∞
dx |x, x− u⟩ = C

∫ +∞

−∞
dp e−ipu |p,−p⟩ (4.11)

9It must be noted that the collective pseudospins used in [99] are not the the GKMR pseudo-spins introduced inRef. [106] and here adopted in our work (see 4.4).
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as being the limiting case of a physical and normalizable two-mode squeezed state with squeezing pa-
rameter r, which in the position basis {|x⟩} representation reads10

ψ(x1, x2) =
1√
π
exp

{
−(x1 + x2 + v)2

4
e−2r − (x1 − x2 − u)2

4
e2r
}

ψ(x1 + x2, x1 − x2) =

[
1

(2πe2r)1/4
exp

{
−(x1 + x2 + v)2

4
e−2r

}][
1

(2πe−2r)1/4
exp

{
−(x1 − x2 − u)2

4
e2r
}]

= C

[
1

(2πe−2r)1/4
exp

{
−(x1 − x2 − u)2

4
e2r
}]

−→
r→+∞

C δ(x1 − x2 − u)

(4.12)
with v also real and C a vanishing constant. In the momentum basis {|p⟩} representation, one would
have
ψ̄(p1, p2)

1√
π
exp

{
−(p1 − p2)

2

4
e−2r − (p1 + p2)

2

4
e2r +

i

2
[v(p1 + p2) + u(p2 − p1)]

}
−→

r→+∞
C δ(p1+p2) e

ip2u

(4.13)
Let us indeed consider the unitary two-mode displacing and squeezing operator D̂1(α1)D̂2(α2)Ŝ(ζ)with,for (j = 1, 2),

D̂j(αj) = exp
{
αja

†
j − α∗

j âj

}
⇒ D̂†

j(αj)ajD̂j(αj) = âj + αj (4.14)
and11

Ŝ(ζ) = exp
{
ζ∗a1a2 − ζâ†1a

†
2

}
Âj = Ŝ†(ζ)âjŜ(ζ)

Ŝ†(ζ)â1Ŝ(ζ) = â1 cosh r − â†2 e
iθ sinh r

Ŝ†(ζ)â2Ŝ(ζ) = â2 cosh r − â†1 e
iθ sinh r

(4.15)

for ζ = reiθ. In the position representation, the two-mode displaced squeezed vacuum is then given12
by
⟨X1, X2| Ŝ†(ζ)D̂†

2(α2)D̂
†
1(α1)â1â2D̂1(α1)D̂2(α2)Ŝ(ζ) |01, 02⟩A = ⟨X1| (Â1+α1) |01⟩A ⟨X2| (Â2+α2) |02⟩A = 0

(4.16)
with |01, 02⟩A the vacuum of Aj . Using the dimensionless definitions

X̂j =
1√
2

(
Âj + Â†

j

)
P̂j =

1

i
√
2

(
Âj − Â†

j

) (4.17)
and

⟨Xj |Aj =
1√
2

(
Xj +

d

dXj

)
⟨Pj |Aj =

1√
2

(
i
d

dXj
+ iPj

)
(4.18)

this two-mode displaced squeezed vacuum is straightforwardly proven to be associated to the Gaussian
wave function

φ0(X1, X2) ∝ exp

{
−(X1 +

√
2α1)

2

2

}
exp

{
−(X2 +

√
2α2)

2

2

}
(4.19)

or, in the momentum representation,
φ̄0(P1, P2) ∝ exp

{
−(P1 − i

√
2α1)

2

2

}
exp

{
−(P2 − i

√
2α2)

2

2

}
(4.20)

10To be consistent with the definitions (4.17) of our x̂ and p̂ operators, the factor 1/4 in the exponential is taken in
order to have ⟨X2

i ⟩ =
∫ +∞
−∞ dxidxj x

2
i |ψ(xi, xj)|2 = 1/2 when r = 0 and the two particles are uncorrelated.

11See Appendix A.1 for the squeezing operator Ŝ(ζ), where it is named Â in Rel. (A.12).
12Ŝ†(ζ)D̂†

2(α2)D̂
†
1(α1)â1â2D̂1(α1)D̂2(α2)Ŝ(ζ) = Ŝ†(ζ)D̂†

1(α1)â1D̂1(α1)(Ŝ(ζ)Ŝ(ζ)
†)D̂†

2(α2)â2D̂2(α2)Ŝ(ζ).
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Setting ζ real with θ = 0 and using (4.17) and (4.15), one obtains
X̂1 = x̂1 cosh r − x̂2 sinh r

P̂1 = p̂1 cosh r + p̂2 sinh r
(4.21)

and similarly for X̂2 and P̂2 just by taking 1 ↔ 2 in the previous expressions (4.21). Then, in these ex-
pressions the operators X̂i, P̂i, x̂i and p̂i can be replaced by the associated eigenvaluesXi, Pi, xi and pi,respectively13. Using these quantities in (4.19) and (4.20), for

α1 =
1

2
√
2

(
v e−r − u er

)
α2 =

1

2
√
2

(
v e−r + u er

) (4.22)
yields straightforwardly (4.12) and (4.13). Let us finally remark that for a single mode squeezing, i.e. 1 = 2

in (4.15), by the same reasoning, the wave function of the displaced squeezed vacuum is given by
ψ(x) =

er√
π
exp

{
−(x+

√
2α)2

2
e2r

}
−→
r→∞

δ(x+
√
2α) (4.23)

for α real, thus describing in the limit of infinite squeezing the displaced zero position eigenstate and
having an infinite mean photon number n = a ⟨0|A†A |0⟩ a = |α|2 + sinh2 r diverging as sinh2 r when
r → ∞.

It is easily shown from (4.117) with ρ̂ = |ψ⟩ ⟨ψ| that the Wigner function (see 4.3.1) of state (4.11),
considered as being the limiting case of a physical and normalizable two-mode squeezed state with
squeezzing parameter r (see (4.12) or (4.13), is given by

W (q,p) ∝ exp

{
−e

−2r

2

[
(x1 + x2 + v)2 + (p1 + p2)

2
]
− e2r

2

[
(x1 − x2 − u)2 + (p1 − p2)

2
]} (4.24)

with q = x1, x2 and p = p1, p2. The Wigner function links the Schrödinger’s wave function (or more
generically the quantum density operator) to a quasi-probability distribution in phase space (q,p), the
term quasi referring to the fact that the Wigner function is not always positive semi-definite since it can
have negative values. An always positive Wigner function, as is the one of state (4.11), can be interpreted
as a classical probability distribution, thus allowing a hidden-variable interpretation of the correlations
exhibited by this entangled state. This is true as long asGaussianmeasurements, i.e. linear combinations
of position and momentum measurements, are considered 14.

Here we can see that the Wigner function (4.24) of the EPR state is Gaussian and therefore positive
semi-definite. This means that the state can be represented by a classical probability distribution. As a
consequence, for a Gaussian measurement , this EPR state cannot violate Bell’s inequalities [8, 113]15.
In other words, as long as Gaussian measurements are concerned, the EPR state (4.11) displays a
non-locality that can bemimicked by a classical probability distribution, viz. by a hidden variable
theory. However, the non-locality of Gaussian states such as (4.11) can be revealed by non-Gaussian
measurements. Hence, non-locality is revealed not only by the quantum structure of the considered
state (that must in any case be entangled in order to possibly violate locality constraints), but also by the
type of measurement performed and hence on the observables chosen to build a Bell-type inequality
[8].
13Using (4.15) with θ = 0 and (4.21) it is easily checked that S†x̂iS = X̂i, implying that X̂1 |X1, X2⟩ =
S†x̂iS |X1, X2⟩ = S†x̂iS(S

†S) |X1, X2⟩ = Xi |X1, X2⟩. Multiplying from the left the last equality by S yields
x̂i(S |X1, X2⟩) = Xi(S |X1, X2⟩). Then, X̂1 |x1, x2⟩ = S†x̂i(S |x1, x2⟩) = XiS

†(S |x1, x2⟩) = X1 |x1, x2⟩. There-fore, applying |x1, x2⟩ to the first line of (4.21) yieldsX1 = x1 cosh r− x2 sinh r. The same argument holds for the
X2, P1 and P2.14For any given input Gaussian state, a Gaussian measurement is defined as a measurement yielding a Gaussianprobability distribution for the output : it is therefore an operation that projects Gaussian states onto Gaussianstates [113].15In a paper dated 1986 [114] Bell himself remarked that the EPR state could not violate his inequality because ofthe Gaussianity of the Wigner function of the EPR state but this remark has proven to be true only for Gaussianmeasurements.
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For the unphysical state given in (4.10) and (4.11), the two particles are in an entangled state exhibiting
perfect correlations in their positions and momenta [8]. Then, for such a state, EPR argument reads as
follows. For state (4.11), measuring particle 1 to be in state x0 immediately yields state |x0⟩ 11 ⟨x0|ψ⟩ =

|x0, x0 − u⟩ implying that particle 2 is with certainty in position state x0−u. But since there should not be,according to special relativity, any immediate action at a distance, the measurement made on particle 1

should not have disturbed the state of particle 2 : hence, the two particle being space-like separated, the
position of particle 2 must have been predetermined, i.e. particle 2 should have been in position x0 − u

even before the measurement performed on particle 1. The same argument apply to momenta : locality
implies that particle 2 should have been in momentum −p0 even before the measurement performed
on particle 1 had yielded momentum p0. Then, not only the outcome of the measurement on particle
1 should not be random but also particle 2 should be in a state with preditermined position x0 − u and
momentum−p0 since its state should not dependon the choice ofmeasurement (position ormomentum)
made on particle 1. But quantummechanics forbids to be in a state where position and momentum are
both predetermined with infinte precision, i.e. with certainty. Therefore, according to the EPR argument,
quantum mechanics is inconsistent and thus incomplete as long as locality of interaction, i.e. no action
at a distance, and/or realism are/is preserved. Since local realism implies incompleteness of quantum
mechanics [8] it is then essential to be able to test whether a more complete hidden-variable theory can
account for quantum correlations : Bell inequalities provide such a test.

4.1.3 . The 1964Bell and 1969 CHSH inequalities : mathematical constraints on local realism

Nonlocality can be revealed through the violation of the constraints that local realism imposes on the
joint probability distribution of two physically separable systems [8]. These constraints, known as Bell
inequalities, can be violated by quantummechanics andwhen these inequalities imposed by local realism
are violated then the correlations of the relevant quantum state contradict (1) locality or (2) realism or (3)
both (locality and realism). The term nonlocality loosely refers to any of these alternatives [8]. In order
to be able to violate Bell inequalities, measurements must resort to non-commuting observables 16 and
must apply to entangled states17.

Let us say [95] that Alice andBob canperform independently ameasurement of an observable on two
apparently different systems18. Themeasurement by Alice is defined as some randomvariableA yielding
outcome a and is considered to be conditioned by some variable X freely set to the value x. Similarly
the measurement by Bob is defined as some random variable B yielding outcome b and is considered
to be conditioned by some variable Y freely set to the value y. Generically the two measurements may
not be statistically independent and one could have19

PAB|XY (ab|xy) ̸= PA|X(a|x)PB|Y (b|y) (4.25)
Considering A and B to be space-like events, i.e. causally disconnected events, one may account for the
correlations resulting in the non-factorability of (4.25) by invoking some set of (possibly random) past
factors Λ related to some local interaction between the two (sub-)systems 20. In this local theory the
common past explains the correlations by resorting to a common cause. In this case, despite (4.25), one
can factorize the probability distribution of the outcomes as

PAB|XY Λ(ab|xyλ) = PA|XΛ(a|xλ)PB|Y Λ(b|yλ) (4.26)
16See for example (A.72) in the computation of the upper bound or Cirel’son bound for the CHSH inequality inAppendix A.3.17In other words, violation of local realism is related to the quantum, i.e. non classical, correlations exhibited byconjugate variables.18In reality two subsystems of one unique system as one must consider quantummechanically two particles prop-agating in opposite directions after interacting.19Setting, accordingly to what has been said, PA|XY (a|xy) = PA|X(a|x) and PB|XY (b|xy) = PB|Y (b|y).20"Let this more complete specification [of the system] be effected by means of parameters λ. It is a matter ofindifference in the following whether λ denotes a single variable or a set, or even a set of functions, and whetherthe variables are discrete or continuous"[7].

54



It can be noticed that the reasoning followed to obtain (4.26) is actually a three-step reasoning implying
three assumptions : realism, free-will and no-signaling 21. It is then worth to clarify them.
The realism assumption states that any correlation betweenA andB is determined by some unobserved
or unobservable reality - a set of past factors - which is encoded, as we said, in the possibly random
variable Λ. Since the variable Λ is possibly random it can be described by a probability distribution
PΛ(λ). This assumption is written22

PAB|XY (ab|xy) =
∫
Λ
dλPABΛ|XY (abλ|xy) =

∫
Λ
dλPAB|ΛXY (ab|λxy)PΛ|XY (λ|xy) (4.27)

The free-will assumption guarantees that the observers ofA andB can freely choose (free-choice) which
measurement they are performing. This implies not only that A and B are independent of either Y or
X respectively but also that X and Y are independent of each other and therefore independent of Λ.
The independence from Λ ofX and Y is written23

PΛ|XY (λ|xy) = PΛ(λ) ⇔ PXY |Λ(xy|λ) = PXY (xy) = PX(x)PY (y) (4.28)
where the last equality states also the mutual independence ofX and Y . These relations constitute the
free-will assumption. Finally, the no-signaling assumption assumes that A and B are spacelike events,
i.e. measurements that are causally disconnected. This assumption is written24

PAB|ΛXY (ab|λxy) = PA|ΛXY (a|λxy)PB|ΛXY (b|λxy) = PA|ΛX(a|λx)PB|ΛY (b|λy) (4.29)
where we can see25 that the correlations betweenA andB have been taken such to be generated exclu-
sively by the set of hidden variables Λ, i.e. A neither depends on B and Y nor B on A andX . The three
previous conditions (4.27), (4.28) and (4.29) lead to the locality constraint

PAB|XY (ab|xy) =
∫
Λ
dλPA|ΛX(a|λx)PB|ΛY (b|λy)PΛ(λ) (4.30)

It is now possible to define the average quantity
⟨AB⟩(x, y) =

∫
A
da

∫
B
db abPAB|XY (ab|xy) (4.31)

and
S(x, x′, y, y′) = ⟨AB⟩(x, y) + ⟨AB⟩(x, y′) + ⟨AB⟩(x′, y)− ⟨AB⟩(x′, y′) (4.32)

Applying the locality constraint (4.30) in (4.32) one obtains
Slocal(x, x′, y, y′) =

∫
Λ dλPΛ(λ)

{
⟨A⟩(λ, x) [⟨B⟩(λ, y) + ⟨B⟩(λ, y′)] + ⟨A⟩(λ, x′) [⟨B⟩(λ, y)− ⟨B⟩(λ, y′)]

}
(4.33)

with
⟨A⟩(λ, x) =

∫
A
da aPA|ΛX(a|λx) ⟨B⟩(λ, y) =

∫
B
db bPB|ΛY (b|λy) (4.34)

21We are following here the line of reasoning given by A. Smerzi in his course "Quantum Interferometry" duringthe second week of the Cold Atom Predoc School (Les Houches, Sept. 26th - Oct. 7th 2022).22If the variable Λ is considered to be discrete then one has ∫
Λ
dλ→∑

Λ.23This relation is also known as Reichenbach’s Common Cause Principle (1956).24Using P (AB|C) = P (A|BC)P (B|C) and the independence relation P (A|B) = P (A).25Under the free-will conditions, i.e. if Y is independent from A,X and Λ, one has both
PAΛXY (aλxy) = PAΛX(aλx)PY (y) = PA|ΛX(a|λx)PΛX(λx)PY (y)

PAΛXY (aλxy) = PA|ΛXY (a|λxy)PΛXY (λxy) = PA|ΛXY (a|λxy)PΛX(λx)PY (y)

Therefore, equating the two previous relations, one obtains PA|ΛXY (a|λxy) = PA|ΛX(a|λx). Similarly if X isindependent from B, Y and Λ, one gets PB|ΛXY (b|λxy) = PB|ΛY (b|λy).
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It can clearly be seen that if
a ∈ [−1, 1] b ∈ [−1, 1] (4.35)

then every average of the form ⟨A⟩(λ, x) appearing in (4.33) will be bounded by ±1. Hence one obtains
for S under locality constraint, i.e. Slocal, the inequality

|Slocal(x, x′, y, y′)| ≤ 2 (4.36)
The previous expression, consisting in the mathematical formulation of a locality constraint, is referred
to as Bell’s inequality [7] in its CHSH (Clauser-Horne-Shimony-Holt) formulation [105]. As it is, the inequal-
ity is conditioned by the locality constraint (4.30), i.e. by the factorability of the probability distribution
PAB|λXY as expressed in the no-signaling assumption formulated in (4.29) (A andB are causally discon-
nected) after taking into account realism (4.27), i.e. the existence ofΛ, and free-will, i.e. the independence
of X ,Y and Λ. It is then either this very same factorability, leading to the locality constraint, or the very
existence of a set of hidden variables yielded by realism that is questioned by the so-called non-locality
of quantum mechanics.

4.1.4 . Measures of Genuine Bipartite and Tripartite Entanglement and Non-locality
Non-locality is related to entanglement since only entangled states can violate locality [8]. In this sec-

tion we shortly review different measures of entanglement in order to motivate, in our study, the choice
of the "PPT-measure" for bipartite entanglement (see 4.3.6) and of the Mermin’s nonlocality parameter
(see 4.6.4) as a witness of the GHZ nature of our low-energy tripartite state.
Bipartite Entanglement and Nonlocality

By singular value decomposition (SVD), anym×nmatrix A can be written as A = UDV † withD am×n

diagonal matrix with non-negative real components and U and V two unitary matrices of dimension
m×m and n× n respectively. Then for any pure bipartite state one has

|ψ⟩ =
∑
p,q

Apq |p⟩ |q⟩ =
∑
k

Dkk

(∑
p

Upk |p⟩
)(∑

q

V ∗
qk |q⟩

)
=
∑
k

Dkk |uk⟩ |vk⟩ (4.37)
with {|p⟩}, {|q⟩}, {|uk⟩} and {|vk⟩} orthogonal bases and the sum over k has d = min(m,n) terms. The
Dkk =

√
dk are called the Schmidt coefficients and the last expression in (4.37) a Schmidt decomposition.

By definition of the density matrix ρ̂ = |ψ⟩ ⟨ψ| whose trace must equal one, the Schmidt coefficients
must fulfill∑k dk = 1. Any bipartite state can therefore be written as a convex combination of product
states26. The state will be maximally entangled if all its Schmidt coefficients are equal and separable or
factorizable if the number of nonzero coefficients, i.e. its Schmidt rank, is one [8]27. Then, the the two
reduced density operators obtained by partial tracing are given by

ρ̂1 = Tr2ρ̂ =
∑
k

dk |uk⟩ ⟨uk|

ρ̂2 = Tr1ρ̂ =
∑
k

dk |vk⟩ ⟨vk|
(4.38)

and it can be seen that the partial tracing of one subsystem in a maximally entangled pure state leaves
the other one in themaximally mixed state of uniform distribution 1/d. Given the von Neumann entropy

S(ρ̂) = −Tr{ρ̂ logd ρ̂} (4.39)
a unique measure Ev.N. of bipartite entanglement for pure states is given by

Ev.N.(ρ̂) = S(ρ̂1) = S(ρ̂2) = −
∑
k

dk logd dk (4.40)
26A convex combination for the xi defined in a real or complex vector space is given by∑i αixi with αi real and∑

i αi = 1 and αi ≥ 0.27There is then only one non-vanishing coefficient which is by definition equal to one.
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From a continuous variable perspective, for a two-mode squeezed state, such as the EPR state in the
limit of infinite squeezing, which can always be written as

|ψ⟩ = Ŝ(ζ) |0⟩ |0⟩ =
√
1− λ

∞∑
n=0

λn/2 |n⟩ |n⟩ (4.41)
with Ŝ(ζ = r) given in (4.15) and λ = tanh2 r, the partial von Neumann entropy will give

Ev.N.(ρ̂) = S(ρ̂1) = S(ρ̂2) = − ln(1− λ)− λ

1− λ
ln(λ)

= (cosh2 r) ln(cosh2 r)− (sinh2 r) ln(sinh2 r)

= ln(cosh2 r)− (sinh2 r) ln(tanh2 r)

(4.42)

which goes as 2r − ln(4) + 1 for very large r and is zero for r = 0. Any pure bipartite Gaussian state
can be transformed to a two-mode squeezed state via a Local Linear Unitary BOgoliubov transformation
(LLUBO) which does not modify the entanglement properties of the state28 : its entanglement can then
be measured by (4.42) [8]. Even if pure bipartite Gaussian states have a positive semi-definite Wigner
function, they do violate Bell inequalities due to the non-Gaussianity of the measurements involved in
the non-locality tests. Local realism can only be violated by entangled states since the tests for non-
locality are sensitive to quantum, i.e. non classical, correlations : but if not all entangle states do violate
locality, any entangled pure bipartite state does violate local realism [8].

The entanglement entropy Ev.N generalizes to the entanglement of formation Ef [115] when bipartitemixed states are considered, with
Ef (ρ̂) = inf

{∑
i

piEv.N (ρ̂i)

}
(4.43)

with a the infimum taken over all the possible ways of decomposing the bipartite mixed state ρ̂ in a
convex sum of bipartite (possibly entangled and not necessarily orthogonal) pure states ρ̂i = |ψi⟩ ⟨ψi|,i.e. with ρ̂ =

∑
i pi ρ̂i. But as argued in section 4.3.6 the entanglement of formation is not not easily

determined in non symmetric two-mode Gaussian mixed states such as the ones we consider, since in
general the mixedness Ai and Aj (defined in (4.197)) for modes i and j respectively, are not equal. This
criterion is therefore unpractical in the study of our system.

Let us here recall that a mixed bipartite state is separable or factorizable if its density operator is
given by a convex sum (∑i pi = 1 with pi ≥ 0 for all i) of product states, i.e.29

ρ̂ =
∑
i

pi ρ̂
i
1 ⊗ ρ̂ i

2 (4.44)
Then, the Perez-Horodecki criterion or Partial Positive Transpose (PPT) criterion states that a bipartite den-
sity operator, i.e. any bipartition (N ×M) of a system of N +M modes each mode being a discrete
variable with d degrees of freedom or a continuous variable described by its position andmomentum, is
separable if its partially transposed density matrix yields a legitimate density operator and has therefore
only non-negative eigenvalues [8, 86]. The matrix is said to be partially transposed since one of the two
modes is transposed. Thus the partial transposed of a generic two-mode density operator

ρ̂ =
∑
i,j,l,m

Aijlm |i, l⟩ ⟨j,m| (4.45)
will be given by30

ρ̂(PT ) = (T1 ⊗ 12) ρ̂ =
∑
i,j,l,m

Aijlm |j, l⟩ ⟨i,m| =
∑
i,j,l,m

Ajilm |i, l⟩ ⟨j,m| (4.46)
28A local transformation does not mix different modes.29If only one pk = 1 then ρ̂ = ρ̂1 ⊗ ρ̂2 is a simply separable state or product state and one has the von Neumannentropy S(ρ̂) = S(ρ̂1) + S(ρ̂2).30Any of the two modes can be transposed. Here we have transposed the first one.
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with T1 the transposition operator in subspace 131. If at least one eigenvalue of ρ̂(PT ) is negative we will
say that ρ(PT ) has a negative partial transpose (npt) and is therefore inseparable, i.e. npt is a sufficient
condition for inseparability since a positive partial transpose is a necessary condition for separability.
For bipartitions (2 × 2) and (2 × 3) for finite-dimensional systems and (1 ×N)-Gaussian systems 32, all
inseparable bipartite states show also npt and the criterion is necessary but for higher dimensions not
all inseparable bipartite states show npt and the criterion is only sufficient for inseparability, i.e. "if npt
then inseparable" [8]. It is then clear that the PPT criterion is a "yes or no" condition for inseparability :
in the general case, if the system shows npt then it is inseparable but if it does not one cannot tell if it is
separable or inseparable.

Similarly, with the norm ||Ô||1 = Tr{√Ô†Ô}, the negativity is defined as33

N (ρ̂(PT )) =
||ρ̂PT ||1 − 1

2
(4.47)

Since ||ρ̂||1 = 1 by definition of the density operator, the more ρ(PT ) has negative eigenvalues the less it
is semi-positive definite and hence the more ||ρ̂PT ||1 goes to zero34. ThereforeN (ρ̂(PT )) varies between
0 and −0.5. Equivalently, from ||.||1, the logarithmic negativity is defined as

EN (ρ̂) = log2 ||ρ̂(PT )||1 (4.48)
If the entanglement entropy, its generalization to mixed states, i.e. the entanglement of formation, and
the logarithmic negativity, are monotonous measures of entanglement, they possibly violate monogamy
inequalities for tripartite systems [116]. Hence these measures are problematic in the tripartite case.

The "PPT measure" for bipartite Gaussian systems [86] adopted in this work is a generalization of
the PPT criterion, without any of the previously mentioned drawbacks. This measure is monotonic with
entanglement : at one the state is maximally entangled and below zero it is no longer entangled (see
section 4.3.6 ). The "PPTmeasure"mimicsmany features of theGaussian contangle thatwewill introduce
in (4.53) as a proper measure for the monogamy inequality but is much easier to compute. The allows
therefore to easily characterize the degree of entanglement of any bipartite system.

Williamson’s theorem states that any covariance matrix σ35 can be put in a diagonal form by a sym-
plectic36matrixS through the transformationSσST . A 2-modeGaussian statewill have a 4×4 covariance
matrix whose partial transpose σ(PT ) will have twice-degenerated symplectic eigenvalues ν(PT )

±
37. The

PPT-criterion [90, 86] states that if ν(PT )
± ≥ 1 then the state is separable. Therefore, since ν(PT )

+ ≥ 1, the
positiveness of the parameter

Λ = 1− ν
(PT )
− (4.49)

31The density operator is hermitian. Therefore transposition is equivalent to complex conjugation. Furthermore,complex conjugation of the Schrödinger equation gives iℏ∂t → −iℏ∂t andmeans therefore time reversal. Hence,in terms of continuous variables time reversal yields sign change in the momentum variables, i.e. pi → −pi [8].32The first two cases correspond to discrete systems of 2+2 and 2+3modes respectively, each mode with a finitenumber of degrees of freedom, whereas the last one is a continuous-variableN +1 Gaussian-mode system. Letus remark here that there exists other criteria that witness, at least in principle, separability of all bipartitions of
N ×M Gaussian-mode systems (see [8]).33With log2 for qubits and ln for continuous variable states.34Since the density operator ρ̂ is hermitian, ρ̂T = ρ∗. Then, if ρ(PT ) is a well-defined density operator its norm ||.||1will be one.35For a definition of the covariance matrix see section 4.3.3.36A matrixM is symplectic ifMJMT = J with

J =

(
0 1n

−1n 0

)
a skew-symmetric 2n× 2n block matrix such that det J = 1, J2 = −1, JT = −J and hence JT = J−1 Multiplying
MJMT = J from the left by J and from the right by M−1 one obtains the inverse M−1 = −JMTJ of thesymplecticmatrixM . Applying our definition of a sympltecticmatrixwithM = J proves that J is also a symplecticmatrix. See section 4.3.3.37The symplectic eigenvalues associated to the covariance matrix σ are the eigenvalues of |iΩσ| with Ω defined inEq. (4.126) of section 4.3.3 [90].
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will quantify the degree of entanglement of the system38: this is the PPT measure. Let us finally signal
the DGCZ criterion [117] also obtained from the covariance matrix. In the case of our system [90]39 this
criterion reduces to

|⟨ĉiĉ2⟩|2 > ⟨ĉ†i ĉi⟩⟨ĉ
†
2ĉ2⟩

|⟨ĉ0ĉ†1⟩|2 > ⟨ĉ†0ĉ0⟩⟨ĉ†1ĉ1⟩
(4.50)

with i = 0, 1 and which is nothing else than a violation (in the case of inseparable states) of the Cauchy-
Schwarz inequality | ⟨u|v⟩ |2 < |⟨u|u⟩| |⟨v|v⟩|. Contrarily to measures such as the Cauchy-Schwarz crite-
rion, the PPT measure has the advantage of being an entanglement monotone.

Genuine Tripartite Entanglement and Mermin’s Nonlocality Test

The term genuine tripartite state refers to a tripartite state where none of the parties can be separated
from the two other parties in a mixture of product states, i.e. the state is not such that∑i piρ̂

i
j ⊗ ρ̂ikl with

pi ≥ 0 and∑i pi = 1 [8].
A proper measure of bipartite entanglement E(A|B), i.e. a nonnegative measure which is zero for

separable states andwhich ismonotonic, must satisfymonogamy inequalitieswhenmultipartite systems
are considered. In the case of a tripartite systems such a monogamy inequality reads [86]

E(i|jk) − E(i|j) − E(i|k) ≥ 0 (4.51)
where bipartition (i|jk) means that the subsystem jk is taken as a whole. This monogamy inequality
provides a measure of genuine tripartite entanglement. The logarithmic negativity (4.47) can be made a
proper measure by squaring it. It is then called, in the case of Gaussian pure states ρ̂ = |ψ⟩ ⟨ψ|, contangle
(from "continuous entanglement") and reads

Eτ (σ
p) =

(
ln2 ||ρ̂(PT )||1

)2 (4.52)
with σ the covariance matrix of the pure (p) the system. Its generalization to mixed stated is called the
Gaussian contangle and reads

Gτ (σ) = inf
σp≤σ

Eτ (σ
p) (4.53)

with σp ≤ σ meaning that σ − σp is positive semi-definite. This measure constitute an upper-bound to
the measure with no restriction σp ≤ σ [86]. The monogamy measure 4.51 performed with contangle
(4.52) and its generalization (4.53) is symmetric for tripartie qubits but is no longer symmetric for tripartite
continuousmodes. NeverthelessminimizingGτ over all permutations of themodesmakes it symmetric.
This minimization is called the residual contangle and reads

Gres
τ = min

i,j,k

(
G(i|jk)

τ −G(i|j)
τ −G(i|k)

τ

) (4.54)
This residual contangle was computed for our state in Ref. [86]. Since it is not of very practical use and
that it cannot be used at finite temperature, we will resort in this work to the Mermin’s parameter as a
witness of nonlocality for the GKMR pseudo-spinsmeasurements (see section 4.4) on our tripartite state.

A straightforward tripartite generalization of the bipartite CHSH inequality is given by the Svetlichny
parameter given in Eq. (4.215) of section 4.6.1.

In the Zero Temperature and Zero Energy Limit, the GHZ nature of out tripartite pure state is shown
in section 4.6.3. In section 4.6.4, the persistence of this feature at finite energy is inquired through the
computation of Mermin paramater [111] given in Eq. (4.232), which relates to the Svetlichny three-mode
Bell operator given in (4.215), as shown in Eq. (4.234).
38See section 4.3.6
39See section 4.3.5 for the definition of ⟨ĉiĉ2⟩ and ⟨ĉ0ĉ†1⟩.
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We will therefore here introduce Mermin’s nonlocality test for tripartite systems. We recall that the
GHZ state40, written in the basis of the σ̂z ⊗ σ̂z ⊗ σ̂z spin operator, is given by

|ψGHZ⟩ = 1√
2
(|+++⟩+ |− − −⟩) (4.55)

It is easily checked that this state is an eigenvector of the operators (σ̂x ⊗ σ̂y ⊗ σ̂y), (σ̂y ⊗ σ̂x ⊗ σ̂y) and
(σ̂y ⊗ σ̂y ⊗ σ̂x) for eigenvalue −1 and eigenvector of σ̂x ⊗ σ̂x ⊗ σ̂x with eigenvalue +1. Because of the
previous properties one must then have

⟨(σ̂x ⊗ σ̂y ⊗ σ̂y)(σ̂y ⊗ σ̂x ⊗ σ̂y)(σ̂y ⊗ σ̂y ⊗ σ̂x)⟩ = ⟨σ̂x ⊗ σ̂y ⊗ σ̂y⟩⟨σ̂y ⊗ σ̂x ⊗ σ̂y⟩⟨σ̂y ⊗ σ̂y ⊗ σ̂x⟩
= −⟨σ̂x ⊗ σ̂x ⊗ σ̂x⟩
= −1

(4.56)

with the averages ⟨.⟩ taken on the GHZ state41. Consequently, knowing any twomeasurements, each one
being either±1, the last outcome is known with certainty. According to the EPR reasoning the outcomes
should then have been predetermined since the prediction on the last measurement can in principle
be made at any arbitrary distance. Then, in order to explain the previous results, not only the outcome
of one detector should be predetermined by some hidden variable λ such that sx,i(λ) (outcome of a
measure of particle i if σ̂x is measured) and sy,i(λ) (outcome of a measure of particle i if σ̂y is measured)
have a definite value (either +1 or −1) for each particle i but also the correlations between the three
particles (encoded in λ) should yield the previous statistics (4.56) obtained for the |ψGHZ⟩. But, setting λto fulfill the results obtained for the measurements of one σ̂x and two σ̂y , yields

(σx,1 σy,2 σy,3) (σy,1 σx,2 σy,3) (σy,1 σy,2 σx,3) = −1 ⇒ σx,1 σx,2 σx,3 = −1 (4.57)
since (σy,i)

2 = 1. Hence the prediction (with certainty) of local realism is −1 for the measurement
σ̂x ⊗ σ̂x ⊗ σ̂x. But, as can be seen from (4.56), prediction (with certainty) of quantum mechanics for the
same observable is +1. Therefore, the EPR reality criterion predicts σx ⊗ σ̂x ⊗ σ̂x with the wrong eigen-value : in Mermin’s words, "[i]n this sense the GHZ experiment provides the strongest possible contra-
diction between quantum mechanics and the EPR reality criterion" [112]. Not surprisingly, the non-local
prediction of quantum mechanics results from the non-commutativity of the Pauli algebra operators.
Finally, and strikingly, the EPR local realism is here refuted not by a statistics (as in Bell inequalities) but
by the inconsistent predictions of one single outcome.

4.2 . BOGOLIUBOVTRANSFORMATIONANDSQUEEZEDVACUUMINTHEANALOGBLACK
HOLE SYSTEM

4.2.1 . The Three-mode Pure State
For describing analog black holes physics one should consider observables operating in the Fock

space of the outgoing modes, as would an observer located outside the horizon of a gravitational black
hole. However, the physical implementation of the analog black hole configurations presented in 3.1 is
realized in the vacuum of the incoming modes. This mismatch is the origin of the quantum evaporation
process, as first presented by Hawking [11]. An ingoing vacuummode of frequency ω (which we denote as
|0ω⟩in) relates to an outgoing vacuummode |0ω⟩out through, as we will see, a Bogoliubov transformation.
In our system we therefore define the b̂i(ω) and ĉi(ω) bosonic annihilation operators for ingoing and
40"Although there is no rigorous definition of maximally entangled multiparty state due to the lack of a generalSchmidt decomposition, the form of the GHZ state with all Schmidt coefficients equal suggests that it exhibitsmaximum multipartite entanglement" [8].41Indeed, using σ̂2

i = 1 and the non-commutativity of the Pauli algebra, one has
(σ̂x ⊗ σ̂y ⊗ σ̂y)(σ̂y ⊗ σ̂x ⊗ σ̂y)(σ̂y ⊗ σ̂y ⊗ σ̂x) = (σ̂xσ̂yσ̂y)⊗ (σ̂yσ̂xσ̂y)⊗ (σ̂yσ̂yσ̂x) = −σ̂x ⊗ σ̂x ⊗ σ̂x

Furtheremore, |ψGHZ⟩ being eigenvector of each one of the three operators appearing on the left-hand-side ofthe first line, this expression is indeed equivalent to the right-hand-side of the first line.
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outgoing i-thmode, with q̂i(ω) and p̂i(ω) being, as wewill see, the dimensionless position andmomentum
operator of the i-th mode, respectively. In the Fock space the two vacua are defined as

|0ω⟩in = |0ω⟩in(0) ⊗ |0ω⟩in(1) ⊗ |0ω⟩in(2) (4.58a)
|0ω⟩out = |0ω⟩out(0) ⊗ |0ω⟩out(1) ⊗ |0ω⟩out(2) (4.58b)

where |0ω⟩in(i) is the vacuum of operator b̂i(ω) and |0ω⟩out(i) the vacuum of operator ĉi(ω), with i ∈ {0, 1, 2}.
The ĉi(ω) out-goingmode operators are related to ingoingmode operators b̂i(ω) by the Bogoliubov trans-formation

ĉS(ω) = S(ω) b̂S(ω) (4.59)
with

ĉS(ω) = (ĉ0(ω), ĉ1(ω), ĉ
†
2(ω))

T

b̂S(ω) = (b̂0(ω), b̂1(ω), b̂
†
2(ω))

T
(4.60)

and S(ω) the 3× 3 scattering matrix42 defined as
SηS† = S†ηS = η

η = diag(1, 1,−1)
(4.61)

where the explicit ω-dependence as been dropped, as it will often be the case below, for legibility. One
can rewrite (4.61) explicitly as

(
SηS†)

00
= |S00|2 + |S01|2 − |S02|2 = 1(

SηS†)
11

= |S10|2 + |S11|2 − |S12|2 = 1(
SηS†)

22
= |S20|2 + |S21|2 − |S22|2 = −1(

SηS†)
kl
= Sk0(Sl0)

∗ + Sk1(Sl1)
∗ − Sk2(Sl2)

∗ =
k ̸=l

0

(4.62)

and as (
S†ηS

)
00

= |S00|2 + |S10|2 − |S20|2 = 1(
S†ηS

)
11

= |S01|2 + |S11|2 − |S21|2 = 1(
S†ηS

)
22

= |S02|2 + |S12|2 − |S22|2 = −1(
S†ηS

)
kl
= (S0k)

∗S0l + (S1k)
∗S1l − (S2k)

∗S2l =
k ̸=l

0

(4.63)

Defining any scattering matrix component as
Sij = |Sij |eiφij (4.64)

the last line of (4.62) can then be rewritten as
|Sk0||Sl0|ei(φk0−φl0) + |Sk1||Sl1|ei(φk1−φl1) − |Sk2||Sl2|ei(φk2−φl2) =

k ̸=l
0 (4.65)

The Bogoliubov transformation in (4.59) is a linear transformation that preserves the commutation re-
lations : if the b̂i are well-defined bosonic annihilation operators then the ĉi are also well-defined an-
nihilation operators. With respect to the vectors ĉ and b̂ defined as a generic â will be in (4.129), i.e.
as

â = (â0, â1, â2, â
†
0, â

†
1, â

†
2)

T (4.66)
42The index S for ĉS and b̂S indicates that these two vectors are related by the scattering matrix S through therelation given in (4.60). They should not be confused with ĉ and b̂ appearing in (4.67) and which are defined inthe same way as â in (4.129).
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the Bogoliubov transformation is written
ĉ(ω) = T (ω) b̂(ω) (4.67)

with

T (ω) =



S00 S01 0 0 0 S02

S10 S11 0 0 0 S12

0 0 S∗
22 S∗

20 S∗
21 0

0 0 S∗
02 S∗

00 S∗
01 0

0 0 S∗
12 S∗

10 S∗
11 0

S20 S21 0 0 0 S22


(4.68)

Thematrix T encodes a non-local Bogoliubov transformation, where "non-local"means that the different
modes are mixed in the operation. One can immediately see that T has the block structure

T =

α∗ −β∗

−β α

 (4.69)

with α and β two N ×N matrices. We wish here to define the outgoing covariance matrix σc. Since
ξc =

√
2U c =

√
2U T b =

√
2U T U † U b = U T U † ξb (4.70)

In order for c and ξc to fulfill as b and ξb respectively the commutation relations (4.132) and (4.125) one
must have

T J T T = J

(U T U †) Ω(U∗ T T UT ) = Ω
(4.71)

A transformationSSp acting in a 2N -dimensional complex vector space, as the ones in (4.71), i.e. such that
SSpXSTSp = X with X skew-symmetric (XT = −X), is said to belong to the symplectic group Sp(2N,C).
We define the symplectic transformation

ST = U T U † (4.72)
Multiplying the first relation in (4.71) by J on the right and by T−1 on the left one obtains

T−1 = −J T TJ =

αT β†

βT α†

 (4.73)

Then the relations T−1T = 12N and T T−1 = 12N impose four relations if written in terms of theN ×N

matrices α and β, that is to say
−ββ† + αα† = 1N −βαT + αβT = 0

−βTβ∗ + α†α = 1N −αTβ∗ + β†α = 0
(4.74)

Relations (4.74) are equivalent to (4.62) and (4.63). Furthermore relation (4.67) can be restated as
ci = V †biV (4.75)

with V a unitary operator43. Then the vacua |0ω⟩in and |0ω⟩out defined as
b̂i |0ω⟩in = 0 ĉi |0ω⟩out = 0 (4.76)

43Relation
ci = V †biV =

∑
j

Tijbj

allows, as we will see, to express the operator V in terms of the components of the matrix T .Let us recall that inthe previous relation one has cn = ĉn and c2n = ĉ†n accordingly to (4.66), and similarly for b.
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can be related by
ĉi |0ω⟩out = 0 ⇒ V †biV |0ω⟩out = 0 (4.77)

which yields
|0ω⟩in = V |0ω⟩out (4.78)

For
X = −β∗α−1 (4.79)

a N ×N matrix, the unitary operator V is then defined44 by
|0ω⟩in = V |0ω⟩out =

[
1√

|detα|
e

1
2

∑
i,j Xij ĉ

†
i ĉ

†
j

]
|0ω⟩out (4.80)

SinceX is a symmetric matrix45 one has

X =


0 0

S02
S22

0 0
S12
S22

S02
S22

S12
S22

0


(4.81)

where theX20 andX21 components are simplified using the symmetry of theX matrix. Therefore since
ĉ†i and ĉ†j commute, one is left46 with

|0ω⟩in =

[
1

|S22|
e

(
X02ĉ

†
0+X12c

†
1

)
ĉ†2

]
|0ω⟩out =

[
1

|S22|
eX02ĉ

†
0ĉ

†
2eX12c

†
1ĉ

†
2

]
|0ω⟩out (4.82)

where, as seen in (4.81), Xi2(ω) = Si2(ω)/S22(ω). Defining, as we did in (4.58), the full Fock space as thetensor product of the Fock spaces of each mode i, we can define in the outgoing basis
|n⟩(i) = |nω⟩(i) =

1√
n!
(c†i )

n |0ω⟩out(i) (4.83)
with i = 0, 1, 2. Then, one obtains, after a Taylor expansion of the two exponentials in (4.82),

|0ω⟩in =
1

|S22|
+∞∑
m=0

+∞∑
n=0

√
Cm
n+m[X02]

m[X12]
n |m⟩(0) |n⟩(1) |n+m⟩(2) (4.84)

with
Ck
n =

(
n
k

)
=

n!

k!(n− k)!
(4.85)

the binomial coefficient47. One can see that |0ω⟩in is a three-mode pure state.
44See Appendix A.1 for details.45X is symmetric if XT = X , i.e. if [α−1]Tβ† = β∗α−1. Since [α−1]T = [αT ]−1, multiplying the previous equalityfrom the left by αT and from the right by α one obtains β†α = αTβ∗ which is the last relation in (4.74). HenceXis symmetric.46The prefactor |S22|−1 comes from the normalization of (4.84). Comparing this normalization with the generalexpression (4.80) imposes the relation

detα = S22S
∗
00S

∗
11 − S22S

∗
01S

∗
10 = |S22|2 ⇒ S∗

00S
∗
11 − S∗

01S
∗
10 = S∗

22

in the same way as the symmetry of the matrixX imposes relations
X2i =

i ̸=2
S∗
20S

∗
1i − S∗

21S
∗
0i =

i̸=2

Si2S
∗
22

S22

These three relations seem to be difficult to demonstrate from (4.63) but can be checked numerically.47The normalization gives
∑
n,m

Cm
n+m[|X02|2]m[|X12|2]n =

∞∑
N=0

N∑
m=0

Cm
N [|X02|2]m[|X12|2]N−m =

∞∑
N=0

(
|X02|2 + |X12|2

)N
=

1

1− |X02|2 − |X12|2

which is just, using the definition of theXi2 components given in (4.81) and the third relation of (4.63), |S22|2.
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4.2.2 . Reduced Densisty Matrices
Tracing out modes 0 and 1, one obtains in the outgoing basis of the ĉ2 operators

ρ̂(2) =
1

|S22|2
+∞∑
n=0

(√
|S22|2 − 1

|S22|

)2n

|n⟩ (2) (2) ⟨n| (4.86)
where the third relation in (4.63) has been used. Similarly48 one obtains

ρ̂(1) =
1

1 + |S12|2
+∞∑
n=0

( |S12|
1 + |S12|

)2n

|n⟩ (1) (1) ⟨n| (4.87)
when tracing out modes 0 and 2, and

ρ̂(0) =
1

1 + |S02|2
+∞∑
n=0

( |S02|
1 + |S02|

)2n

|n⟩ (0) (0) ⟨n| (4.88)
when tracing out modes 1 and 2. Finally, defining the positive parameter ri as

sinh ri =
√
|Si2|2 − δi2 =

√
⟨ĉ†i ĉi⟩0 =

√
Ni

cosh r2 = |S22|
(4.89)

with ⟨...⟩0 the vacuum of the ingoing modes b̂i, one can write all the previous formulae as
ρ̂(i) =

1

cosh2 ri

+∞∑
n=0

(tanh ri)
2n |n⟩ (i) (i) ⟨n| (4.90)

with i = 0, 1, 2, or analagously,
ρ̂(i) =

1

1 +Ni

+∞∑
n=0

( Ni

1 +Ni

)n

|n⟩ (i) (i) ⟨n| (4.91)
This is the expression of a thermal state and one has

Ni(ω) = ⟨ĉ†i (ω)ĉi(ω)⟩0 = Tr{c†i ĉiρ̂(i)} =
1

e
ℏω

kBTi − 1
(4.92)

which implies49
sinh2 ri =

1

e
ℏω

kBTi − 1
(4.93)

and therefore
Ti(ω) =

ℏω
2kB ln[coth ri(ω)]

(4.94)
Then T0 is an effective temperature : but contrary to the Hawking temperature of a gravitational black-
hole, which is the effective temperature of a black-body radiation, T0 is energy dependent. Nevertheless,the analog Hawking temperature TH can be obtained from (4.89) since one can define TH as the energy-
independent fitting parameter of

N0(ω) = ⟨ĉ†0(ω)ĉ0(ω)⟩0 = |S02(ω)|2 =
1

e
ℏω

kBTH − 1
(4.95)

Then, even if this radiation at temperatureT0 is not purely thermal, one can retrieve an energy-independent
effective temperature T0 → TH when ω → 0 [90].
48Using, after a change of variable, ∑

q

Cn
n+qX

q =
(1−X)−n

1−X

and then again applying the definition of theXi2 component given in (4.81) and the third relation of (4.63).49One has indeed
+∞∑
n=0

n (tanh ri)
2n

= cosh2 ri sinh
2 ri

when computing the previous trace.
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4.2.3 . Optical Analog of the Acoustic Analog : the {ê} and {f̂} Bases

Parametric 
Down

Conversion

e0

e1
f1

f0

e2
f2 =

Pump

Beamsplitter

Partner

Analogue black hole

Companion

Hawking

Figure 4.1: Optical analog of the acoustic analog of a black hole [86]. The effective modes fi and ei(i = 0, 1 and 2) are related to the physical outgoing modes ci through Eqs. (4.103) and (4.97). The f0mode is represented with a dashed line because, contrarily to modes f1 and f2, it is not occupied at zerotemperature, as can be seen in Eqs. (4.180). The long wavelength transmission coefficient of the beam-splitter plays the role of the greybody factor Γ0 of the analogous black hole and is defined in (4.208) forthe waterfall configuration [38].
Considering (4.89) and the third line of (4.63) one has

sinh2 r0 + sinh2 r1 = sinh2 r2 (4.96)
Then defining

ê0 = e−iφ02 ĉ0 ê1 = e−iφ12 ĉ1 ê2 = eiφ22 ĉ2 (4.97)
with the phases defined in (4.64), one can write the expression in the exponential in (4.82) as(

X02ĉ
†
0 +X12c

†
1

)
ĉ†2 = tanh r2

(
sinh r0
sinh r2

ê†0 +
sinh r1
sinh r2

e†1

)
ê†2 = tanh r2

(
cos θê†0 + sin θe†1

)
ê†2 (4.98)

with, by virtue of (4.96),
cos θ =

sinh r0
sinh r2

sin θ =
sinh r1
sinh r2

(4.99)
for θ ∈ [0, π/2] since the ri are positive parameters 50 . The transformation (4.97) can be written as

e =W †cW = T ′ c ⇒ e =W †V †bVW = T ′T b (4.100)
with e and c defined as â in (4.129)51. Contrary to T which is non-local, one can see that T ′, which is
defined as

T ′ = diag(e−iφ02 , e−iφ12 , eiφ22 , eiφ02 , eiφ12 , e−iφ22) (4.101)
is a Local Linear Unitary BOgoliubov transformation (LLUBO) since there is nomixing of different modes.
Then one obtains52 for V ′ = VW

|0ω⟩in = V ′ |0ω⟩e =
[

1

cosh r2
e
tanh r2

(
cos θê†0+sin θe†1

)
ê†2

]
|0ω⟩e (4.102)

with |0ω⟩e the vacuum of operators êi. Finally, as discussed in Ref. [86], a final change of basis can be
performed towards the effective modes f̂0, f̂1, f̂2 schematically represented in Fig. 4.1. These modes are
related to the physical outgoing modes by

f̂0 = − sin θ ê0 + cos θ ê1 (4.103a)
f̂1 = cos θ ê0 + sin θ ê1 (4.103b)
f̂2 = ê2 (4.103c)

50One can also write |X02| = tanh r2 cos θ and |X12| = tanh r2 sin θ.51One has therefore straightforwardly e =W †V †bVW = T ′T b.52See Appendix A.1 for details.
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that one can also encode as
f = Z†eZ = T ′′ e ⇒ f = Z†W †V †bVWZ = T ′′T ′T b (4.104)

with

T ′′ =



− sin θ cos θ 0 0 0 0
cos θ sin θ 0 0 0 0
0 0 1 0 0 0
0 0 0 − sin θ cos θ 0
0 0 0 cos θ sin θ 0
0 0 0 0 0 1

 (4.105)

Then53 V ′′ = VWZ is defined by
|0ω⟩in = V ′′ |0ω⟩f =

[
1

cosh r2
etanh r2f̂

†
1 f̂

†
2

]
|0ω⟩f (4.106)

or54 equivalently
|0ω⟩in =

[
e
r2

(
f̂†
1 f̂

†
2−f̂1f̂2

)]
|0ω⟩f (4.107)

Furthermore the mode f̂0 does not appear in the previous expression and, since the transformation
(4.103) preserves the commutation relations, it is straightforward to see from (4.106) that ⟨f †0f0⟩0 = 0

with the mean value ⟨ . ⟩0 = in ⟨0ω| . |0ω⟩ in taken over the vacuum of the incoming b̂i operators55. We
recall that in (4.107) the parameter

r2(ω) = arsinh
√

|S22|2 − 1 (4.108)
is called the squeezing parameter56. Therefore, expression (4.107) indicates that the T = 0 state of the
system is, as far as the f1 and f2 modes are concerned, a two-mode squeezed vacuum with squeezing
parameter r2(ω). The f1 and f2 modes are mixed by a beamsplitter (see Fig. 4.1) of transmission and
reflection coefficients cos2 θ and sin2 θ, respectively. It has been argued in Ref. [86] that the long wave-
length limit of the transmission coefficient, Γ0 = limω→0 cos

2 θ, plays the role of the greybody factor of
the analog black hole.

Entanglement is localized in the two-mode squeezed state f1|f2 (see section 4.5.3). It is then dis-
patched bymean of a beam splitter which performs a non local transformation from the effectivemodes
(f0, f1, f2)onto other effectivemodes (e0, e1, e2)which connect to the physical outgoingmodes (c0, c1, c2)by a simple local linear unitary Bogoliubov transformation (LLUBO), see details in Appendix 4.2.3. We
stress that the configuration depicted in Fig. 4.1 captures the essence of the analog black hole configura-
tion and is generic : a similarmodel has been used in Ref. [118] for describing an optical system containing
a pair white-black hole analog and then studied on general grounds in [119]. Albeit the fact that we allow
the down-conversion process to violate Lorentz invariance (since we enforce the Bogoliubov dispersion
relation) the two-mode squeezed state built on f̂1 and f̂2 is the closest possible analog to an ideal blackhole. The additional beam splitter is inherent to any analog model, with the transmission coefficient of
this beam splitter playing the role of the greybody factor in the gravitational context [86].
53See Appendix A.1 for details.54See Appendix A.1 for justification.
55Using (4.103) as well as the previous transformations and noticing that ⟨e†iei⟩0 = ⟨c†i ci⟩0 = |Si2|2 − δi2 = sinh2 riand ⟨e†1e0⟩0 = |⟨c†1c0⟩0| = |S02||S12| = sinh r0 sinh r1, one can indeed easily check that

⟨f†0f0⟩0 = sin2 θ sinh2 r0 + cos2 θ sinh2 r1 − 2 cos θ sin θ sinh r0 sinh r1 = 0

by applying the definitions of cos θ and sin θ given in (4.99).56See also (4.89) for the definition of r2.
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4.3 . WIGNER FUNCTION AND COVARIANCE MATRIX OF THE ANALOG BLACK HOLE SYS-
TEM

4.3.1 . Computing expectation values of observables with the Wigner function
The use of the technique of Wigner transform (see, e.g., Refs. [120, 121]) is particularly well suited for

determining the different averaged contributions of the pseudo-spin operator to the bipartite (4.211) and
tripatite (4.216) measures of genuine non-locality and to the Mermin parameter (4.232). There are two
main reasons for this : first, we consider a Gaussian state and we thus just need to evaluate Gaussian
integrals weighted by the Wigner transforms of the spin operators and secondly, the Wigner transforms
of the pseudo-spins (4.191) are simple enough that the relevant integrals can be evaluated analytically.

The Wigner characteristic function (see Ref. [90]) of any N -mode quantum (pure or mixed) state ρ̂ is
defined as

χ(ρ̂)
a (λ) = ⟨D̂â(λ)⟩ = Tr{ρ̂D̂â(λ)} (4.109)

with
D̂â(λ) = eλ

T â

λ = (λ0, λN−1,−λ∗0, ...,−λ∗N−1)
T , λi ∈ C

â = (â0, ..., âN−1, â
†
0, ..., â

†
N−1)

T

(4.110)

the displacement operator. From (4.110) it is easy to check that the displacement operator can equiva-
lently be written as

D̂â(r) = eiξ
T
a Ωr (4.111)

with r a 2N real vector [90] and
ξ̂a = (ξ̂0, ξ̂1, ..., ξ̂2N−1)

T =
√
2(q̂0, p̂0, ..., q̂N−1, p̂N−1)

T (4.112)
for a N -mode system, with q̂i and p̂i respectively the position operator and the momentum operator of
the i-th mode. Here both q̂j and p̂j are dimensionless 57 and are defined as

q̂j =
1√
2
(âj + â†j) and p̂j =

1

i
√
2
(âj − â†j) (4.113)

with âj and â†j bosonic creation and annihilation operators. Then it can be shown [113] that for Gaussianstates
χ(ρ̂)
a (r) = ⟨D̂â(r)⟩ = exp

{
−1

2
rTΩσaΩ

Tr − i⟨ξâ⟩TΩTr

}
(4.114)

with σa the covariance matrix of the system that will be defined in (4.124). The Wigner function of the
density operator ρ̂ is defined as the Fourier transform of the characteristic function, i.e.

Wρ(ξa) =

∫ +∞

−∞

d2Nr

2Nπ2N
e−iξTaΩrχ(ρ̂)

a (r) (4.115)
which58 straightforwardly gives

Wρ̂(ξa) =
1

πN
√
detσ

exp

{
−1

2
(ξa − ⟨ξâ⟩)T σ−1

a (ξa − ⟨ξâ⟩)
}

(4.116)
Using (4.115) and (4.109) it is easy to show59 that one has also generically, i.e. for any (Gaussian or non
Gaussian) state,

Wρ̂(q,p) =
1

πN2N

∫ +∞

−∞
dNz eip.z ⟨q − 1

2
z| ρ̂ |q +

1

2
z⟩ (4.117)

57In analogy with the quantum harmonic oscillator one can write X̂P̂ /ℏ = [
√
mω/ℏX̂][

√
1/ℏmωP̂ ] = q̂p̂ with q̂and p̂ being dimensionless.58Let us remark that here the normalization is 1/(2Nπ2N ) and not 1/(2π)2N as usually written (see Ref. [113])since there is here a √

2 factor in the definition of ξa. Then the obtained expression of the Wigner function isappropriately normalized.59One just need to take the trace in position space, use e−ixp̂ |q⟩ = |q + x⟩ after applying the Baker-Campell-Hausdorff formula.
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where N is the dimension of position q space and z a N real vector corresponding to the odd compo-
nents of the 2N real vector r. TheWigner function of the density matrix ρ̂ should obey the normalization
condition ∫ +∞

−∞
dNq dNpWρ̂(q,p) = Tr{ρ̂} = 1 (4.118)

The Wigner function is a quasi-probability distribution (quasi since it is not always positive-definite60)
and can be used to compute expectation values for continuous variables. The expectation value of an
observable Â can, in an abstract dimensional phase space, indeed be expressed as

⟨Â⟩ = Tr{ρ̂Â} =

∫ +∞

−∞
dNq

∫ +∞

−∞
dNpWρ̂(q,p)WÂ(q,p) (4.119)

withWρ̂(q,p) the Wigner distribution, i.e. the Wigner transform of the density operator ρ̂, andWÂ(q,p)the Wigner transform of the operator Â, that is to say61
WÂ(q,p) =

∫ +∞

−∞
dNz exp{ip.z} ⟨q − 1

2
z| Â |q +

1

2
z⟩ (4.120)

In this expression q (as well as z and p) is a vector in an abstract n = 3 dimensional space (with basis
e0, e1, e2). The kets involved in (4.120) are of the type |Q⟩ = |Q0⟩0 ⊗ |Q1⟩1 ⊗ |Q2⟩2 where Q = Q0e0 +

Q1e1+Q2e2 and |Q⟩j is the eigenstate of operator q̂j associated to the eigenvalueQ (j = 0, 1 or 2). In the
case of a reduced twomodes Gaussian state n = 2 and the vectorQ is two-dimensional: the component
associated to the traced mode disappears, as it also does in |Q⟩.

For Gaussian states, as is our two-mode or three-mode state, the Wigner function of the density ma-
trix ρ̂ (see Ref. [113]) is given by (4.116) where σa is the total (or reduced, as appropriate) covariance
matrix defined in Eq. (4.140). In (4.116) then, N = 3 and ξa =

√
2 (q0, p0, q1, p1, q2, p2)

T in the three-mode
case. In the reduced two-mode case, N = 2 and one should remove from the expression of ξ the en-
tries corresponding to the subscript of the traced mode62. The Wigner transform (4.116) of a Gaussian
state is non-negative, and it was originally considered impossible to violate Bell’s inequality under such
conditions [114]. This was latter proven incorrect [122, 123]. In particular, Revzen et al. [124] proved that
observables can be associated to the violation of Bell inequality over a Gaussian state provided their
Wigner transform takes values different from the eigenvalues of the associated quantal (i.e. discrete)
operator. We will see that two of the pseudo-spins (4.191) we consider, namenly Π̂y and Π̂z belong tothis class of observables, denoted as “improper” in Ref. [124]. Still, since we work with Gaussian states,
all we need to know in order to compute the averaged value of any of our pseudo-spins (4.191) is the
covariance matrix of our system.
Let us conclude this section by proving that if a basis {b} and a basis {c} are related by a Linear Unitary
BOgoliubov (LUBO) transformation such as (4.67) or equivalently (4.75), then if χ(ρ̂b)

b is Gaussian so is
χ
(ρ̂b)
c . By definitions (4.109) and (4.110), one has indeed
χ(ρ̂b)
c (λ) = Tr{ρ̂bD̂ĉ(λ)} = Tr{ρ̂beλTT b̂} = Tr{ρ̂be(TTλ)T b̂} = Tr{ρ̂bD̂b̂(T

Tλ)} = χ
(ρ̂b)
b (T Tλ) (4.121)

Then, sinceχ(ρ̂b)
b is Gaussian so isχ(ρ̂c)

b . Alternatively, one canprove that if a state is related by a squeezing
operator (yielded by a LUBO) to another state which is Gaussian then this state is Gaussian (see [90]).
Our vacuum state |0ω⟩in for the b̂i operators is by definition a Gaussian state whose density matrix is
given by ρ̂b = |0ω⟩in in⟨0ω|. This means that the Wigner characteristic function χ(ρ̂b)

b (λ) of this state is
Gaussian. Defining, as we did in (4.78), |0ω⟩out = V † |0ω⟩in one has ρc = V †|0ω⟩in in⟨0ω|V = V †ρ̂bV and
then, by definitions (4.109), (4.110), (4.75) and (4.67), one obtains
χ
(ρ̂b)
b (λ) = Tr{ρ̂bD̂b̂(λ)} = Tr{ρ̂cV †D̂b̂(λ)V } = Tr{ρ̂cD̂ĉ(λ)} = Tr{ρ̂cD̂b̂(T

Tλ)} = χ
(ρ̂c)
b (T Tλ) (4.122)

60For a Gaussian state it is always positive-definite since it is a Gaussian.61It can be easily shown (taking first the integral over p and then changing variables) that for any two observables
Â and B̂ one has ∫ +∞

−∞ dNq
∫ +∞
−∞ dNpWÂ(q,p)WB̂(q,p) = Tr{ÂB̂}. Then taking B̂ = ρ̂ one obtains (4.119).

62The Wigner functions of the density matrices representing our different subsystems as well as the one of the fullsystem are given in Appendix A.9.
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where we have used63
V †D̂b̂(λ)V = V †eλ

T b̂V = eλ
TV †b̂V = eλ

T ĉ = eλ
TT b̂ = e(Tλ)T b̂ = D̂b̂(T

Tλ) (4.123)
and the cyclic property of the trace. Then, since χ(ρ̂b)

b is Gaussian so is χ(ρ̂c)
b . One can therefore use any

basis to compute the covariance matrix of the system as long as this basis is related by a LUBO to the
basis of a Gaussian state since the LUBO preserves the gaussianity of the Wigner characteristic function.

4.3.2 . The Covariance Matrix : General Formalism
From (4.112) and (4.113), the covariance matrix of a state is defined as

σkl ≡
1

2
⟨{(ξ̂k − ⟨ξ̂k⟩), (ξ̂l − ⟨ξ̂l⟩)}⟩ =

1

2
⟨ξ̂kξ̂l + ξ̂lξ̂k⟩ − ⟨ξ̂k⟩⟨ξ̂l⟩ (4.124)

The usual commutation relations between the canonical conjugated variables q̂k and p̂l can be written
as

[ξ̂k, ξ̂l] = 2iΩkl (4.125)
where64

Ω = ⊕N−1
n=0 ωn =

N=3

ω0 02 02
02 ω1 02
02 02 ω2

 (4.126)
the symplectic form defined by

ωn =

(
0 1
−1 0

)
(4.127)

In other terms,Ω is here a 2N×2N matrixwith componentsΩ2n,2n+1 = 1,Ω2n+1,2n = −1 and 0otherwise.
By definition one has

ΩT = −Ω

ΩTΩ = ΩΩT = 12N

Ω2 = −12N

(4.128)

with the first relation encoding Ω as a skew-symmetric form. Defining
â = (â0, â1, ..., âN−1, â

†
0, â

†
1, ..., â

†
N−1)

T (4.129)
one can then write

ξ̂a =
√
2U â (4.130)

with U a 2N × 2N unitary matrix given (for a 3-mode state) by

U =



1√
2

0 0 1√
2

0 0

1
i
√
2

0 0 −1
i
√
2

0 0

0 1√
2

0 0 1√
2

0

0 1
i
√
2

0 0 −1
i
√
2

0

0 0 1√
2

0 0 1√
2

0 0 1
i
√
2

0 0 −1
i
√
2


(4.131)

Then since one has
[âk, âl] = Jkl (4.132)

63Let the matrix A be a diagonalizable matrix, i.e. A = PDP−1 with D diagonal, then eA = PeDP−1 by simpleTaylor expansion of the exponential.64In the block structure of Ω, 02 is the 2× 2 null matrix.
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with65
J =

 0N 1N

−1N 0N

 (4.133)
the symplectic form

JT = −J
JTJ = JJT = 12N

J2 = −12N

(4.134)

the fulfillment of (4.132) and (4.125) leads through definition (4.130) to
J = i U †ΩU∗ (4.135)

One can see that this last definition fulfill immediately all the relations in (4.134) because of (4.128) as
long as one has not only UU † = U †U = 1N (unitarity) but also

U∗U † = ΩU UTΩ (4.136)
One can check that this is indeed the case. Inverting (4.135) one has also

Ω = −i UJ UT (4.137)
Even if ⟨ξ̂k⟩ is not always zero (for example, it is not zero when the average is taken over a coherent
state), by a local unitary (LU) transformation66 ⟨ξ̂k⟩ LU−→ ⟨ξ̂′k⟩ which by definition does not modify the
entanglement properties of a quantum state, it can always be brought to ⟨ξ̂′k⟩ = 0 for all k. Therefore,
taking ⟨ξ̂k⟩ to ⟨ξ̂′k⟩ such as ⟨ξ̂′k⟩ = 0 and renaming ⟨ξ̂′k⟩, the covariance matrix in (4.138) can be written
without loss of generality as

σkl =
1

2
⟨ξ̂kξ̂l + ξ̂lξ̂k⟩ (4.138)

Finally, a well-defined covariance matrix σ must satisfy the relation
σ + iΩ ≥ 0 (4.139)

which asserts the positiveness of the covariance matrix as implied by the canonical commutation rela-
tions [90, 86, 125].

4.3.3 . The Covariance Matrix of a Three-Mode Gaussian State
Relationships (4.82) and (4.84) ensure that the system is in a pure three-mode Gaussian state and is

therefore fully characterized by its 6× 6 covariance matrix σ(ω) with entries
σℓm(ω) ≡ 1

2
⟨ξ̂ℓ ξ̂m + ξ̂m ξ̂ℓ⟩ (4.140)

Defined as in the generic (4.113) and (4.112), the operator ξ̂ℓ(ω) or ξ̂m(ω) is here one of the 6 components
of the column vector

ξ̂a = (ξ̂0, ξ̂1, ..., ξ̂5)
T =

√
2(q̂0, p̂0, q̂1, p̂1, q̂2, p̂2)

T (4.141)
where

q̂j(ω) =
1√
2
(âj + â†j) and p̂j(ω) =

1

i
√
2
(âj − â†j) (4.142)

with âj(ω) being, for j ∈ {0, 1, 2}, any kind of ingoing or outgoing operators such as our b̂j(ω) or ĉj(ω) orany generic êj(ω) that will be defined later on. In expression (4.140) and in all the following, the averages
⟨· · · ⟩ are performed over the density matrix of the system. This density matrix is simply ρ = |0⟩in in⟨0| in
65In the block structure of J , 0N is the N ×N null matrix.66A local transformation does not mix different modes.
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the ideal case of the pure vacuum state.
We also consider more realistic situations where some incoherent excitations are present and the

system is not in a pure state. A simple manner to account for this situation would be to assume that
the system is in a thermal state. This is however impossible because the analog configurations depicted
in 3.1 are thermodynamically unstable. A way to circumvent this problem has been proposed in Refs.
[93, 94]. It consists in postulating that the systemwas initially in aGaussian thermal state67, i.e. in thermal
equilibrium at temperature T with a constant density and velocity (nu and Vu, respectively) and that theflow has been adiabatically modified by slowly ramping the appropriate external potential, eventually
reaching the black hole configuration of interest. This situation, although idealized, is less schematic
than the zero excitation regime. It emulates the experimental situation of Refs. [34, 35] if the system is
considered to have been initially in equilibrium in the frame attached to the flowing condensate. In this
case one has (for j ∈ {0, 1, 2})

n̄j(ω) ≡ ⟨b̂†j(ω)b̂j(ω)⟩ = nth

[
ωB,α

(
qj|in(ω)

)] (4.143)
where nth(ω) is the thermal Bose occupation distribution at temperature T and energy ℏω, whereas
ωB,α(qj|in) is the Bogoliubov dispersion relation (3.25), with α = u if j = 0 and α = d if j = 1 or 2. The
functions qj|in(ω) appearing in expression (4.143) are pictorially defined in Fig. 3.2. For instance q2|in(ω)is the function that, to a given angular frequency ω ∈ [0,Ω], associates a wave-vector along the 2|in
dispersion branch68. We loosely refer to the cases where n̄j (j ∈ {0, 1, 2}) is equal to the right-hand
side (r.h.s.) of (4.143) as “finite temperature” situations. In the simplest configuration, denoted as “zero
temperature” the system is in the pure state |0⟩in and the n̄j ’s are all equal to zero. We will not specify
the values of the n̄j ’s in the following, so that the formulas we give are generally valid, even in situations
where the occupation numbers should not be given by formulas of the type of Eq. (4.143). However, for
illustrative purposes, all the finite temperature figures of this work are plotted in specific temperature
cases with the n̄j given by formula (4.143).

Thus, we will consider in the following, the system as being either in the Gaussian vacuum state or in
the Gaussian state at finite temperature T , with the vacuum defined with respect to the ingoing annihila-
tion operators b̂j(ω). Therefore we will consider ⟨b̂†j b̂j⟩ as being either ⟨b̂†j b̂j⟩th = n̄j(ω) or ⟨b̂†j b̂j⟩0 = 0with
n̄j(ω) the "thermal occupation number" of mode j at energy ℏω computed through the formula (4.143).
Then, as can be seen from (4.59) and (4.60), the vacuum |0ω⟩in of operators b̂j , i.e. b̂j |0ω⟩in = 0, is not the
vacuum |0ω⟩out of operators ĉj .We will refer to the covariance matrix in (4.140) as σb(ω) when it is defined through ξb(ω) given in (4.112)with the q̂k and p̂l defined in terms of the b̂j(ω) and b̂†j(ω) operators. The average, as we said, will al-ways be taken over a 3-mode Gaussian pure or GAUSSIAN "thermal state" defined with respect to these
same operators. Therefore the ingoing covariance matrix σb(ω) evaluated for the vacuum of b̂j(ω) is bydefinition

σb|⟨...⟩0 = 16 (4.144)
Plugging ξb = UT−1U †ξc = −UJ T TJ U †ξc, obtained from (4.70) with (4.73), in the definition of the
covariance matrix (4.138), it is straightforward to show that

σc = STσbS
T
T (4.145)

67The set of Gaussian states can indeed be defined (see [125]) as the set of all ground and thermal states of second-order semi-positive HamiltoniansH > 0

ρ̂G =
e−βĤ

Tr{e−βĤ}
with β = 1/kBT where kB is Boltzmann constant and Ĥ = (ξTH ξ)/2.The pure Gaussian states are obtained for
β → ∞. After the Bogoliubov linearization of the field operator, the Hamiltonian of our system is a quadraticHamiltonian but it has negative-norm modes with positive energy in the supersonic regime and is thereforethermodynamically unstable in the frame where the condensate is moving. Hence the schematic procedureadopted here.68q2|in(ω) ∈ [q∗, q0] with q∗ = q2|in(Ω) and q0 = q2|in(0), see Fig. 3.2.
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withST the symplectic transformation defined in (4.72). One can also simply use relation (4.59) to expand
the components of the covariancematrix (4.138) written in the c basis. Indeed the 6×6 covariancematrix
σ defined in Eq. (4.140) can be written in terms of 2× 2 submatrices σi and εij :

σc =


[σ0]c [ϵ01]c [ϵ02]c

[ϵT01]c [σ1]c [ϵ12]c

[ϵT02]c [ϵT12]c [σ2]c

 (4.146)

where [σi]c = [ϵii]c and69
[ϵij ]c = 2

Re⟨q̂iq̂j⟩ Re⟨q̂ip̂j⟩
Re⟨p̂iq̂j⟩ Re⟨p̂ip̂j⟩

 (4.147)

[ϵTij ]c = 2

Re⟨q̂j q̂i⟩ Re⟨q̂j p̂i⟩
Re⟨p̂j q̂i⟩ Re⟨p̂j p̂i⟩

 (4.148)
Remembering that the Bogoliubov transformation preserves commutation relations, one gets

[ϵij ]c =
i<j

2

Re⟨ĉiĉj⟩+Re⟨ĉiĉ†j⟩ Im⟨ĉiĉj⟩ − Im⟨ĉiĉ†j⟩
Im⟨ĉiĉj⟩+ Im⟨ĉiĉ†j⟩ −Re⟨ĉiĉj⟩+Re⟨ĉiĉ†j⟩⟩

 (4.149)

[ϵij ]
T
c =

i<j
2

Re⟨ĉj ĉi⟩+Re⟨ĉj ĉ†i ⟩ Im⟨ĉj ĉi⟩ − Im⟨ĉj ĉ†i ⟩
Im⟨ĉj ĉi⟩+ Im⟨ĉj ĉ†i ⟩ −Re⟨ĉj ĉi⟩+Re⟨ĉj ĉ†i ⟩⟩


=
i<j

2

Re⟨ĉiĉj⟩+Re⟨ĉiĉ†j⟩ Im⟨ĉiĉj⟩+ Im⟨ĉiĉ†j⟩
Im⟨ĉiĉj⟩ − Im⟨ĉiĉ†j⟩ −Re⟨ĉiĉj⟩+Re⟨ĉiĉ†j⟩⟩

 (4.150)

and for i = j

[σi]c = [ϵii]c =

1 + 2⟨ĉ†i ĉi⟩ 0

0 1 + 2⟨ĉ†i ĉi⟩

 =
(
1 + 2 ⟨ĉ†i ĉi⟩

)
12 (4.151)

Up to here, even if we have been referring to our outgoing basis, the expressions of the block components
of the covariance matrix apply generally to any operator fulfilling the bosonic commutation relations
(which, as we said, are indeed preserved by a Bogoliubov transformation). Then, considering specifically
our outgoing operators defined accordingly to our previous definitions (4.59) and (4.60), one obtains

⟨ĉ0ĉ1⟩ = ⟨ĉ1ĉ0⟩ = ⟨ĉ†0ĉ†1⟩ = ⟨ĉ†1ĉ†0⟩ = 0

⟨ĉ0ĉ†2⟩ = ⟨ĉ†0ĉ2⟩ = ⟨ĉ1ĉ†2⟩ = ⟨ĉ†1ĉ2⟩ = 0

⟨ĉ2ĉ†0⟩ = ⟨ĉ†2ĉ0⟩ = ⟨ĉ2ĉ†1⟩ = ⟨ĉ†2ĉ1⟩ = 0

(4.152)

that is to say
[ϵ01]c = 2

Re⟨ĉ0ĉ†1⟩ −Im⟨ĉ0ĉ†1⟩
Im⟨ĉ0ĉ†1⟩ Re⟨ĉ0ĉ†1⟩

 (4.153)

[ϵT01]c = 2

Re⟨ĉ1ĉ†0⟩ −Im⟨ĉ1ĉ†0⟩
Im⟨ĉ1ĉ†0⟩ Re⟨ĉ1ĉ†0⟩

 = 2

 Re⟨ĉ0ĉ†1⟩ Im⟨ĉ0ĉ†1⟩
−Im⟨ĉ0ĉ†1⟩ Re⟨ĉ0ĉ†1⟩

 (4.154)

69In relation (4.147) and (4.148) the specifcations of the real part are relevant only for i = j since otherwise theoperators commute.
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and, for i ̸= 2,
[ϵi2]c =

i ̸=2
2

Re⟨ĉiĉ2⟩ Im⟨ĉiĉ2⟩
Im⟨ĉiĉ2⟩ −Re⟨ĉiĉ2⟩

 (4.155)

[ϵTi2]c =
i ̸=2

2

 Re⟨ĉ†2ĉ†i ⟩ −Im⟨ĉ†2ĉ†i ⟩
−Im⟨ĉ†2ĉ†i ⟩ −Re⟨ĉ†2ĉ†i ⟩

 = 2

Re⟨ĉiĉ2⟩ Im⟨ĉiĉ2⟩
Im⟨ĉiĉ2⟩ −Re⟨ĉiĉ2⟩

 (4.156)
Let us remark that all the previous relations (4.152), (4.153), (4.154), (4.155) and (4.156), are true for ⟨...⟩
being generically ⟨...⟩th or specifically ⟨...⟩0.

4.3.4 . Generic Rotation and Standard Form of the Covariance Matrix
We rotate our covariance matrix σc according to

σe = SRσcS
T
R

SR = diag{R(Φ02), R(Φ12), R(Φ22)}

R(Φij) =

 cosΦij sinΦij

− sinΦij cosΦij

 (4.157)

and each 2x2matrix ϵij of the covariance matrix is rotated according to
[ϵij ]e = R(Φi2)[ϵij ]cR

T (Φj2)

[ ϵij ]
T
e = R(Φj2)[ϵij ]

T
c R

T (Φi2)
(4.158)

where we have denoted
ϵij =

i>j
ϵTji

ϵii = σi

(4.159)
For the diagonal 2× 2matrix [σi]e one obtains simply

[σi]e = [σi]c (4.160)
For the 2× 2matrix [ϵ01]e one obtains the following components

[[ϵ01]e]00 = 2[Re⟨ĉ0ĉ†1⟩] cos(Φ02 − Φ12) + 2[Im⟨ĉ0ĉ†1⟩] sin(Φ02 − Φ12)

[[ϵ01]e]01 = 2[Re⟨ĉ0ĉ†1⟩] sin(Φ02 − Φ12)− 2[Im⟨ĉ0ĉ†1⟩] cos(Φ02 − Φ12)

[[ϵ01]e]10 = −2[Re⟨ĉ0ĉ†1⟩] sin(Φ02 − Φ12) + 2[Im⟨ĉ0ĉ†1⟩] cos(Φ02 − Φ12)

[[ϵ01]e]11 = 2[Re⟨ĉ0ĉ†1⟩] cos(Φ02 − Φ12) + 2[Im⟨ĉ0ĉ†1⟩] sin(Φ02 − Φ12)

(4.161)

whereas for the 2× 2matrices [ϵi2]e with i ̸= 2 one obtains
[[ϵi2]e]00 =

i ̸=2
2[Re⟨ĉiĉ2⟩] cos(Φi2 +Φ22) + 2[Im⟨ĉiĉ2⟩] sin(Φi2 +Φ22)

[[ϵi2]e]01 =
i ̸=2

−2[Re⟨ĉiĉ2⟩] sin(Φi2 +Φ22) + 2[Im⟨ĉiĉ2⟩] cos(Φi2 +Φ22)

[[ϵi2]e]10 =
i ̸=2

−2[Re⟨ĉiĉ2⟩] sin(Φi2 +Φ22) + 2[Im⟨ĉiĉ2⟩] cos(Φi2 +Φ22)

[[ϵi2]e]11 =
i ̸=2

−2[Re⟨ĉiĉ2⟩] cos(Φi2 +Φ22)− 2[Im⟨ĉiĉ2⟩] sin(Φi2 +Φ22)

(4.162)

Let us write
Re⟨ĉ0ĉ†1⟩ = |⟨ĉ0ĉ†1⟩| cos θ01
Im⟨ĉ0ĉ†1⟩ = |⟨ĉ0ĉ†1⟩| sin θ01
Re⟨ĉiĉ2⟩ =

i ̸=2
|⟨ĉiĉ2⟩| cos θi2

Im⟨ĉiĉ2⟩ =
i ̸=2

|⟨ĉiĉ2⟩| sin θi2

(4.163)
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with
|⟨ĉ0ĉ†1⟩|2 = [Re⟨ĉ0ĉ†1⟩]2 + [Im⟨ĉ0ĉ†1⟩]2

|⟨ĉiĉ2⟩|2 =
i ̸=2

[Re⟨ĉiĉ2⟩]2 + [Im⟨ĉiĉ2⟩]2
(4.164)

Applying these last definitions in (4.166) and (4.167) after defining
Θ01 = (Φ02 − Φ12)− θ01

Θi2 =
i ̸=j

(Φi2 +Φ22)− θi2
(4.165)

one obtains
[[ϵ01]e]00 = +2|⟨ĉ0ĉ†1⟩| cosΘ01

[[ϵ01]e]01 = +2|⟨ĉ0ĉ†1⟩| sinΘ01

[[ϵ01]e]10 = −2|⟨ĉ0ĉ†1⟩| sinΘ01

[[ϵ01]e]11 = +2|⟨ĉ0ĉ†1⟩| cosΘ01

(4.166)

whereas for the 2× 2matrices [ϵi2]e with i ̸= 2 one obtains
[[ϵi2]e]00 =

i ̸=2
+2|⟨ĉiĉ2⟩| cosΘi2

[[ϵi2]e]01 =
i ̸=2

−2|⟨ĉiĉ2⟩| sinΘi2

[[ϵi2]e]10 =
i ̸=2

−2|⟨ĉiĉ2⟩| sinΘi2

[[ϵi2]e]11 =
i ̸=2

−2|⟨ĉiĉ2⟩| cosΘi2

(4.167)

Then one sees from (4.165), (4.166) and (4.167) that taking
Φ02 − Φ12 = θ01 +m0π

Φi2 +Φ22 =
i ̸=2

θi2 +miπ
(4.168)

with themi some integers, immediately diagonalizes the [ϵij ]e matrices as long as, form = m2−m1−m0,the constraint
θ01 + θ12 = θ02 +mπ (4.169)

is fulfilled. If this is so, one therefore obtains
[σi]e = (1 + 2⟨ĉ†i ĉi⟩)12

[ϵ01]e = (−1)m02|⟨ĉ0ĉ†1⟩|12

[ϵi2]e =
i ̸=2

(−1)mi2|⟨ĉiĉ2⟩|σz

(4.170)

with 12 the 2x2 identity matrix and σz the Pauli matrix 70. In this case one has
[ϵij ]e =

i<j
[ϵij ]

T
e (4.171)

If the constraint (4.169) is fulfilled, the obtained formof the covariancematrix (4.170) is called the standard
form of the covariance matrix. It is important to note that the rotation is energy dependent since the θijare energy dependent : in other words, the rotation is not the same at each energy. Furthermore, the
previous rotation is a local transformation (no mixing of different modes) : it therefore does not change
the entanglement properties of our system. Nevertheless a nonlocality measure is basis dependent.
70The previous relations are true for ⟨...⟩ being generically ⟨...⟩th or more specifically ⟨...⟩0.
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According to our results, rotations to the standard form of the covariance matrices seem to maximize
the nonlocality measure of our two-mode Bell operator. Setting generically

Ai = 1 + 2⟨ĉ†i ĉi⟩
F01 = 2|⟨ĉ0ĉ†1⟩| cosΘ01

Fi2 =
i ̸=2

2|⟨ĉiĉ2⟩| cosΘi2

G01 = 2|⟨ĉ0ĉ†1⟩| sinΘ01

Gi2 =
i ̸=2

2|⟨ĉiĉ2⟩| sinΘi2

(4.172)

one can finally write
[σi]e =

Ai 0

0 Ai

 [ϵ01]e =

 F01 G01

−G01 F01

 [ϵi2]e =

 Fi2 −Gi2

−Gi2 −Fi2

 (4.173)
Let us remark that when tracing out one mode it is always possible to bring the covariance matrix to
the standard form both at zero and at finite temperature. On the contrary, for the three-mode state
the standard form can be obtained only at zero temperature since at finite temperature the constraint
(4.169) cannot generically be fulfilled.

To sum up, in the limit of zero temperature the system is in a threemode pure Gaussian state. Its co-
variance matrix (4.146) can accordingly be brought by a Local Linear Unitary BOgoliubov transformation
(LLUBO) to a ”standard form” in which matrices σi are proportional to the identity (as they already are,cf. (4.151)) and matrices εij are diagonal [117, 126]. After this operation the matrices εij take the followingform [86]

ε01 = 2 |⟨ĉ0 ĉ†1⟩|12 , εi2 = 2 |⟨ĉi ĉ2⟩|σz, (4.174)
where i ∈ {0, 1} and σz is the third Pauli matrix.

The situation at finite temperature is less simple. The system is in a Gaussian mixed state with no
special symmetry, and the covariance matrix (4.146) cannot be put in a standard form where the ma-
trices εij are all diagonal [126]. However, the situation simplifies again if one is interested in bipartite
entanglement only (say, between modes i and j). In this case one should trace out the third mode (let’s
denote it by k) which simply amounts to remove from the total covariance matrix (4.146) the two rows
and two columns where index k appears. The remaining 4 × 4 covariance matrix associated with the
reduced two-mode state reads

σ(i|j) =

(
σi εij
εTij σj

)
, (4.175)

where the 2×2 blocks are the same as the ones in (4.146). This reduced covariance matrix can always be
brought by a LLUBO to its standard form [117], in which the matrix εij takes again the form (4.174) with
here an average taken over the finite temperature state.

4.3.5 . Zero and finite temperature averages
As clear from the above expressions (4.151), (4.153) and (4.155), the theoretical evaluation of the com-

ponents of the covariance matrix relies on the computation of averages of two creation or annihilation
operators of the outgoing modes. For a generic a generic GAUSSIAN "thermal state" one has

⟨ĉ†i ĉi⟩ =
i ̸=2

|Si0|2⟨b̂†0b̂0⟩+ |Si1|2⟨b̂†1b̂1⟩+ |Si2|2(1 + ⟨b̂†2b̂2⟩)

=
i ̸=2

|Si2|2 + |Si0|2n̄0 + |Si1|2n̄1 + |Si2|2n̄2
(4.176)

and for i = 2

⟨ĉ†2ĉ2⟩ = |S20|2(1 + ⟨b̂†0b̂0⟩) + |S21|2(1 + ⟨b̂†1b̂1⟩) + |S22|2⟨b̂†2b̂2⟩
= |S20|2 + |S21|2 + |S20|2n̄0 + |S21|2n̄1 + |S22|2n̄2
= −1 + |S22|2 + |S20|2n̄0 + |S21|2n̄1 + |S22|2n̄2

(4.177)
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Furthermore one has
⟨ĉ0ĉ†1⟩ = S00S

∗
10(1 + ⟨b̂†0b̂0⟩) + S01S

∗
11(1 + ⟨b̂†1b̂1⟩) + S02S

∗
12⟨b̂†2b̂2⟩

= S00S
∗
10 + S01S

∗
11 + S00S

∗
10n̄0 + S01S

∗
11n̄1 + S02S

∗
12n̄2

= |S02||S12|ei(φ02−φ12) + |S00||S10|ei(φ00−φ10)n̄0

+|S01||S11|ei(φ01−φ11)n̄1 + |S02||S12|ei(φ02−φ12)n̄2

(4.178)

⟨ĉiĉ2⟩ =
i ̸=2

Si0S
∗
20(1 + ⟨b̂†0b̂0⟩) + Si1S

∗
21(1 + ⟨b̂†1b̂1⟩) + Si2S

∗
22⟨b̂†2b̂2⟩

=
i ̸=2

Si0S
∗
20 + Si1S

∗
21 + Si0S

∗
20n̄0 + Si1S

∗
21n̄1 + Si2S

∗
22n̄2

=
i ̸=2

|Si2||S22|ei(φi2−φ22) + |Si0||S20|ei(φi0−φ20)n̄0

+|Si1||S21|ei(φi1−φ21)n̄1 + |Si2||S22|ei(φi2−φ22)n̄2

(4.179)

Let us recall that in order to obtain all the previous relations we have been using relations (4.59), (4.62),
(4.64) and (4.65), and that the n̄j ’s (j = 0, 1 or 2) are the occupation numbers of the incoming modes (see
Eq. (4.143)). When the average is taken at zero temperature, all the occupation numbers n̄j are zero inthe previous expressions. Furthermore, the coefficients of the Smatrix appearing in the above formulae
can be determined numerically as explained in Ref. [38]. The different basis dependent expressions of
the covariance matrix used in this work are given in Appendix A.7.

It is also possible to evaluate the previous averages in the {f} basis of the optical model. The shape
of the covariance matrix in this case is given in Appendix A.7.3. From definitions (4.103) and (4.97) and
expressions (4.176)-(4.179), it is a simple matter to evaluate these averages, at all zero and finite temper-
atures. One obtains :

⟨f̂ †0 f̂0⟩ =
1

sinh2 r2

∑1
i=0 |S12S0i − S02S1i|2 n̄i

⟨f̂ †1 f̂1⟩ = n̄01 cosh
2 r2 + (1 + n̄2) sinh

2 r2

⟨f̂ †2 f̂2⟩ = n̄01 sinh
2 r2 + (1 + n̄2) cosh

2 r2 − 1

⟨f̂0f̂ †1⟩ =
S22

sinh2 r2

∑1
i=0 S

∗
2i

( |S02|
|S12|

S∗
12S1i −

|S12|
|S02|

S∗
02S0i

)
n̄i

⟨f̂1f̂2⟩ = (n̄01 + n̄2 + 1) cosh r2 sinh r2

⟨f̂0f̂2⟩ = ⟨f̂0f̂ †1⟩ tanh r2

(4.180)

The occupation numbers n̄j (j = 0, 1 or 2) in the above expressions are defined in (4.143) and use has
been made of the shorthand notation

n̄01 ≡
|S20|2
sinh2 r2

n̄0 +
|S21|2
sinh2 r2

n̄1. (4.181)
Let us remark that one has also

⟨f̂0f̂1⟩ = 0

⟨f̂0f̂0⟩ = ⟨f̂1f̂1⟩ = ⟨f̂2f̂2⟩ = 0

⟨f̂0f̂ †2⟩ = ⟨f̂1f̂ †2⟩ = 0

(4.182)

As clear from the previous considerations about the covariance matrix of our system in 4.3.3 and
4.3.4, it is important, in order to characterize the correlations in our system, and, as we will see, entan-
glement and nonlocality, to be able to determine the average values of different combination of two
creation or annihilation operators of the outgoing modes. At the experimental level, this determination
could reveal difficult for quantities such as ⟨ĉ0 ĉ2⟩ for instance. Steinhauer proposed a possible way to
extract this information from the knowledge of the density-density correlation function [54]. As stressed
in Refs. [39, 90] this method needs to be used with more care than initially thought, but is indeed a pos-
sible manner to obtain the information. At the theoretical level, it is a straightforwardmatter to compute
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the expectation values of products of the ingoing creation and annihilation operator (quantities such as
(4.143) for instance). From there, expression (3.50) makes it possible to compute the equivalent expres-
sions for the outgoing operators, which are the quantities of interest. The relevant formulae are given
in 4.3.3, Eqs. (4.176)-(4.179).

4.3.6 . A Measure of Bipartite Entanglement from the Two-mode Covariance Matrix : the
"PPT Measure"

Several observables have been proposed to theoretically evaluate the bipartite entanglement in the
context of analog gravity, such as the Cauchy-Schwarz criterion [127, 128, 129, 130, 54, 131], the generalized
Peres-Horodecki parameter [132, 133], the logarithmic negativity [134, 135, 136, 137], the entanglement
entropy [138, 137], the entanglement of formation [139], the Gaussian contangle [86]71.

In the present work, we chose as in Ref. [86], to evaluate the bipartite entanglement betweenmodes
i and j by means of a quantity Λ(i|j)(ω) ∈]−∞, 1]which is a monotonous measure of entanglement that
we denote as the Positive Partial Transpose or “PPT measure”. It has indeed been argued in [86] that
an efficient measure of bipartite entanglement was given by the “PPT measure’

Λ(i|j) ≡ 1− ν−(i|j) (4.183)
where ν−(i|j) is the lowest simplectic eigenvalue of the partial transpose [σ(i|j)]PT of the two-mode covari-
ance matrix σ(i|j), and is defined as [86]

2 (ν−(i|j))
2 = ∆PT

ij −
√

(∆PT
ij )2 − 4 detσ(i|j) (4.184)

with
∆PT

ij = detσi + detσj − det ϵij (4.185)
The partial transposition corresponds to a mirror reflection in phase space which inverts the pj coordi-nate, leaving qi, pi and qj unchanged [140]. The resulting transposed covariance matrix can be brought
by means of a symplectic transform to a diagonal form [141]. The corresponding diagonal elements are
the simplectic eigenvalues. They are twice degenerate, and in our 4 × 4 case there are thus two such
eigenvalues: ν−(i|j) and ν+(i|j), with ν±(i|j) ∈ R+ and ν−(i|j) ≤ ν+(ij).The largest entanglement corresponds to
Λ(i|j) = 1 while separability is reached when Λ(i|j) < 0. Therefore, states i and j are separable when
Λ(i|j) < 0. We we will see in 4.5.1 that this is always the case when (i|j) = (0|1): the companion and
the Hawking modes are not entangled. The two other couples of modes, (0|2) and (1|2), are always en-
tangled at T = 0 for all ω. Their entanglement decreases with increasing temperature by an amount
specified by the PPT measure.

The separability condition of the chosen "PPT measure" can be shown to be equivalent to the Peres-
Horodecki criterion [142, 143]. Contrarily to other observables, such as the Cauchy-Schwarz criterion
or the generalized Peres-Horodecki parameter which have been often used in the domain, the PPT
measure has the advantage of being an entanglement monotone. Other observables have been used
in the context of analog gravity, which are monotonous measures of entanglement, such as the entan-
glement entropy, the entanglement of formation or the logarithmic negativity, but they all have
some drawbacks. First of all the state of our system is mixed in a finite temperature situation, which
discards the entanglement entropy as a possible measure. Secondly, even if the entanglement entropy
generalizes for mixed states to the entanglement of formation [115], this quantity is not easily deter-
mined in non symmetric two-mode Gaussian states such as the ones we consider, where the reduced
state is nonsymmetric, since in general the mixedness Ai and Aj (defined in (4.197)) for modes i and j
respectively, are not equal. Thirdly, the logarithmic negativity shares with the entanglement of formation
the drawback of possibly violating monogamy inequalities [116]. This is a relatively mild drawback in the
context of evaluating bipartite entanglement, but becomes prohibitive in the tripartite context. Finally,
the Gaussian contangle was introduced in Ref. [116] as a quantity which has none of the previous de-
ficiencies. It has been studied in the gravitational context [144] and also in analog gravity [86], but it is
71See section 4.1.4
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not of very practical use as its determination requires numerical minimisation of a complex expression.
Nevertheless, since none of these measures are of practical use at finite temperature in the case tripar-
tite systems, in our study we resorted to the Mermin’s nonlocality test in order to investigate genuine
tripartite entanglement (see sections 4.1.4 and 4.6.4).

The PPTmeasurewe use in the present studywas introduced in Ref. [86] as ameasurewhichmimics
many aspects of the Gaussian contangle but is much simpler to evaluate. Its evaluation is as simple as
the one of the above quoted quantities albeit it shares none of their drawbacks. Applying the definitions
of the covariance matrices for the different subsystems here considered one obtains straightforwardly
(see notations in (4.172))

∆PT
01 = A2

0 +A2
1 − 8|⟨ĉ0ĉ†1⟩|2

detσ(0|1) = A2
01 = (A0A1 − 4|⟨ĉ0ĉ†1⟩|2)2

∆PT
i2 =

i<2
A2

i +A2
2 + 8|⟨ĉiĉ2⟩|2

detσ(i|2) =
i<2

A2
i2 = (AiA2 − 4|⟨ĉiĉ2⟩|2)2

(4.186)

The previous expressions (4.186) are just the same when computed in the {ê} basis and {f̂}, with the ê

and f̂ replacing the ĉ72. Considering the positiveness of detσ(i|j) one can write detσ(i|j) =
√
detσ(i|j)

2

and therefore factorize expression (4.187) as
2 (ν−(i|j))

2 = ∆PT
ij −

√
∆PT

ij + 2
√
detσ(i|j)

√
∆PT

ij − 2
√
detσ(i|j)

=


√

∆PT
ij + 2

√
detσ(i|j)

2
−

√
∆PT

ij − 2
√
detσ(i|j)

2

2 (4.187)

which yields for partition (0|1)

(ν−(0|1))
2 =

 |A0 −A1|
2

−
√(

Ai +A2

2

)2

− 4|⟨ĉ0 ĉ†1⟩|2
2

(4.188)

and for partition (i|2)

(ν−(i|2))
2 =

Ai +A2

2
−
√(

Ai −A2

2

)2

+ 4|⟨ĉi ĉ2⟩|2
2

(4.189)

Since all ν−(i|j) ore positive, one must choose the positive root. The "PPT measure" shows that these two
modes of the partition (0|1) are never entangled in our system. We therefore give here only the explicit
expression of Λ(i|2)(ω) characterizing the coupling between mode i = 0 or 1 and mode j = 2, which
reads

Λ(i|2)(ω) = −⟨ĉ†i ĉi⟩ − ⟨ĉ†2 ĉ2⟩+
√(

⟨ĉ†i ĉi⟩ − ⟨ĉ†2 ĉ2⟩
)2

+ 4|⟨ĉi ĉ2⟩|2 (4.190)
This last expression (4.186) is straightforwardly adapted to the {e} and {f} bases, just by replacing the c
by the e or f operators.

4.4 . BELL INEQUALITIES IN AN ANALOG BLACK HOLE THROUGH GKMR PSEUDO-SPINS

TheCHSHBell operator [105] has beenoriginally thought for discrete variableswith finite outcomes73.
From a continuous variable perspective, it seems a priori difficult to derive an upper and lower bound
of the expectation value of a Bell-type observable whose set of outcomes is typically unbounded. Even
72This can be checked using the explicit expressions of the covariance matrices given in Appendices A.7.3 and A.8.73See Appendix A.3 for a classical derivation of Bell inequality violation with discrete Bell states.
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if the authors of Refs. [145, 146] were able, through Fine–Abramsky–Brandenburger theorem [147, 148],
to derive continuous Bell inequalities for continuous and unbounded observables, no practical (theoret-
ical or experimental) use of such fully continuous approaches has been, to our knowledge, successfully
implemented so far. Indeed, most Bell-like inequalities proposed in the context of continuous variables
rely on a discretization process [149, 150, 151, 152, 153, 154]. Using a binning of the outcome results,
observables defined from continuous measurements can be mapped to observables which can only
take a finite number of outcomes. From an observable with bounded expectation value, one can then
construct a Bell inequality similar to those derived for discrete variables. A well-known bichotomic bin-
ning of such continuos observables are the so-called pseudo-spin operators. These operators live in an
infinite-dimensional Hilbert space but the outcome of their measurement is either −1 or +1.
Due to its practicability, we chose to follow this discretization approach to derive Bell-like inequalities in
the context of BEC analog black holes. In this work we use the GKMR (Gour, Khanna, Mann and Revzen)
pseudo-spins introduced in Ref. [106]. To an outgoing mode j (j ∈ {0, 1, 2}) of energy ω is associated a
Hermitian vectorial operator Π̂(j)(ω) whose expression in Cartesian coordinates is given by

Π̂(j)
x (ω) =

∫ +∞

0
dq
(
|q⟩j j⟨q| − | − q⟩j j⟨−q|

)
, (4.191a)

Π̂(j)
y (ω) = i

∫ +∞

0
dq
(
|q⟩j j⟨−q| − | − q⟩j j⟨q|

)
, (4.191b)

Π̂(j)
z (ω) =

∫ +∞

−∞
dq |q⟩j j⟨−q| (4.191c)

where |q⟩j is the eigenstate associated to the eigenvalue q of the position operator q̂j(ω) (4.142). Theoperators (4.191) anti-commute with each others and all square to unity. They verify the Pauli algebra,
i.e. the expected spin (anti)commutation relations

[
Π̂(j)

r , Π̂(j)
s

]
= 2 i εrstΠ̂

(j)
t (4.192a){

Π̂(j)
r , Π̂(j)

s

}
= 2 δrs (4.192b)

with δrs the Kronecker-delta and εrst the Levi-Civita symbol74. In Appendix A.2 we recall the properties of
the pseudo-spin operator (4.191) and of its eigenvectorswewill be referring to in the following, andwewill
show in Sec. 4.6.3 how these very same properties helped us to understand an unforeseen characteristic
of our system, i.e. that the structure of the zero temperature ground state of the analog system, i.e. the
vacuum |0⟩in, is most easily analyzed in terms of a combination of eigenstates of operator Π̂x.

As a final remark, we note here that the GKMR spins operators have been studied in contexts similar
to ours in Refs. [154, 155, 156]. Compared with other pseudo-spin operators such as for instance those
introduced by Banaszek and Wodkiewicz [157, 158], the GKMR spins (4.191) have the advantage of hav-
ing simple Wigner transforms, which makes the computation of their expectation values over Gaussian
states relatively easy, as detailed in Appendix 4.3.1. Nevertheless, it is important to stress (see [106]) that
different choices of spin representation lead to different values of averages of the observables (4.211),
(4.216) and (4.232) we are interested in. Therefore these observablesmust be considered aswitnesses of
nonlocality, their violation of Bell-type inequalities being a sufficient but not necessary test of nonlocal
behavior.

For evaluating expectation values such as those appearing in Eqs.(4.211), (4.216) and (4.232), we need
to compute the Wigner transforms of the components of the pseudo-spin operators. These are to be
evaluated in a 2 dimensional phase space, since operator Π̂(j) concerns a single mode (mode j). The
74Usual 1/2-spin operators trace also to zero and have determinant−1. The pseudo-spins (4.191) operate in infinitespace where the trace and determinant are not well defined : see [106] for discussion. Still, the Pauli algebradefining the (anti)commutation relations (4.192) is fulfilled by pseudospins (4.191).
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result is independent of j and reads :
WΠ̂x

(q, p) = sgn (q)
WΠ̂y

(q, p) = i δ(q)

∫ ∞

−∞
dx sgn (x) exp{−2ipx} = δ(q)P(1/q)

WΠ̂z
(q, p) =πδ(q)δ(p)

(4.193)

where P denotes the principal value75. Since the eigenvalues of the projections along a given axis of
the pseudo-spin operator Π̂ are±1, the above expressions of the Wigner transforms thus demonstrate
that, contrarily to Π̂x, which has indeed a two-valued Wigner function able to mimic "classicaly" the two-
valued quantum observable, operators Π̂y and Π̂z are “improper” in the sense of Ref. [124]: they may be
involved in violation of Bell inequality even for a state with a non-negative Wigner transform, such as the
Gaussian state we consider.

For evaluating the expectation values appearing in (4.211) we need to compute the two-mode integrals
T (ij)
rs (ω) ≡ ⟨Π̂(i)

r ⊗ Π̂(j)
s ⟩ = Tr{ρ̂(ij) Π̂(i)

r ⊗ Π̂(j)
s } =

∫
d2qd2pWΠ̂r

(qi, pi)WΠ̂s
(qj , pj)Wρ̂(q,p) (4.194)

with r, s ∈ {x, y, z}, the density matrix ρ̂(ij) of the two-particle system composed by particles i and j,
the pseudo-spin operator Π̂ acting in the space of particle i or j and q = (qi, qj) and p = (pi, pj) where
(i, j) = (0, 1), (i, j) = (0, 2) or (i, j) = (1, 2).Similarly for evaluating the expectation values appearing in
(4.216) and (4.232), we need to compute the three-mode integrals

Trst(ω) ≡ ⟨Π̂(0)
r ⊗ Π̂(1)

s ⊗ Π̂
(2)
t ⟩ = Tr{ρ̂(012) Π̂(0)

r ⊗ Π̂(1)
s ⊗ Π̂

(2)
t }

=

∫
d3qd3pWΠ̂r

(q0, p0)WΠ̂s
(q1, p1)WΠ̂t

(q2, p2)Wρ̂(q,p)
(4.195)

with r, s, t ∈ {x, y, z} q = (q0, q1, q2) and p = (p0, p1, p2). The explicit calculation of the terms T (i2)
rsinvolved in the determination of the CHSH parameter (4.211) is similar to the one figuring in the Appendix

of Ref. [154]. First of all, one finds
T (i2)
zz =

1

AiA2 − 4|⟨ĉiĉ2⟩|2
, (4.196)

where
Aj = 1 + 2⟨ĉ†j ĉj⟩ (4.197)

is known (see Ref. [39]) as the local mixedness of mode j (j = 0, 1 or 2)76. Then one finds that all
expectation values for which the index z appears a single time cancel at all temperatures. The values of
the other non-zero averages are (i = 0 or 1):

T (i2)
xx =

2

π
arctan

2Re ⟨ĉiĉ2⟩√
AiA2 − 4(Re ⟨ĉiĉ2⟩)2

T (i2)
yy =

−1

Ai2
T (i2)
xx

T (i2)
xy =

2

π A2
arsinh

2 Im ⟨ĉiĉ2⟩√
Ai2

T (i2)
yx =

2

π Ai
arsinh

2 Im ⟨ĉiĉ2⟩√
Ai2

(4.198)

where Ai2 is defined in Eq. (4.199) below, and we recall that the expression of the quantity ⟨ĉiĉ2⟩ is givenin (4.179)77.
75The details of the computations can be found in Appendix A.10.1.76In this work we have chosen the convention of writing generically the terms containing finite temperature com-ponents in upper case letters and the ones referring only at the zero temperature pure state in lower case letters.In the published article given in section 6.3.7 the local mixedness are always referred to in lower case letters, asit is often the case in the literature.77All the details of the computations are to be found in Appendix A.10.2. In the same Appendix will also be found
the expressions T (01)

rs which are not given here since modes 0 and 1 are not entangled and therefore the pairnever violates Bell’s inequalities.
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For studying the Svetlichny observable (4.216) and the related Mermin parameter (4.232), it is nec-
essary to evaluate the averages Trst(ω) given in Eq. (4.195) and involving the Cartesian coordinates of
three pseudo-spins, where r, s and t ∈ {x, y, z}. These quantities are zero if z is not one of the indices or
appears exactly twice. In order to write down tractable expressions in the other cases, it is convenient
to introduce new compact notations

A01 =A0A1 − 4 |⟨ĉ0ĉ†1⟩|2

Ai2 =
i<2
AiA2 − 4 |⟨ĉiĉ2⟩|2

(4.199)

Z0 = −2A0⟨ĉ1ĉ2⟩∗ + 4⟨ĉ0ĉ†1⟩⟨ĉ0ĉ2⟩∗

Z1 = −2A1⟨ĉ0ĉ2⟩∗ + 4⟨ĉ0ĉ†1⟩∗⟨ĉ1ĉ2⟩∗

Z2 = −2A2⟨ĉ0ĉ†1⟩∗ + 4⟨ĉ1ĉ2⟩⟨ĉ0ĉ2⟩∗
(4.200)

and
D =A0A1A2 + 16Re{⟨ĉ0ĉ†1⟩⟨ĉ1ĉ2⟩⟨ĉ0ĉ2⟩∗}

− 4A0|⟨ĉ1ĉ2⟩|2 − 4A1|⟨ĉ0ĉ2⟩|2 − 4A2|⟨ĉ0ĉ†1⟩|2
(4.201)

D is the square root of the determinant of the 6×6 covariance matrix (4.146). At T = 0 the system is in a
pure state andD = 1 for all values of ω 78 , whereasD = O(1/ω) at finite temperature, as can be shown
on the basis of the low energy expansion of the matrix elements of the S-matrix given in Ref. [38].

The explicit theoretical evaluation of the quantities (4.197), (4.199), (4.200) and (4.201) is easily done
from Eqs. (4.176)-(4.179). A long computation79 shows that the averages (4.195) which are non zero can
be expressed in terms of these quantities :

Tzxx = − 2

πA0
arctan

ReZ0√
A01A02 − (ReZ0)2

Txzx = − 2

πA1
arctan

ReZ1√
A01A12 − (ReZ1)2

Txxz = − 2

πA2
arctan

ReZ2√
A02A12 − (ReZ2)2

(4.202)

Tzyy = −A0

D
Tzxx Tyzy = −A1

D
Txzx

Tyyz = +
A2

D
Txxz

(4.203)

A02Tzxy = A01Tzyx =arsinh

( ImZ0√
A0D

)
A01Tyzx = A12Txzy =arsinh

( ImZ1√
A1D

)
−A12Txyz = A02Tyxz =arsinh

( ImZ2√
A2D

) (4.204)

and
Tzzz =

1

D
. (4.205)

78The c-modes are related to the b-modes by a Bogoliubov transformation, see (3.50). In this case the covariancematrix σ of the c-modes relates to the one of the b-modes by a symplectic transform which conserves the deter-minant (see, e.g., [86] and references therein). At T = 0 the b-modes are all empty and their covariance matrixis the identity 16. It thus follows that in this case δ = (detσ)2 = 1.79Some details are given in Appendix A.10.3.
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4.5 . GENUINE BIPARTITE VIOLATION

4.5.1 . Bipartite Entanglement
Expressions (4.176)-(4.179) are useful for computing the PPTmeasure of entanglement (4.190) and the

CHSH (4.211) and Svetlichny (4.216) parameters that will be defined later on as witnesses of bipartite and
tripartite nonlocality, respectively. As an illustration we now indicate how to compute the PPT measure
Λ(i|2) at zero temperature. Using here the definition (4.108) as a short hand notation one gets from (4.190)

Λ(i|2)(ω) =
T=0

−|Si2|2 − sinh2(r2) +

√
[|Si2|2 + sinh2(r2)]2 + 4|Si2|2 (4.206)

It was shown in Ref. [38] that the ratio |Si2|2/ sinh2(r2) tends to a constant when ω → 0. Let’s denote Γithe value of this constant (i = 0 or 1) 80. A simple expansion of (4.206) with sinh r2 → ∞ when ω → 0

shows that
lim
ω→0

Λ(i|2) =
T=0

2Γi

1 + Γi
. (4.207)

In the waterfall configuration [38] one has
Γ0 =

4mu

(1 +mu)2
, (4.208)

Furthermore from relation (3.48) it follows that Γ0 + Γ1 = 1. Hence, for the waterfall configuration
lim
ω→0

Λ(0|2) =
T=0

8mu

1 + 6mu +m2
u

, (4.209a)
lim
ω→0

Λ(1|2) =
T=0

(1−mu)
2

1 +m2
u

. (4.209b)
The maximum value of Λ(0|2) is always reached at ω = 0, thus the T = 0 numerically determined value
maxωΛ

(0|2) plotted in Fig. 4.3 is identical to (4.209a). The maximum value of the PPT measure of entan-
glement between modes 1 and 2 is reached at ω = 0 only for mu ≲ 0.18 : the numerically determined
valuemaxωΛ

(1|2) plotted in Fig. 4.3 is thus identical to (4.209b) in this range of values ofmu.
4.5.2 . Bipartite Nonlocality

Equipped with the pseudo-spin operators (4.191) we can define a CHSH Bell operator [105] measuring
the correlations between the emitted quasi-particles of type i and j as

B̂(i|j)(ω) = (a+ a′) · Π̂(i) ⊗ b · Π̂(j) + (a− a′) · Π̂(i) ⊗ b′ · Π̂(j) (4.210)
where a, a′, b and b′ are unit vectors. Given a unit vector n it is easily checked that (n · Π̂(j))2 = 1,
meaning that the Hermitian operator n · Π̂(j) has eigenvalues ±1. It then follows from direct inspection
that, local realism imposes that a measure of the operator B̂(i|j) yields a result ±281. Thus, local realism
is violated when ⟨B̂(i|j)⟩ > 2, whereas Cirel’son bound [159] imposes ⟨B̂(i|j)⟩ ≤ 2

√
2. Since the modes 0

and 1 are not entangled the quantity ⟨B̂(0|1)⟩ is always lower than 2 and its computation is of no interest
to us. For attempting to violate as much as possible Bell inequality one should consider the modes 0
and 2 (or 1 and 2) and look for an arrangement of the four measurement directions a, a′, b and b′ which
maximizes ⟨B̂(i|2)⟩ (i = 0 or 1). This procedure is explained in Appendix A.4 and makes it possible to
analytically compute the quantity

B(i|2)(ω) ≡ maxa,a′,b,b′

〈
B̂(i|2)(ω)

〉 (4.211)
80Γ0 and Γ1 are the low energy limits of the transmission and reflection coefficients (γ0 and γ1, respectively) of thebeam splitter involved in the effective optical model depicted in Fig. 4.1, see Appendix 4.2.3. In the notations ofAppendix 4.2.3, Γ0 = limω→0 cos

2 θ.
81From local realism is follows that the measurement of an observable of the type a · Π̂(i) ⊗ b · Π̂(j) is the product
Π(i)(λ,a) · Π(j)(λ, b) of the result Π(i)(λ,a) = ±1 of measurement of the pseudo-spin Π̂(i) along direction a

with the result Π(i)(λ, b) = ±1 of measurement of the pseudo-spin Π̂(j) along direction b, where λ is the hiddenvariable. Within this approach, there are only two possible cases: eitherΠ(i)(λ,a) andΠ(i)(λ,a′) are equal (theirdifference cancels and they sum to ±2) either they are opposite (their sum cancels and their difference is ±2).From expression (4.210) directly follows that such a measurement of B̂(i|j) yields a result ±2.
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The corresponding explicit expression is given in Eq. (A.91b). The values of B(0|2) and B(1|2) are plotted
as functions of ω for different temperatures in Fig. 4.2 for a waterfall configuration with a downstream
Mach number82 md ≡ Vd/cd = 2.9, the same as in the Technion 2019 experiment [34]. We also plot for
comparison the values of the corresponding PPT measures Λ(0|2) and Λ(1|2), as defined by (4.190).
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Figure 4.2: Plot of B(i|2) (solid lines)and Λ(i|2) (dashed lines) as functionsof ω for the waterfall configurationwith md = 2.9 and different temper-atures. We only consider the rangeof frequencies ω < Ω for which thevacua of the outgoing and ingoingmodes do not coincide. The value ofthe temperature is indicated in unitsof g nu = mc2u. Upper plot: i =
0. Lower plot i = 1. Non separa-bility of modes i and 2 is achievedwhen Λ(i|2) > 0. Bell inequality isviolated when B(i|2) > 2. The in-set in the upper plot is a blow-up ofthe region 1.8 ≤ B(0|2) ≤ 2.1 and
0.1 ≤ ω/Ω ≤ 1 showing that the re-duced state (0|2) does not violate Bellinequality at temperatures T = 0.1and 0.2.

The figure illustrates that, as well known, entanglement is necessary but not sufficient for violating
Bell inequality. Also, the amount by which the Bell inequality is violated is not proportional to the amount
of entanglement. This is clearly seen, for instance, by comparing the values ofB(0|2) and Λ(0|2) at T = 0 :
the maximum violation of Bell inequality is not achieved for the maximal entanglement. One can also
notice that the violation of Bell inequality is much less resilient to temperature than is the entanglement.
These features can be most easily understood in the framework of the optical model represented in Fig.
4.1. They originate from the dilution of entanglement between the three modes caused by the beam
splitter, as discussed in 4.2.3.

Fig. 4.2 indicates that, in the waterfall configuration we consider (withmd = 2.9), the entanglement is
lower and the violation of Bell inequality less significant for the correlations among modes 1 and 2 than
for the correlations among modes 0 and 2. However, this is not always the case. This point is illustrated
in Fig. 4.3 which displays, for all waterfall configurations, the zero temperature values ofmaxωB

(i|2) and
maxωΛ

(i|2) (for i = 0 and 1) as functions of the upper Mach numbermu (the maximisation is performed
at fixed mu, for ω ∈ [0,Ω]). All the possible waterfall configurations are considered since mu spans
the whole interval [0, 1]. In this figure we aim at evaluating the largest amount of entanglement and
nonlocality reached in each configuration. This is the reason why we plot the maximal values taken by
82In this theoreticalmodel configuration, fixing the value ofmd determines all the other dimensionless parameters:
md = m−2

u = nu/nd = Vd/Vu, see Ref. [38].
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the quantities Λ(i|2) andB(i|2) over the energy interval [0,Ω] [where Ω is defined by Relation (3.26)] since
it is only for energies in this interval that spontaneous emission of quasi-particles occurs.

For instance, the situation depicted in Fig. 4.2 (md = 2.9) corresponds in Fig. 4.3 to the point mu =

0.587 since for waterfall configurationsmu andmd are related by (3.19). And indeed, Fig. 4.3 shows thatfor this value of mu the maximum over ω of B(0|2) is 2.25, and the one of B(1|2) is 2, as observed in Fig.
4.2.
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Figure 4.3: LEFT PLOT: Zero temperature value of the CHSH parameter and of the PPT measure char-acterizing non separability of modes i (= 0 and 1) and 2 for the waterfall configuration. The maximalvalue reached by these quantities over the interval ω ∈ [0,Ω] is plotted as a function of the upper Machnumbermu which (as explained in Appendix 3.1) characterizes a given configuration. The values ofB(1|2)

formu ≤ 0.01 are not indicated because of lack of numerical precision. The upper bounds of B(i|2) and
Λ(i|2) (√8 and 1, respectively) are indicated with filled dots. RIGHT PLOT: Same as left plot but for a tem-perature T = 0.2 gnu. Contrarily to what is observed in the zero temperature case displayed in left plot,the maxima of Λ and B (1 and 2

√
2, respectively) are never reached.

Fig. 4.3 shows that for values ofmu larger than 0.6, the entanglement ismainly concentrated between
modes 2 and 0, i.e., between theHawking quantumand the partner. This is indicated by the fact that both
the PPTmeasure and the CHSH parameter significantly point to nonseparability and nonlocality between
these twomodes. Formu ≤ 0.2 instead, the figure shows that entanglement is concentrated between the
partner and the companion (modes 2 and 1, respectively). A plot similar to the one of Fig. 4.3, but where
the quantities are evaluated at finite temperature, enables to evaluate the resilience of entanglement
and non-separability to an increase of temperature. This check is performed in Fig. 4.3 which shows
that, whereas at T = 0.2 gnu the PPT measure is not dramatically affected, the CHSH parameters B(0|2)

andB(1|2) no longer show evidences of violation of Bell inequality, except in the (1|2) sector for waterfall
configurations withmu ≲ 0.15 and, in a lesser extent, in the (0|2) sector formu ≳ 0.85.

Figs. 4.3 and 4.3 illustrate a specific feature of analog models : there is no reason for qualifying one
of the positive normmodes (in our specific case, mode 0 or 1) as unessential. For instance, it is incorrect
to study the system discarding a priori the companion (mode 1) from the analysis. Fig. 4.3 shows that, at
zero temperature, this is allowed in some regions of parameters, but incorrect in others. Fig. 4.3 even
shows that only the companion-partner correlations display violation of Bell inequality above a certain
temperature. In this case it is the Hawking mode which is unessential. It is therefore important to give a
proper account of all the modes involved in our analog system without a priori neglecting any of them.

4.5.3 . Bipartite Entanglement and Nonlocality in the {f} Basis of the Optical Analog
Anotherway to consider the sameproblem is to use the equivalentmodel depicted in Fig. 4.1. It is well

known that a nondegenerate optical parametric amplifier generates an EPR state when the squeezing
parameter tends to infinity (see, e.g., Ref. [160]). As discussed in section 4.2.3 this is the case for the two
mode squeezed state (4.107) when ω → 0. The zero energy transmission coefficient Γ0 of the effectivebeam splitter (pictorially defined in Fig. 4.1) tends to 0 or 1 when the upper Mach number mu tends
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Figure 4.4: B(f1|f2) (solid lines) and Λ(f1|f2) (dashed lines) plotted as functions of ω for the two-modesqueeze state emulating the waterfall configuration withmd = 2.9. The values of the different tempera-tures are indicated in units of g nu.

to 0 or 1, respectively (see e.g., Eq. (4.208) which holds for the waterfall configuration)83. In these two
limits the system forms an EPR state between two of the three outgoing modes : in these two limiting
cases, i.e. mu → 0 or mu → 1 , and only in these, the third mode of the system can then be
omitted since for j the omittedmode one has ⟨ĉ†jcj⟩0 → 0. This EPR state involves, either the Hawking
quantum and the partner (when mu → 1) or the companion and the partner (when mu → 0). This is
the reason why the entanglement and nonlocality bounds are reached in this two limits in Fig. 4.3, and
similarly in Figs. 4.7 of section 4.7 for the delta peak and flat profile configurations, respectively. It is quite
informative to quantify the entanglement between the two effective modes f1 and f2 and the amount
by which the corresponding squeezed state violates Bell inequality. At T = 0 all the relevant quantities
can be expressed in terms of the squeezing parameter (4.108) involved in the transformation (4.107). For
instance, the analogs for the the modes f̂1 and f̂2, of the PPT measure of entanglement and of the CHSH
parameter defined for the modes ĉi and ĉ2 by Eqs. (4.190) and (4.211), respectively, read84

Λ(f1|f2) =
T=0

1− exp(−2r2), (4.212)
and [106]

B(f1|f2) =
T=0

2

√
1 +

4

π2
arctan2 [sinh(2r2)]. (4.213)

The finite temperature values of these quantities can be obtained by replacing the ĉ operators by the
f̂ ’s in expressions (4.190) and (A.91b) and using formulae (4.180). They are represented in Fig. 4.4 as
functions of ω for a specific black hole configuration (waterfall withmd = 2.9). As anticipated, it appears
that the violation of Bell inequality is heremuchmore resilient to temperature than for the true Hawking-
partner pair or the companion-partner pair (compare with Fig. 4.2). This is explained by the fact that the
beam splitter distributes and, so to say, dilutes the entanglement. This is clear at T = 0 : in this case
the f0 mode is empty (cf. (4.180)) and the system is, as far as the f modes are concerned, in a pure two-
mode squeezed vacuum state. At ω = 0 for instance, the system is maximally entangled (the squeezing
parameter r2 → ∞) and both Λ(f1|f2) and B(f1|f2) reach their upper bounds (1 and 2

√
2 respectively). At

variance, if working with the true outgoing modes described by the ĉ (or equivalently the ê) operators,
83Thinking about the gravitational analogy, when in the long-wavelength limit the greybody factor Γ0 → 1, there isno back-scattering of Hawking particles. On the contrary when Γ0 → 0 all Hawking particles are scattered backby the gravitational potential. In the waterfall configuration, Γ0 → 1 when mu → 1, and since md = m−2

u thetwo asymptotic Mach numbers are in this case very close to each other : this then would mimic an horizon forwhich the gradient of the gravitational potential is not very steep at the horizon (the steeper the potential, thestronger the back-scattering), for example with a very massive black-hole (the heavier the black hole, the largerits Schwarzschild radius, which is proportional to the mass).
84Relation (4.212) is just the expansion of (4.190) in the {f} basis (the f̂i need just to replace the ĉi in the givenexpression) with r2 → ∞ at zero temperature and zero energy.
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for studying two-mode entanglement it is necessary to trace the (occupied) third one. Indeed, whenmu

is not approaching the two limiting casesmu → 0 ormu → 1, the omitted (traced out) third mode
has an occupation number ⟨ĉ†jcj⟩0 which is significantly not zero. The resulting density matrix is
mixed, and in this case, entanglement and violation of Bell inequality are two different things, as clear
from Fig. 4.2.

Another way to tackle this issue consists in expressing the PPT measure of entanglement (4.190)
between the partner (mode 2) and mode i (i = 0 or 1) in terms of the parameters of the equivalent
optical system. Denoting as γ0(ω) = cos2 θ and γ1(ω) = sin2 θ the transmission and reflection coefficient
of the beam splitter makes it possible to write the PPT measure (4.190) at zero temperature (see (4.206))
under the form

Λ(i|2)(ω) =
T=0

(1 + γi)(sinh r2)×


√

cosh2 r2 −
(
1− γi
1 + γi

)2

− sinh r2

 (4.214)

Algebraicmanipulations85 then show that, because γi ≤ 1,Λ(i|2) is always lower thanΛ(f1|f2). Thismeans
that the entanglement between modes i and 2 is always lower than the entanglement between the
modes issued from the parametric down conversion represented in Fig. 4.1. The equality is reached
when γi = 1, and, since γ0 + γ1 = 1, in this case the other channel (let’s denote it as ı̄ = 1 − i) is not
entangled withmode 2 sinceΛ(ı̄|2) = 0. So, indeed, the effect of the beam splitter is, so to say, to dispatch
the entanglement of the effective squeezed modes f1 and f2 between modes c0, c1 and c2.

We conclude this section by noticing that, from a quantum information perspective, the fact that
reduced bipartite states of a tripartite system are entangled is of no particular significance per se. It is
however important for future experimental studies of analog systems to determine for which configura-
tions, and to quantify to which extent, the three-mode acoustic Hawking emission is bipartite entangled
andnonlocal. Besides, wewill see in the next section that this resilience of entanglement to partial tracing
acquires a particular significance when examining the exact nature of the long wavelength components
of the three-mode state |0⟩in (the ground state of the system).

4.6 . GENUINE TRIPARTITE VIOLATION

4.6.1 . The Svetlichny Parameter
Equipped with the same pseudo-spin operators as the ones defined in Sec. 4.5 one can define a

three-mode Bell operator of a type similar to the two-mode one (4.210). This operator measures the
correlations between the outgoing quasi-particles of type i, j and k. It is defined as (see [161, 162])

Ŝ (i|j|k)(ω) = 1
2B̂

(i|j) ⊗ c′ · Π̂(k) + 1
2B̂

′(i|j) ⊗ c · Π̂(k) (4.215)
where B̂′(j|k)(ω) is the same as B̂(j|k)(ω) defined in (4.210) with the primes reversed, and c and c′ are
normalized vectors as are a, a′, b, and b′ involved in the definition of B̂(j|k)). Expanding expression
(4.215) shows that Ŝ (i|j|k) is invariant upon a permutation of its indices, provided the names of the unit
vectors (a, b, c) and (a′, b′, c′) undergo the same permutation. In the following we arbitrarily chose the
order (i, j, k) = (0, 1, 2).

Similarly to what occurs for the two-mode operator, the principle of local realism, if correct, should
predict that the statistical average ⟨Ŝ (0|1|2)⟩ be bounded by ±2. The system violates this principle when
the average of the previous average is larger than two. This is often referred to as violation of Svetlichny
inequality. It is important to note that the observable Ŝ (0|1|2) is specially designed in order to be sensitive
to genuine tripartite nonlocality (see discussions in Refs. [161, 163, 162, 95] and references therein): a
85Indeed at zero temperature, when γi = 1, the expression in {.} of (4.214) is just equal to cosh r2 − sinh r2 = e−r2

and thereforeΛ(i|2)(ω) equalsΛ(f1|f2)(ω) of (4.212). On the contrary when γi = 0 the measureΛ(i|2)(ω) vanishes.Then, since Λ(i|2)(ω) is at zero temperature a monotonically increasing function of γ1 ∈ [0, 1], one has Λ(i|2)(ω)always smaller than Λ(f1|f2)(ω).
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tripartite system can involve nonlocal correlations between any of its bipartitions and still not violate the
Svetlichny inequality ⟨Ŝ (0|1|2)⟩ < 2. A simple example of a system which displays two mode nonlocality
but does not pass the Svetlichny test is our optical analog presented in 4.2.3. This can be seen below in
Eq. (4.238). We will further comment on this last result when proving it.

In order to reach a maximum violation of Svetlichny (i.e., three-mode Bell) inequality it is necessary
to choose a particular arrangement of the vectors a, a′, b, b′, c and c′ which maximizes the expectation
value ⟨Ŝ (0|1|2)⟩. To do so, we resort to a genetic algorithm which is presented in Appendix A.6, i.e. we
numerically determines the quantity

S(0|1|2)(ω) ≡ maxa,a′,b,b′,c,c′

〈
Ŝ (0|1|2)(ω)

〉 (4.216)
It is shown in Appendix A.5 that the tripartite parameter S(0|1|2)(ω) is bounded from above by 2√2 (this
is Eq. (A.96)) and that this bound is reached at ω = 0 and T = 0([see Eq. (A.108)).

The behavior of S(0|1|2)(ω) at zero temperature is displayed in Fig. 4.5 for different realizations of
the waterfall configuration. Although the bound 2

√
2 is reached in the long wave length limit for all the

realizations, even a weak temperature is able to destroy the signal of nonlocality as illustrated in Fig.
4.5. This weakness of the signal is connected to the loss of purity of the finite temperature system and
can be understood analytically, again in the long wave length limit, as discussed in Appendix A.5. This
sensitivity to a small finite temperature probably precludes the experimental observation of tripartite
nonlocality by means of the observable (4.216). However, although the zero temperature behavior is
certainly difficult to observe, it is rich of fundamental insight on the nature of the state of the system, as
we now discuss.
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Figure 4.5: LEFT PLOT : Zero temperature value of the tripartite parameter S(0|1|2) plotted as a function ofenergy for different realization of the waterfall configuration, each being characterized by the upstreamMach number mu. The inset displays a blow up of the figure at low energy. The upper bound 2
√
2 ismarked by a brown dot. It is reached at ω = 0 in all configurations. RIGHT PLOT : Same as left plot for atemperature T = 0.05 gnu. At variance with the zero temperature situation the tripartite measure (4.216)is here always less than or equal to 2.

4.6.2 . The GKMR Pseudo-spins in the Zero Temperature and Zero Energy Limit
The low energy behavior of the quantities (4.202) is dictated by the one of the local mixednesses a0,

a1 and a2 which diverge as 1/ω for all temperature. As a result
lim
ω→0

Tzxx = lim
ω→0

Txzx = lim
ω→0

Txxz =
∀T

0. (4.217)
On the other hand, the behavior of the quantities (4.203) depends on the behavior of the square rootD
of the determinant of the covariance matrix which is unity at T = 0 78. In this case

Tzzz(ω) =
T=0

1, (4.218)
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and, in the waterfall configuration,
− lim

ω→0
Tzyy = lim

ω→0
Tyzy = lim

ω→0
Tyyz =

T=0
1. (4.219)

The reason for this behavior is that, at T = 0, D = 1 whereas the arguments of all the arctan terms in
(4.202) diverge as ω−1/2, as shown by detailed inspection based on Eqs. (4.199), (4.200), (4.176)-(4.179) and
the asymptotic expression of the coefficients of the S matrix given in [38].

Alternatively, at finite temperatureD diverges at low energy (as 1/ω) and the limits (4.219) all cancel
lim
ω→0

Tzyy = lim
ω→0

Tyzy = lim
ω→0

Tyyz =
T ̸=0

0, (4.220)
as also does limω→0 Tzzz =

T ̸=0
0.

As argued in Appendix 4.3.1, the fact that, at zero temperature and ω = 0 the system reaches the
tripartite upper bound (S(0|1|2) = 2

√
2, see Fig. 4.5) mathematically stems from the fact that, under these

conditions the system is in a pure state and displays perfect correlations in the following expectation
values (see Eqs. (4.218), (4.219) and (4.195)) :
⟨Π̂(0)

y ⊗ Π̂(1)
y ⊗ Π̂(2)

z ⟩ = ⟨Π̂(0)
y ⊗ Π̂(1)

z ⊗ Π̂(2)
y ⟩ = −⟨Π̂(0)

z ⊗ Π̂(1)
y ⊗ Π̂(2)

y ⟩ = ⟨Π̂(0)
z ⊗ Π̂(1)

z ⊗ Π̂(2)
z ⟩ = 1 (4.221)

All the other expectation values of tensor products of three components of the Π̂ operator are zero.
The precise values ±1 for the non vanishing averages are here given for the waterfall configuration.
The situation is identical for the delt peak configuration but slightly different in the case of a flat profile
configuration, where Tyyz = −1 and Tzzz = Tzyy = Tyzy = 1, with all other coefficients also vanishing.
Then, since all the operators in (4.221) have only ±1 as eigenvalues, each term must reach its extremal
value and the vacuummode of zero frequency |0ω=0⟩in must therefore be an eigenstate of the operators
appearing in (4.221), i.e.

Π̂(0)
y ⊗ Π̂(1)

y ⊗ Π̂(2)
z |0ω=0⟩in = +|0ω=0⟩in (4.222a)

Π̂(0)
y ⊗ Π̂(1)

z ⊗ Π̂(2)
y |0ω=0⟩in = +|0ω=0⟩in (4.222b)

Π̂(0)
z ⊗ Π̂(1)

y ⊗ Π̂(2)
y |0ω=0⟩in = −|0ω=0⟩in (4.222c)

Π̂(0)
z ⊗ Π̂(1)

z ⊗ Π̂(2)
z |0ω=0⟩in = +|0ω=0⟩in (4.222d)

Relations (4.222) define a state which exhibits the GHZ paradox, contradicting local hidden variable the-
ories by means of a single measurement; cf. e.g., the discussion in [112].

4.6.3 . Superposition of Degenerate GHZ States in the Zero Temperature and Zero Energy
Limit

We show here that the state we consider is, at finite temperature and in the long wavelength limit,
an infinite sum of degenerate GHZ states of a continuous variable system. To this end it is convenient
to expand the state |0ω=0⟩in over the eigenstates of the operators Π̂

(j)
x (j = 0, 1 or 2). As discussed

in Appendix A.2 these eigenstates can be written as |x±n ⟩j : they are labeled by their eigenvalue (±1)
plus another integer index (n in the above expression) associated to the infinite degeneracy of both
eigenvalues.

Indeed, at variance with what occurs for a regular spin operator, the projection of the pseudo-spin
(4.191) over a given axis (here Π̂x) has infinitely degenerate eigenvalues. The existence of such an in-
finitely degenerate subspace for each eigenvalue implies the existence of an infinite number of mutually
orthogonal eigenstates with the same eigenvalue (+1 or −1), i.e.

∀n ∈ N, Π̂(j)
x |x±n ⟩j = ±|x±n ⟩j (4.223)

whereas
∀(n,m) ∈ N2, j⟨x±n |x±m⟩j = δn,m. (4.224)
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This can be shown (see Eqs. (A.39) and (A.48)) by directly constructing the eigenstates of Π̂x from the
number states. The expansion of |0ω=0⟩in over the complete basis {|xσ0

l , x
σ1
m , x

σ2
n ⟩
} is given by

|0ω=0⟩in =
∑

σ0,σ1,σ2
l,m,n

Cσ0,σ1,σ2

l,m,n |xσ0
l , x

σ1
m , x

σ2
n ⟩. (4.225)

where σ0, σ1 and σ2 = ± and (l,m, n) ∈ N3 whereas the indices j = 0, 1 or 2 of the kets have been
dropped for legibility. It follows from relations (4.222) and (A.52a)86 that:

−σ0σ1C−σ0,−σ1,−σ2

l,m,n = −σ0σ2C−σ0,−σ1,−σ2

l,m,n = σ1σ2C
−σ0,−σ1,−σ2

l,m,n = C−σ0,−σ1,−σ2
l,m,n (4.226)

This imposes that the only nonzero coefficients in expansion (4.225) are those for which
σ1 = σ2 = −σ0 (4.227)

The two previous relations (4.226) and (4.227) imply finally
C+−−
l,m,n = C−++

l,m,n ≡ Cl,m,n. (4.228)
Expansion (4.225) thus simplifies to

|0ω=0⟩in =
∑
l,m,n

Cl,m,n

(
|x+l , x−m, x−n ⟩ + |x−l , x+m, x+n ⟩

) (4.229)

which shows that the vacuum |0ω=0⟩in of the b̂j(ω = 0) operators (the ingoing ground state) is an infinite
sum of degenerate GHZ states. It is easily checked that this definition of |0ω=0⟩in is indeed an eigenstateof the operators appearing in (4.222). Most significantly, the structure of |0ω=0⟩in given in (4.229) enablesthe reduced state obtained after partial tracing over one mode to remain entangled despite the GHZ
nature of the system. Indeed, tracing over mode 0 for instance leads to a reduced density matrix

Tr(0)
(
|0ω=0⟩in in⟨0ω=0|

)
=

∑
m,n,µ,ν

C(0)
m,n,µ,ν

(
|x−mx−n ⟩ ⟨x−µ x−ν |+ |x+mx+n ⟩ ⟨x+µ x+ν |

) (4.230)
In this expression, where the kets and bras concern modes 1 and 2 since mode 0 has been traced out,

C(0)
m,n,µ,ν =

∞∑
l=0

C∗
l,µ,νCl,m,n (4.231)

If the eigenvalues +1 and −1 of operator Π̂x were non-degenerate, this would imposem = µ and n = ν

in expression (4.230) and the corresponding reduced state would be clearly separable. Nothing similar
occurs in our situation when either mode 0 or mode 1 is traced out, and indeed the corresponding
reduced states are typically entangled, as shown in Sec. 4.5. But when mode 2 is traced out the reduced
state clearly appears to be not entangled, as can again be seen in Sec. 4.5. This may suggest that the
structure of the vacuum |0ω=0⟩in given in (4.229) may be further simplified.

4.6.4 . Mermin Parameter : Weak Resilience to Temperature of the GHZ State
Since we now understand the exact GHZ nature of the zero temperature and ω = 0 state of the

system, it is of interest to quantify to what extent this feature persists at finite temperature and finite
energy. To this aim, we use the genetic algorithm presented in Appendix A.6 to compute the optimum
of the Mermin parameter [111, 164]

M (0|1|2)(ω) ≡ maxa,a′,b,b′,c,c′

∣∣∣〈M̂ (0|1|2)(ω)
〉∣∣∣ (4.232)

where
M̂ (0|1|2)(ω) =− a · Π̂(0) ⊗ b · Π̂(1) ⊗ c · Π̂(2) + a · Π̂(0) ⊗ b′ · Π̂(1) ⊗ c′ · Π̂(2)

+ a′ · Π̂(0) ⊗ b · Π̂(1) ⊗ c′ · Π̂(2) + a′ · Π̂(0) ⊗ b′ · Π̂(1) ⊗ c · Π̂(2)
(4.233)

86Rewriting them as Π̂y|xσ0
n ⟩ = −i σ0|x−σ0

n ⟩ and Π̂z|xσ0
n ⟩ = |x−σ0

n ⟩ respectively.
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We note here M̂ (0|1|2)(ω) that relates to the three-mode Bell operator given in (4.215) since one has
Ŝ (0|1|2) = 1

2M̂
(0|1|2) + 1

2M̂
′(0|1|2) (4.234)

where M̂ ′(0|1|2) is the same as M̂ (0|1|2) with the prime reversed [163].
The largest possible value of the Mermin parameter (4.232) is 4. This upper bound is reached for

a state verifying relations (4.221), such as a GHZ state or the low wavelength component of the ground
state of our system as just discussed87. Indeed, at T = 0,M (0|1|2)(0) = 4 for all black hole configurations.
This is illustrated in Fig. 4.6 in whichM (0|1|2) is plotted as a function of ω for different values of mu, at
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Figure 4.6: Mermin parameterM (0|1|2)(ω) plotted for different waterfall configurations. The continuouslines starting fromM (0|1|2) = 4 at ω = 0 are zero temperature results and the thick dashed ones (with
M (0|1|2)(0) = 0) correspond to T = 0.1 gnu. The inset is a blow up of the figure around the region
M (0|1|2) = 2 for ω/Ω ≤ 0.6.
zero and finite temperature (T = 0 and T = 0.1 gnu). If the departure ofM (0|1|2) from its upper bound
is taken as an indication of how much the system differs from a GHZ state, this suggests that the GHZ
character of the state is restricted to the low energy and low temperature sector. We stress however
that such a criterion is only indicative: the Svetlichny and Mermin parameters provide useful bounds,
but not proper measures. This is illustrated by their poor effectiveness for evaluating genuine tripartite
entanglement. It is known [163] that if

M (0|1|2) > 2
√
2 or S(0|1|2) > 2 (4.235)

the system exhibits genuine three-mode entanglement. Figs. 4.5 and 4.6 show that this type of entangle-
ment is certainly reached at T = 0 for low energy. However, the criteria (4.235) are here too restrictive,
since the computation of the residual contangle done in Ref. [86] demonstrates that at T = 0 the system
is genuinely tripartite entangled for all energies and all configurations. This general conclusion certainly
cannot be reached by inspecting, in Figs. 4.5 and 4.6, in which domain of energy and for which value of
mu the criteria (4.235) are met. However, these criteria are valid and can be useful, for instance at finite
temperature. In this case the state of the system is not pure, the evaluation of the residual contangle
appears to be very difficult, and the criterion (4.235) is the only way we know to demonstrate genuine
tripartite entanglement, which, as can be inferred from the tendency displayed in Fig. 4.6, is reached at
low T , low ω and small values ofmu.Finally, the Mermin parameter (4.232) is also an interesting witness of nonlocality. A local hidden
variable theory predicts that it should verify the Mermin-Klyshko inequalityM (0|1|2) ≤ 2. It can be seen
from Fig. 4.6 that this inequality is violated at zero temperature for all waterfall configurations. For T > 0

instead, M (0|1|2)(0) = 0. Therefore, the Mermin parameter has the same behaviour as the Svetlichny
87From (4.221) it is clear that at zero temperature andω = 0 themaximum (4.232) is obtainedwhena = b′ = c′ = ezand a′ = b = c = ey , reaching the upper bound 4.
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parameter and for the same reason : at finite temperature the state of the system is no longer pure, and
in this case all the expectation values of products of three components of the pseudo-spin tend to zero
in the long wavelength limit as can been seen from discussion in Appendix 4.3.1. However, contrary to
what occurs for the Svetlichny parameter, there are accessible finite temperature situations where the
Mermin parameter is larger that the nonlocality threshold M (0|1|2) = 2 (compare Figs. 4.6 and 4.5). In
that respect, the Mermin parameter may even reveal more useful that the CHSH parameter (4.211). For
instance, at T = 0.1gnu, for mu = 0.3 the largest value ofM (0|1|2) is 2.19 (as seen from Fig. 4.6), higher
than the largest values reached by both CHSH parameters B(0|2) and B(0|1) in the same situation (2 and
2.017, respectively).

4.6.5 . No Genuine Tripartite Entanglement and Nonlocality in the {f} Basis of the Optical
Analog

After discussing two modes entanglement (see section 4.5.3) it is also interesting to briefly consider
tripartite entanglement in the effective optical system depicted in Fig. 4.1. As already said in section 4.5.3,
this system has been designed (by means of a procedure called entanglement localization [165]) in such
a way that it concentrates entanglement between the effective squeezed modes f1 and f2. Therefore,it should be expected that, in the {f} basis, the quantity ⟨Ŝ (f0|f1|f2)⟩, which is sensible to a genuine
tripartite nonlocality, will never reach values above two. Indeed, in this basis, at zero temperature one
has

⟨Π̂(f0)
r ⊗ Π̂(f1)

s ⊗ Π̂
(f2)
t ⟩ =

T=0
⟨Π̂(f0)

r ⟩⟨Π̂(f1)
s ⊗ Π̂

(f2)
t ⟩. (4.236)

with
⟨Π̂(f0)

z ⟩ = 1 ⟨Π̂(f0)
y ⟩ = 0 ⟨Π̂(f0)

x ⟩ = 0 (4.237)
As it is shown at the end of Appendix A.5, one then obtains straightforwardly that

S(f0|f1|f2)(ω) =
T=0

2. (4.238)
Of course the value of S(f0|f1|f2) decreases when the temperature increases. This quantity is thus always
lower than 2, indicating, as expected, that there is no genuine tripartite nonlocality between the
effective {f}modes.

Furthermore, from Eqs. (A.110) and (A.111), and also from the facts that ⟨Π̂(f1)
s ⊗ Π̂

(f2)
t ⟩ = 0 if s ̸= t and

that, at ω = 0 and T = 0,
⟨Π̂(f1)

x ⊗ Π̂(f2)
x ⟩ = −⟨Π̂(f1)

y ⊗ Π̂(f2)
y ⟩ = 1, (4.239)

it is easily found that, at ω = 0, the optimized Mermin parameter (4.232) of the f modes is
M (f0|f1|f2)(0) =

T=0
2. (4.240)

This shows that, at variance with the {c} modes, the effective {f} modes do not violate the Mermin-
Klyshko inequality and certainly do not exhibit the GHZ paradox. Results (4.238) and (4.240) were ex-
pected : since the {f} modes do not exhibit tripartite entanglement they should fulfill none of the in-
equalities (4.235) and therefore should never violate locality.

Finally, it follows from (4.208) that when mu = 0 or 1, at ω = 0, cos θ = 0 or 1, respectively. In this
case Eqs. (4.103), (4.97) and (4.99) indicate that the {f} modes are connected to the {c} modes not
by a Non-Local Linear Unitary BOgoliubov (NLLUBO) transformation, as they generically are, but by a
local one (LLUBO): then, the tripartite character of the true system thus disappears in these two limiting
cases, even when T = 0. However our results indicate that these two limits are singular, since the GHZ
character of the system is observed (at ω = 0 and T = 0) for allmu ∈]0, 1[.

4.7 . RESULTS FOR TWO OTHER ANALOG BLACK HOLE CONFIGURATIONS

4.7.1 . Bipartite Results
The only configuration which has been realized experimentally so far is the waterfall configuration

[34, 35]. At least theoretically there are two other configurations : the delta peak and the flat profile
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configurations, which are defined in 3.1. It is interesting to note that, to some respects, the obtained
results are configuration independent. The equivalents of Fig. 4.3 for these alternative configurations
are plotted in Fig. 4.7. In the flat profile configuration the value ofmd is a free parameter. Thus, in order
to compare the results of the flat profile configuration with Fig. 4.3 we imposemd = 1/m2

u, as is the casefor the waterfall configuration defined in Eq. (3.19). Such a procedure is not required (nor possible) for
the delta peak configuration where fixingmu unambiguously determinesmd, as can be seen from (3.16).
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Figure 4.7: Same as Fig. 4.3 for a zero temperature flat profile configuration with md = 1/m2
u (left plot)and for a zero temperature delta peak configuration (right plot). The inset is a blow up at lowmu.

Fig. 4.7 shows that the delta peak configuration has a special feature: the EPR state formed by the
companion and the partner (see Sec. 4.5) is only reached at extremely low values of the upstreammach
numbermu, whereas bipartite nonseparability between the Hawking quantum and the partner (modes
0 and 2, respectively) is significant in a wide range of values of mu (roughly speaking, for mu ≳ 0.2).
Despite this peculiarity, it is fair to say that Figs. 4.7 both display the same general trend as Fig. 4.3,
thus supporting the idea that the behavior already discussed for the waterfall configuration is generic.
We do not produce finite temperature figures equivalent to Fig. 4.3 since, as expected, the delta peak
and the flat profile configurations behave similarly to the waterfall configuration when the temperature
is increased. There is however a quantitative change which is worth noticing: in these two alternative
configurations the violation of bipartite Bell inequality does not persist as much as for the waterfall
configuration when T is increased.

4.7.2 . Tripartite Results
Regarding the study of genuine tripartite nonlocality, the zero and finite temperature values of the

Svetlichny parameter S(0|1|2)(ω) can be computed as well in the delta peak and flat profile configurations.
We present in Figs. 4.8 the results for zero temperature which are the equivalents of Fig. 4.5. Again, re-
sults at finite temperature are not displayed since the trend is the same as for the waterfall configuration
but with a weaker resilience to temperature. For the zero temperature case, the phenomenology is in-
deed the same as the one discussed for the waterfall configuration. There is a clear signal of nonlocality
at T = 0, in a domain of energy typically more extended than for the waterfall configuration, but as is
the case for the waterfall configuration this signal does not persist at small finite temperature.

As a further (and final) confirmation of the generality of the obtained results, it is worth noticing
that the he GHZ character of the long wave length modes also appears in the delta peak and flat profile
configurations. As argued in Sec. 4.6, at zero temperature both configurations display the GHZ para-
dox at ω = 0 and verify M (0|1|2)(0) = 4. The behavior of the optimized Mermin parameter M (0|1|2)(ω)

given (4.232) is represented at finite and zero temperature in Figs. 4.9 and 4.9 which correspond to the
delta peak and flat profile configuration, respectively. At zero temperature the signal (4.235) of genuine
tripartite entanglement is more pronounced for the delta peak and flat profile configurations than for
the waterfall. This was also the case for the signal (4.235) of genuine tripartite nonlocality. However,
this signal, although more noticeable at T = 0, is less resilient to an increase of temperature than for
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Figure 4.8: Same as Fig. 4.5 for zero temperature flat profile configurations (left plot) and for zero tem-perature delta peak configurations (right plot). The inset displays a blow up of the figure at low energy.
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Figure 4.9: Same as Fig. 4.6 for (left plot) flat profile configurations at T = 0 (thin solid lines) and T =
0.1gnu (thick dashed lines) and for (right plot) for delta peak configurations at T = 0 (thin solid lines) and
T = 0.1gnu (thick dashed lines).

the waterfall configuration, especially for the flat profile configuration as can be seen in Fig. 4.9. Once
again, despite some specificities, the general trend is the same as for the waterfall configuration : the
departure from the GHZ signalM (0|1|2)(0) = 4 increases at high energy. At finite temperature, the GHZ
behavior is lost but since the Mermin parameter is larger than 2 the signal of nonlocality persists at zero
temperature and is more pronounced at T ̸= 0 for the waterfall configuration than for the two others.

4.8 . MAIN RESULTS

4.8.1 . About Bipartite and Tripartite Nonlocality

In our acoustic black hole a simple pair production process induces (and this is far from being intu-
itive) genuine tripartite entanglement and genuine tripartite non-locality, as it has been shown in Ref. [86]
and in the present study respectively. Once a quasi-particle of our tripartite system is traced out, the re-
maining bipartite system may exhibit genuine bipartite entanglement and genuine bipartite non-locality
in the case of the Hawking-partner and companion-partner pairs. If the violation of Bell inequality is
a signature of genuine bipartite nonlocality, the violation of Svetlichny inequality is a signature of
genuine tripartite nonlocality. According to our results, there is reasonable hope to witness genuine
bipartite nonlocality in an acoustic analog of a black hole whereas the observation of signatures of gen-
uine tripartite nonlocality appears to be presumably more difficult. It seems indeed (see Fig. 4.6 and
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Figs. (4.9)) that tripartite signatures only weakly resist to an increase in temperature 88.
Since we assumed our system to be in a Gaussian state the full information about the correlations

exhibited by the system can be extracted from the covariance matrix. The only quantities that need to
be measured are ⟨ĉ†i ĉi⟩, |⟨ĉ0 ĉ†1⟩| |⟨ĉ0 ĉ2⟩| and |⟨ĉ1 ĉ2⟩|. In BEC physics indirect techniques have been usedformeasuring some of the entries of thismatrix potentially difficult to determine experimentally, such as
⟨ĉ0 ĉ2⟩, for example by carefully extracting information from the knowledge of the density-density corre-
lation function [54, 39, 90], but others techniques have to be devised for measuring some other entries
where an access to the the phases of the averaged quadratures is needed. It is here worth noticing that
our approach can be adapted with little modification to other systems, such as exciton-polaritons in mi-
crocavities, or more generally setups involving nonlinear light, in which all the entries of the covariance
matrix could possibly be measured with more direct procedures. For the quantities we are interested
in, the long wavelength behavior of the modes, and therefore of the dispersion relation and of the cor-
responding S matrix components, is of major interest.
Indeed, if the breaking of Lorentz invariance due to dispersive effects (non-linearity of the dispersion
relation) could appear as a flaw in the analogy, it is this very same apparent shortcoming, common to all
analog physics [166, 167, 168, 169], that causes the existence not only of a Hawking and a partner mode
but also of a third mode here denoted as the companion. It is then a main result of our work to have
shown that our three-quasi-particle system not only exhibits tripartite entanglement [86] but also tri-
partite nonlocality. This peculiar nonlocal tripartite configuration, together with the continuous nature
of the degrees of freedom, translates into a systemwhose long wavelength quantummodes are surpris-
ingly described by a superposition of degenerate GHZ states which, at variance with GHZ states built
on qubits, remains entangled after partial tracing.
This result is likely to be generic in any system with a sonic-like low energy dispersion relation, thus sug-
gesting that condensed matter analogs may be considered in the future not only as empirical analogies
but also on their own as valuable systems for inquiring into the flow ofmultipartite quantum information
for a continuous variable regime. Finally, since the Gaussian assumption that has been made stems
from our Bogoliubov linearization of the Gross-Pitaevskii equation for the field operator, i.e. from
the reduction of a quartic (interaction) Hamiltonian to a quadratic Hamiltonian, it is important to re-
call that nonlinear effects might significantly affect quantum emission processes in the context of analog
physics [170, 171, 172, 173]. It would then be of great interest to precisely characterize how these nonlinear
back reaction effects reshape the radiation processes in the black hole analogs we consider.

4.8.2 . Article : Violation of Bell Inequalities in an Analog Black Hole

G. Ciliberto , S. Emig , N. Pavloff , M. Isoard, Physical Review A 109, 063325 (2024)
doi : https://doi.org/10.1103/PhysRevA.109.063325
Signals of entanglement and nonlocality are quantitatively evaluated at zero and finite temperature

in an analog black hole realized in the flow of a quasi-one-dimensional Bose-Einstein condensate. The
violation of Lorentz invariance inherent to this analog system opens the prospect to observe three-mode
quantum correlations and we study the corresponding violation of bipartite and tripartite Bell inequal-
ities. It is shown that the long-wavelength modes of the system are maximally entangled, in the sense
that they realize a superposition of continuous variable versions of Greenberger-Horne-Zeilinger states
the entanglement of which resists partial tracing.

88It is worth noticing that, among the three black hole configurations here considered, the waterfall configurationappears to be less sensitive to increased temperature Fig. 4.6 and Figs. (4.9).
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5 - BACK-REACTION IN AN ANALOG BLACK HOLE

In this chapter we derive the back-reaction equations for an analog black hole in a one-dimensional
weakly-interacting quasicondensate. This is done by expanding the field operator Ψ̂(x, t) of the system
up to second order. The averaged second-order terms will then constitute the source terms in the dy-
namical equations describing the corrections to the zeroth order classical meanfield approximation of
the field operator1. Stationary solutions will be considered and preliminary asymptotic results will be
derived.

5.1 . BACK-REACTION : A short overview

An analog black hole is an out-of-equilibrium quantum system. This is revealed by the presence
of excitations of negative energy in the supersonic region. At zeroth order, in a naive approach, one
could state that the systems tries (hopelessly) to reach equilibrium by emitting Hawking radiation. In the
analog configuration we consider equilibrium is never reached : since energy is constantly injected by
the external potential, the system remains in an out-of-equilibrium stationary state and never relaxes
to equilibrium. It then radiates permanently. In order to study the relaxation, higher-order quantum
contributions have to be taken into account : the effects of these contributions on the flow constitute
the back-reaction phenomenon. Then, what is at stake is to understand how Hawking radiation perturbs
the flow and by this means to gain a hint on how the system eventually reaches an equilibrium state no
longer containing any negative energy modes.

It is in analogy with this relaxation phenomenon that a gravitational black hole radiates thermally at
temperature TH in order to reach its equilibrium state, which is in Hawking’s theory [10, 11] the vanishing
of the black hole, i.e. its total evaporation. Contrary to the general relativity case, where there is no tested
theory of quantum gravity, the back-reaction effects of the quantized excitations can be treated in our
BEC analog setup in the framework of a unified quantum nonlinear theory2. The averaged quantum
fluctuations of higher-order will therefore in our system constitute the quantum correction terms to the
zeroth order effective metric parametrized by the mean-field wavefunction. In this perspective, they can
be seen in analogy to the modification of the space-time metric yielded by the loss of energy, i.e. mass,
in the radiating black hole.

Another incentive for studying back-reaction has been put forward: the derivation by Hawking of
its thermal radiation does not contemplate back-reaction. The existence of these higher-order terms in
the dynamics could alter the thermal character of the quantum emission. Some researchers advocate
that this could be a possible solution of the "information paradox" [9]. This paradox, first noticed by
Hawking himself [174], appears only after full evaporation of a black hole through Hawking radiation.
Quantum mechanically, if the initial state before the formation of the black-hole was a pure state, the
unitary evolution of this state must lead to a pure final state. But the final state of the Hawking process,
after total evaporation, is a thermal bath in flat space-time [9]. As long as the black-hole is still there, the
thermality of the radiation is justified by the presence of a causally disconnected region. The outgoing
flux is entangled with the degrees of freedom of the interior region over which an exterior observer
must trace out. Because of this unknown information the state of the system appears as thermal to this
observer (as discussed in Chapter 4). Hence, the inconsistency lies in the thermality of the final state
which suggest an irreversible process which is not authorized by the unitarity of quantum mechanics.
The back-reaction phenomenon may reveal, at higher-orders, correlations of the outgoing flux not only
to the interior matter but also with the degrees of freedom of quantized space-time.
1The reasoning here adopted follows closely the results obtained by C. Mora and Y. Castin for a static quasicon-densate [89] and generalizes it to a flowing quasicondensate. The present work is indebted to some preliminarynotes by A. Fabbri (University of Valencia) and R. Balbinot (University of Bologna) on the previous paper by C. Moraand Y. Castin.2The back-reaction source term is hard to compute in the gravitational framework. For an account of the gravita-tional backreaction phenonmenon and for a derivation of a 2D, i.e. (1+1), backreaction see [82].
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According to the previous remarks, it is then sound to consider, for future inquiries, the analog hy-
drodynamic setups as valuable systems to test possible models beyond classical general relativity and
suggest how quantum gravity effects could be incorporated in a gravitational framework [9]. The back-
reaction phenomenon we consider in this work may be regarded then as part of such an attempt.

5.2 . THE BACK-REACTION EQUATIONS

In this section we derive the back-reaction equations by expanding, in the Gross-Pitaevskii equation,
the field operator Ψ̂(x, t) to second order in the density-phase representation (5.6).

5.2.1 . From the Lagrangian to the Gross-Pitaevskii quantum field equation
Let us first define an hermitian Lagrangian density L (Ψ̂, ∂µΨ̂, Ψ̂

†, ∂µΨ̂
†) with µ = t,x and x =

(x, y, z)T for a non-hermitian bosonic field operator Ψ̂(t,x) as
L =

iℏ
2

(
Ψ̂†∂tΨ̂− (∂tΨ̂

†)Ψ̂
)
− ℏ2

2m
(∇Ψ̂†).(∇Ψ̂)− V Ψ̂†Ψ̂− g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂ (5.1)

with V an external potential and g a repulsion coefficient that can be both taken as functions of t and x

in the most general case3. The Lagrangian is then defined as
L =

∫
dxL (5.2)

The two equations of motion for the bosonic field operator and its hermitian conjugate are then given
by

∂µ
δL

δ∂µΨ̂
− δL

δΨ̂
= 0

∂µ
δL

δ∂µΨ̂†
− δL

δΨ̂†
= 0

(5.3)

with implicit summation on repeated indices, i.e. Einstein’s convention 4. The second relation yields the
evolution equation for the field operator

iℏ∂tΨ̂ =

[
− ℏ2

2m
∇2 + V + gΨ̂†Ψ̂

]
Ψ̂ (5.4)

and the first one gives its hermitian conjugate5 :
−iℏ∂tΨ̂† = Ψ̂†

[
− ℏ2

2m
∇2 + V + gΨ̂†Ψ̂

]
(5.5)

Equation (5.4) is the Gross-Pitaevskii field equation.
3In the previous relation we have dropped the time and spatial dependence of the operator for convenience. Wewill do so every time this doesn’t lead to confusion. For the same reason we have dropped the possible time andspatial dependence of V (t,x) and g(t,x) since them varying or being constant doesn’t modify the equations ofmotion that we will obtain in the following.4We also recall that ∂µ = (∂t, ∂i)

T with i = x, y, z. Therefore
∂µ

δ

δ∂µ .
= ∂t

δ

δ∂t .
+
∑
i

∂i
δ

δ∂i .

Furthermore for any field (operator) ϕ(x, t) we recall that
δϕ(x, t)

δϕ(x′, t)
= δ(x− x′)

5The equation is written with the spatial derivatives acting on the left.
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5.2.2 . Bosonic commutation relations in the density-phase representation
We now define the bosonic field operator in the density-phase representation as

Ψ̂(t,x) = ei(θ(t,x)+δθ̂(t,x))
√
ρ(t,x) + δρ̂(t,x) (5.6)

by introducing a classical contribution, i.e. the phase θ(t,x) and the density ρ(t,x), and a quantum cor-
rection, i.e. the hermitian phase operator δθ̂(t,x) and the hermitian density operator δρ̂(t,x) respectively
for phase and density fluctuations. This definition yields

Ψ̂†(t,x)Ψ̂(t,x) = ρ(t,x) + δρ̂(t,x) (5.7)
Since the field operator Ψ̂ is a bosonic operator it obeys the bosonic equal time commutation relations

[
Ψ̂(t,x), Ψ̂†(t,x′)

]
= δ(x− x′)[

Ψ̂(t,x), Ψ̂(t,x′)
]
=
[
Ψ̂†(t,x), Ψ̂†(t,x′)

]
= 0

(5.8)

If we consider the expansion up to second order in δρ̂ and δθ̂ of Ψ̂ or equivalently the one for Φ̂ = e−iθΨ̂

given in relation (5.17), one can check that for x = x′ : the order zero terms give Ψ̂†Ψ̂ = ρ and Ψ̂Ψ̂† = ρ,
hence [Ψ̂, Ψ̂†] = 0 ; the first order terms give Ψ̂†Ψ̂ = δρ̂ and Ψ̂Ψ̂† = δρ̂, hence [Ψ̂, Ψ̂†] = 0 ; the second
order terms give Ψ̂†Ψ̂ = 0 and Ψ̂Ψ̂† = −i[δρ̂, δθ̂], hence [Ψ̂, Ψ̂†] = −i[δρ̂, δθ̂]. It can be checked that the
third order terms give Ψ̂†Ψ̂ = 0 and Ψ̂Ψ̂† = 0, hence [Ψ̂, Ψ̂†] = 0. Therefore one sees that (5.7) is indeed
verified up to third order as it should be up to all orders since it is an exact relation.
Furthermore, repeating the very same reasoning for x ̸= x′, one can check that the zeroth and first order
terms in the commutators given in (5.8) add up to zero. But in order for the three commutator relations
in (5.8) to be verified at second order as they should be, one can prove after some algebra that δρ̂(t,x)
and δθ̂(t,x)must obey the following commutation relations :

[
δρ̂(t,x), δθ̂(t,x′)

]
= iδ(x− x′)

[δρ̂(t,x), δρ̂(t,x′)] =
[
δθ̂(t,x), δθ̂(t,x′)

]
= 0

(5.9)

From the commutation relation given in the first relation of (5.9), it can be inferred that δ(x−x′) is here a
second order term : we will have to keep this inmind. Finally, it can also be checked that, with the second
order relations (5.9) holding, the third order terms in all the three commutators for the field operator
given in (5.8) also add up to zero.
In the Lagrangian and in the equations of motion we will need the equal position commutator[

Ψ̂(t,x), Ψ̂†(t,x)
]
= −i

[
δρ̂(t,x), δθ̂(t,x)

]
= δ(0) (5.10)

The quantity δ(0) is ill defined. However, in all the following it will either be involved in expressions in
which it regularizes an ultra-violet divergence or as a (diverging) constant contribution to a term of which
we take the gradient.

Finally, we also define for any (spatial or temporal) variable α and for any operator φ̂ the commutator
[φ̂(..., α, ...), ∂αφ̂(..., α, ...)] through the coincidence limit

[φ̂(..., α, ...), ∂αφ̂(..., α, ...)] = lim
α′→α

∂α′ [φ̂(..., α, ...), φ̂(..., α′, ...)] (5.11)
The same definition applies to the anticommutator {φ̂(..., α, ...), ∂αφ̂(..., α, ...)}. Therefore, the partial
derivatives appearing in the (anti)commutators we will operate with in the Lagrangian and in our equa-
tions of motions are to be understood as defined in (5.11). This means that δρ̂(t,x) and δθ̂(t,x) commute
respectively with their own spatial derivatives ∇δρ̂(t,x) and ∇δθ̂(t,x) since the coincidence limit (5.11)
applied to the equal time commutation relations in the second line of (5.9) gives zero.
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5.2.3 . Second-order expansion of the field operator in the Gross-Pitaevskii equation
Let us start directly from the Gross-Pitaevskii equation (5.4) for the field operator Ψ̂, that is to say :

iℏ∂tΨ̂ =

[
− ℏ2

2m
∇2 + V + gΨ̂†Ψ̂

]
Ψ̂ (5.12)

Shifting the phase of the field operator we define
Φ̂(t,x) = e−iθ(t,x)Ψ̂(t,x) (5.13)

Then, substituting Ψ̂(t,x) with eiθ(t,x)Φ̂(t,x) in (5.12) and defininig
v =

ℏ
m
∇θ

µ = −ℏ∂tθ
(5.14)

with v the velocity and µ the chemical potential, we can restate equation (5.12) as
iℏ∂tΦ̂ =

[
− ℏ2

2m
∇2 − iℏv.∇+

mv2

2
− iℏ

(∇.v)
2

+ V + gΦ̂†Φ̂− µ

]
Φ̂ (5.15)

Taking the hermitian conjugate of the Gross-Pitaevskii equation for the field, that is to say equation (5.5),
yields the hermitian conjugate of the previous equation6 :

−iℏ∂tΦ̂† = Φ̂†
[
− ℏ2

2m
∇2 + iℏv.∇+

mv2

2
+ iℏ

(∇.v)
2

+ V + gΦ̂†Φ̂− µ

]
(5.16)

Now we expand the field operator Φ̂ up to second order :
Φ̂ ≈ √

ρ+
δρ̂

2
√
ρ
+ i

√
ρδθ̂ − δρ̂2

8ρ3/2
−

√
ρδθ̂2

2
+ i

δθ̂δρ̂

2
√
ρ

(5.17)
Subtracting or adding to equation (5.15) its hermitian conjugate (5.16) one gets two equations. In order
to state these equations in a concise way let us define

L̂GP = − ℏ2

2m
∇2 +

mv2

2
+ V + gρ− µ

L̂t = ∂t + (∇.v) + v.∇
(5.18)

After some algebra, taking all the terms to the left-hand-side of equations (5.15) and (5.16), up to second
order the first equation of motion (obtained by adding (5.15) and its hermitian conjugate (5.16)) is given
by :

−2L̂GP
√
ρ− 2

√
ρℏ
(
L̂t − (∇.v)

)
δθ̂ −

(
L̂GP + 2gρ

) δρ̂√
ρ
− ℏ√

ρ
(L̂tρ)δθ̂

− ℏ
2
√
ρ
L̂t{δρ̂, δθ̂}+ L̂GP

√
ρδθ̂2 + i

(
L̂GP − 2gρ

) [δρ̂, δθ̂]

2
√
ρ

+
(
L̂GP − 4gρ

) δρ̂2

4ρ3/2

+
ℏ
2ρ

(L̂tρ)
{δρ̂, δθ̂}
2
√
ρ

= 0

(5.19)

In the same way, taking all the terms to the left-hand-side of equations (5.15) and (5.16), up to second
order the second equation of motion (obtained by subtracting to (5.15) its hermitian conjugate (5.16)) is
given, after multiplication by i, by :

− ℏ√
ρ
L̂tρ−

ℏ√
ρ
L̂tδρ̂+ 2L̂GP

√
ρδθ̂ +

ℏ
2ρ

(L̂tρ)
δρ̂√
ρ

+ ℏ√ρ
(
L̂t − (∇.v)

)
δθ̂2 +

ℏ
4ρ3/2

(
L̂t + (∇.v)

)
δρ̂2 + i

ℏ
2
√
ρ
L̂t[δρ̂, δθ̂] +

(
L̂GP + 2gρ

) {δρ̂, δθ̂}
2
√
ρ

+
ℏ
2ρ

(L̂tρ)

(
√
ρδθ̂2 − 3δρ̂2

4ρ3/2
− i

[δρ̂, δθ̂]

2
√
ρ

)
= 0

(5.20)

6As previously in (5.5), the equation is written with the spatial derivatives acting on the left.
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In these two equations, the first terms are the zeroth order terms, the second to the fourth terms are
the first order terms and the remaining ones the second order terms. Defining ρ0(t,x) and θ0(t,x) asthe solutions of the zeroth order equations and setting

L̂
(0)
GP = − ℏ2

2m
∇2 +

mv0
2

2
+ V + gρ0 − µ0

L̂
(0)
t = ∂t + (∇.v0) + v0.∇

(5.21)

one obtains
L̂
(0)
GP

√
ρ0 = 0 (5.22)

L̂
(0)
t ρ0 = 0 (5.23)

where L̂(0)
GP and L̂(0)

t mean simply that in the definition (5.18) of LGP and Lt, we have set ρ(t,x) to ρ0(t,x)and v(t,x) to v0(t,x) with θ(t,x) set to θ0(t,x) in definitions (5.14). The first equation is just the Gross-
Pitaevskii equation and the second one just the continuity equation. With the zeroth order holding, i.e.
with ρ(t,x) → ρ0(t,x) and θ(t,x) → θ0(t,x) one can define δρ̂0(x, t) and δθ̂0(x, t) as being the solutionsof the first order equations

ℏ
(
L̂
(0)
t − (∇.v0)

)
δθ̂0 = − 1

2
√
ρ0

(
L̂
(0)
GP + 2gρ0

) δρ̂0√
ρ0

(5.24)
ℏL̂(0)

t δρ̂0 = 2
√
ρ0L̂

(0)
GP

√
ρ0δθ̂0 (5.25)

These two equations are just the (first order) Bogoliubov-de Gennes equations in the density-phase rep-
resentation. Even if δρ̂0(x, t) and δθ̂0(x, t) are first order terms the lower index refers to the fact that they
are determined by equations parametrized with the zeroth order terms ρ0(t,x) and θ0(t,x). Let us knowunderstand how equations (5.19) and (5.20) can be turned into back-reaction equations and explain how
the presence of second order terms is crucial to the back-reaction dynamics.

5.2.4 . The two Back-Reaction equations
The back-reaction problematics can be summed up in these terms : how do the quantum fluctua-

tions, generated by the presence of an acoustic horizon in the condensate, act (or more precisely back-
react) upon the configuration of the condensate that has generated them ?
In order to obtain the back-reaction equations from equations (5.19) and (5.20), one expands in these
equations ρ(x, t) and θ(x, t) respectively as

ρ(x, t) → ρ0(x, t) + ρBR(x, t)

θ(x, t) → θ0(x, t) + θBR(x, t)
(5.26)

with ρ0(x, t) and θ0(x, t) solutions of the zeroth order equations, i.e. of the Gross-Pitaevskii equation
(5.22) and the continuity equation (5.23). This implies expanding L̂GP and L̂t given in (5.18)7 as

L̂GP = L̂
(0)
GP +mv0.vBR + gρBR + ℏ∂tθBR

L̂t = L̂
(0)
t + (∇.vBR) + vBR.∇

(5.27)

The terms ρBR(x, t) and θBR(x, t) are small fluctuations terms (of second order as we will see) that
encode the back-reaction dynamics. More precisely, ρBR(x, t) and θBR(x, t) are to be considered as
average fluctuations, respectively in the density and phase of the condensate, generated by the quantum
fluctuations arising due to the presence of the acoustic horizon. Furthermore, in order to turn (5.19) and
(5.20) into back-reaction equations, the quantum fluctuations in the density δρ̂(x, t) and in the phase
δθ̂(x, t)must be defined as determined as first order solutions of the Bogoliubov-de Gennes equations
7Definition (5.14) must not be forgotten.
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parametrized by the zeroth order terms ρ0(x, t) and θ0(x, t), as it has just been described at the end
of section (5.2.3). Therefore all the δρ̂(x, t) and δθ̂(x, t) appearing in equations (5.19) and (5.20) will be
denoted respectively as δρ̂0(x, t) and δθ̂0(x, t), keeping in mind that they are first order terms, the lower
index referring at them being solutions of first order equations parametrized by ρ0(x, t) and θ0(x, t).The back reaction equations are then given by averaging equations (5.19) and (5.20) over the system
state. This amounts to adding or subtracting the two averaged equations of motion (5.3) for the bosonic
operator and its hermitian conjugate, that is to say to take the average of equations (5.16) + (5.15) and
(5.16) − (5.15) after performing the second order expansion (5.17) of the field Φ̂ defined in (5.13), i.e.〈

∂µ
δL

δ∂µΨ̂†
− δL

δΨ̂†

〉
+

〈
∂µ

δL

δ∂µΨ̂
− δL

δΨ̂

〉
= 0〈

∂µ
δL

δ∂µΨ̂†
− δL

δΨ̂†

〉
−
〈
∂µ

δL

δ∂µΨ̂
− δL

δΨ̂

〉
= 0

(5.28)

When taking the average of equations (5.19) and (5.20) one has ⟨δρ̂0(t,x)⟩ = ⟨δθ̂0(t,x)⟩ = 0 and therefore
all the first order terms disappear from our equations. This is why one needs second order terms to
describe the back-reaction dynamics. Furthermore since ρBR(x, t) and θBR(x, t) are determined by the
mean values of second order quantum fluctuation terms they are also second order terms. Since one
wants to keep the equations at second order, when multiplying second order (and even first order)
quantum fluctuation terms ρ → ρ0 + ρBR and θ → θ0 + θBR must necessarily reduce to ρ0 and θ0respectively.

The details of the computations can be found in Appendix B.1. After some algebra, the first back-
reaction equation reads

ℏ∂tθBR +mv0.vBR +
ℏ
2ρ0

(∂t + (∇.v0) + v0.∇)Re⟨δρ̂0δθ̂0⟩

+gρ0

(
ρBR

ρ0
+

⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0

)
− ℏ2

4mρ0
∇
(
ρ0∇

(
ρBR

ρ0
−
(⟨δρ̂20⟩

4ρ20
+ ⟨δθ̂20⟩ −

δ(0)

2ρ0

)))
= 0

(5.29)

where we have written ⟨{δρ̂0, δθ̂0}⟩ = 2Re⟨δρ̂0δθ̂0⟩ and ⟨[δρ̂0, δθ̂0]⟩ = ⟨iδ(0)⟩ = iδ(0). Dividing this equa-
tion by m, one can introduce the coefficients c(t,x)ξ(t,x) = ℏ/m and c2(t,x) = g(t,x)ρ0(t,x)/m with c
the velocity of sound in the fluid and ξ the healing length. On the other hand, the second back-reaction
equation reads

∂tρBR +∇
(
ρBRv0 + ρ0vBR + Re⟨δρ̂0δv̂0⟩

)
= 0 (5.30)

where we have written ⟨{δρ̂0,∇δθ̂0}⟩ = 2Re⟨δρ̂0∇δθ̂0⟩ and δv̂0 = (ℏ/m)∇δθ̂0. These two equations
correspond to the two equations (B.14) and (B.15) obtained at the end of Appendix B.1. The expression
of the source terms is given in Appendix (B.2).

5.3 . STATIONARY 1D BACK-REACTION EQUATIONS

This section presents the stationary version of the back-reaction equations (5.29) and (5.30). The idea
is to look, as often done in the Gross-Pitaevskii approach, for a stationary flow solution in the presence
of a sonic horizon. The results presented in this section are preliminary in the sense that they do not
provide a full solution of the exact equations (5.41) obtained below. We only consider the stationarymod-
ifications of the asymptotic flows (away from the horizon). Several tracks are investigated and discussed,
corresponding in particular to different possible choices of boundary conditions.

5.3.1 . Stationary equations
We consider (see Chapter 3) a stationary solution of the Gross-Pitaevskii equation for a 1-D quasi-

consensate. In this configuration, it is sound to look for solutions of the back-reaction equations that be
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stationary as well, since back-reaction is expected to be there. This approach appears to be a better one
with respect to one where the time evolution of the solutions whould be "switched on" at some arbitrary
time t0.

In order to find such stationary solutions let us first remark that all the source terms, i.e. the quantum
average terms, are time-independent when a stationary zeroth order solution to the Gross-Pitaevskii
equation is considered. Secondly, it can be shown, just by applying (B.19), that in the first back-reaction
equation

⟨δρ̂20⟩
4ρ20

+ ⟨δθ̂20⟩ −
δ(0)

2ρ0
=

1

2

[⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0

]
+

[
⟨δθ̂20⟩ −

δ(0)

4ρ0

]
=

⟨δΨ̂†δΨ̂⟩
ρ0

(5.31)
with ⟨δΨ̂†(x, t)δΨ̂(x, t)⟩ the depletion of the condensate. Then, defining

g(2)

2
=

⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0

C∞ = ⟨δθ̂20⟩ −
δ(0)

4ρ0

(5.32)

with8
g(2)(x) =

⟨ : n̂(x, t)n̂(x, t) : ⟩ − ⟨n̂(x, t)⟩⟨n̂(x, t)⟩
ρ20(x)

(5.33)
it can be shown [175] thatC∞ is a diverging term in ω but that this divergence in energy is x-independent.
Hence

∂xC∞ = 0 (5.34)
We then look for solutions of the 1-D back-reaction equations (5.29) and (5.30) with

∂tρBR = 0 ∂tvBR = 0 (5.35)
Recalling from (5.14) the definition of the chemical potential

µ = −ℏ∂tθ ⇒ µ = µ0 + µBR = −ℏ∂tθ0 − ℏ∂tθBR (5.36)
and of the velocity

v =
ℏ
m
∂xθ ⇒ v = v0 + vBR =

ℏ
m
∂xθ0 +

ℏ
m
∂xθBR (5.37)

it can be seen from the two previous relations (5.36) and (5.37) that
∂xµ = −m∂tv (5.38)

Hence
∂xµBR = −m∂tvBR (5.39)

Therefore if we are looking for a stationary configuration where vBR is time-independent, µBR must be
x-independent, i.e.

∂xµBR =stat. 0 (5.40)
With all the previous considerations inmind, the two 1-D back-reaction equations (5.29) and (5.30) reduce
8The term : . : denotes normal ordering and n̂(x, t) = Ψ̂†(x, t)Ψ̂(x, t). Clearly g(2)(x) is the two-point density-correlation function G(2)(x, x′) = ⟨ : n̂(x, t)n̂(x′, t) : ⟩ − ⟨n̂(x, t)⟩⟨n̂(x′, t)⟩ computed in x = x′ and divided by
ρ20(x).
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to the stationary relations
µBR = mv0vBR + gρBR − ℏ2

4mρ0
∂2xρBR

+
ℏ2(∂xρ0)
4mρ20

∂xρBR +
ℏ2(∂2xρ0)
4mρ20

ρBR − ℏ2(∂xρ0)2

4mρ30
ρBR

+
ℏ(∂xv0)
2ρ0

Re⟨δρ̂0δθ̂0⟩+
ℏv0
2ρ0

∂xRe⟨δρ̂0δθ̂0⟩+ gρ0
g(2)

2
+

ℏ2(∂xρ0)
8mρ0

∂x
g(2)

2
+

ℏ2

8m
∂2x
g(2)

2

JBR = ρBRv0 + ρ0vBR + Re⟨δρ̂0δv̂0⟩

(5.41)

with µBR and JBR being the second-order corrections to the chemical potential and to the current re-
spectively : they are here both constant in space and time. The second equation of (5.41) can be inverted
to obtain a definition of vBR, i.e.

ρ0vBR = JBR − ρBRv0 − Re⟨δρ̂0δv̂0⟩ (5.42)
which can be used in the first equation of (5.41) in order to obtain an equation for ρBR, i.e.(

gρ0 −mv20
)
ρBR − ℏ2

4m
∂2xρBR +

ℏ2(∂x)
4mρ20

∂xρBR +
ℏ2(∂2xρ0)
4mρ0

ρBR − ℏ2(∂xρ0)2

4mρ20
ρBR = S(x) (5.43)

with S(x) the source term given by
S(x) = ρ0µBR −mv0JBR +mv0Re⟨δρ̂0δv̂0⟩

− ℏ(∂xv0)
2

Re⟨δρ̂0δθ̂0⟩ −
ℏv0
2
∂xRe⟨δρ̂0δθ̂0⟩ − gρ20

g(2)

2
− ℏ2(∂xρ0)

8m
∂x
g(2)

2
− ℏ2

8m
ρ0∂

2
x

g(2)

2

(5.44)

5.3.2 . Homogeneous and stationary condensate
If one takes v0(x) = 0 and ρ0(x) = cst, thenRe⟨δρ̂0δv̂0⟩ = 0 and g(2) = −2/(πρ0ξ0)where ℏ2/(mξ20) =

gρ0. In this case the solutions of the back reaction equations (5.41) are, vBR = 0 = JBR and
ρBR =

µBR

g
+

1

πξ0
(5.45)

One can choose either to fix ρBR = 0 or µBR = 0. At the order of approximation we consider, this
yields the same expression for the speed of sound. Let’s first impose ρBR = 0. Then (5.45) yields µ =

µ0 + µBR = gρ0 − g/(πξ0). Since now ρ0 = ρ, one obtains
µ = gρ− g

√
gm

πℏ
√
ρ (5.46)

From the thermodynamic relationmc2(T = 0) = ρ(∂µ(T = 0)/∂ρ) one gets
c =

1

m

√
gρ− g

2πξ
(5.47)

Formula (5.47) defines the expression of the speed of sound in terms of the density. It has been derived
imposing ρBR = 0, but it can be reasonably taken to be valid for any ρ, with ξ = ξ0 + ξBR taken to be
ξ0 for an expression linear in the back-reaction terms9, since the same expression is obtained by taking
µBR = 010. Indeed, when we will use (5.47) below, the total density will be of the form ρ = ρ0 + ρBRwith ρBR ≪ ρ0 and the term g/(2πξ0) will also be small. It will thus be legitimate to make in (5.47) the
approximation

c ≃ 1

m

√
g(ρ0 + ρBR)− g/(2πξ0) ≃ c0

[
1 +

ρBR

2ρ0
− 1

4πρ0ξ0

]
(5.48)

9The term 1/πξ0 is already a back-reaction term.10Taking µBR = 0 implies µ = µ0 = gρ0 = g(ρ− ρBR) = gρ− g
√
mµ/(πℏ) since now ρBR = 1/(πξ0) =

√
mµ/(πℏ).One has therefore [

1 +
g
√
m

2πℏ√µ

]
dµ = gdρ

Since g√m/(2πℏ√µ) = 1/(2πρ0ξ0) one then obtains, for an expression linear in the back-reaction terms, exactly(5.47).
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5.3.3 . Asymptotic stationary 1-D solutions to the back-reaction equations
In the two asymptotic upstream (x → −∞) and downstream (x → +∞) regions, i.e. α = u or α = d

respectively, setting Aα = A(x→ ±∞) for any quantity A, the stationary equations (5.43) and (5.42) for
ρBR and vBR become

4m2

ℏ2
(
c2α − v2α

)
ρBR − ∂2xρBR =

4m

ℏ2
Sα

nαvBR = JBR − ρBRvα − Re⟨δρ̂0δv̂0⟩α
(5.49)

with the source term being the constant
Sα = nαµBR −mvαJBR +mvαRe⟨δρ̂0δv̂0⟩α − gαn

2
α

g
(2)
α

2
(5.50)

We recall that µBR and JBR are constant in a stationary configuration. Then, defining
κα =

2m

ℏ
|c2α − v2α|1/2 (5.51)

and recalling that cu > vu and cd < vd, one obtains for the first equation in (5.49) :

κ2u ρBR − ∂2xρBR =
4m

ℏ2
Su ifx→ −∞

−κ2d ρBR − ∂2xρBR =
4m

ℏ2
Sd ifx→ +∞

(5.52)

The previous equations give straightforwardly the two solutions

ρBR =


4m

ℏ2κ2u
Su +Aue

κux if x→ −∞

− 4m

ℏ2κ2d
Sd +Ad sin(kdx+ δ) if x→ +∞

(5.53)

5.3.4 . Constant asymptotic solutions
In all the following, for simplicity we ignore the x dependence in the above formula and assume that

in both asymptotic regions
ρBR(x) → ραBR =

Sα
m(c2α − v2α)

(5.54)
This is clearly an uncontrolled assumption, but it is also clear that it will give sensible orders ofmagnitude.

The following procedure then naturally arises: one chooses for instance to impose ρuBR = 0 = vuBR
11,

then the second of Eqs. (5.49) fixes JBR and (5.54) fixes Su = 0 and thus µBR (through Eq. (5.50)).
Explicitly:

JBR = Re⟨δρ̂0δv̂0⟩u µBR = mc2u
g
(2)
u

2
(5.55)

Equation (5.54) for α = d and Eq. (5.50) then yield
(c2d − v2d)ρ

d
BR =

Sd
m

= vd (Re⟨δρ̂0δv̂0⟩d − Re⟨δρ̂0δv̂0⟩u) + 1
2nd(c

2
ug

(2)
u − c2dg

(2)
d ), (5.56)

and the second of Eqs. (5.49) yields
vdBR

vd
=

Re⟨δρ̂0δv̂0⟩u
nuvu

− Re⟨δρ̂0δv̂0⟩d
ndvd

− ρdBR

nd
(5.57)

11One could equally well impose ρdBR = 0 = vdBR, and indeed the results for this choice of boundary condition willalso be presented.
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Expressions (5.56) and (5.57) unambiguously determine ρdBR and vdBR. The last quantities we need to
evaluate are the new asymptotic velocities of sound. Eq. (5.48) yields here12

cαBR

cα
=
ραBR

2nα
− 1

4πnαξα
(5.58)

In the far upstream region (α = u), this quantity should be evaluatedwith ρuBR = 0. In the far downstream
region instead, one should use the value of ρdBR given by expression (5.56). Eventually the new Mach
number are

vα + vαBR

cα + cαBR

= mα +mα
BR with mα

BR = mα

(
vαBR

vα
− cαBR

cα

)
(5.59)

For instance, our prescription (ρuBR = 0 = vuBR) yieldsmu
BR/mu = 1/4πnuξu. Fig. 5.1 presents the resultsof the quantitiesmα

BR/mα for waterfall configurations withmu ranging from 0 to 1. Instead of imposing
ρuBR = 0 = vuBR onemay impose equivalent conditions downstream: ρdBR = 0 = vdBR. The correspondingresults are also displayed in Fig. 5.1.

5.3.5 . Practical implementation
To evaluate ρdBR and vdBR at best it is appropriate to introduce dimensionless variables by writing:

g(2)α =
1

nαξα

(
− 2

π
+ G(H)

α

) Re⟨δρ̂0δv̂0⟩α
nαvα

=
1

nαξα
J (H)
α . (5.60)

The dimensionless quantities G(H)
α andJ (H)

α originate fromHawking radiation. Their explicit expressions
are

G(H)
u =

∫ Ωu

0

dεu
π

|S02|2N(−Q0|out,mu), (5.61)

G(H)
d =

∫ Ωd

0

dεd
π

{
|S12|2N(Q1|out,−md)− (|S22|2 − 1)N(Q2|out,md)

}
, (5.62)

where the Qℓ are the dimensionless wave vectors, εα = ℏω/(mc2α), Ωα = ℏΩmax/(mc
2
α) and

N(Q,mα) =
Q/2

1 +Q2/2−mα

√
1 +Q2/4

. (5.63)
As for the currents:

J (H)
u =

1

mu

∫ Ωu

0

dεu
π

|S02|2T (−Q0|out,mu), (5.64)

J (H)
d =

1

md

∫ Ωd

0

dεd
π

{
|S12|2T (Q1|out,−md) + (|S22|2 − 1)T (Q2|out,md)

}
, (5.65)

where
T (Q,mα) =

Q/2
1+Q2/2√
1+Q2/4

−mα

. (5.66)

Eqs. (5.56) and (5.57) can be adimensionalized by the use of the quantities G(H)
α and J (H)

α and then
read

(1−m2
d)ndξd

ρdBR

ρd
= m2

d

(
J (H)
d − cd

cu
J (H)
u

)
+

1

2

cu
cd

(
− 2

π
+ G(H)

u

)
+

1

2

(
2

π
− G(H)

u

)
, (5.67)

(wheremd = vd/cd is the asymptotic downstream Mach number) and
ndξd

vdBR

vd
=
cd
cu

J (H)
u − J (H)

d − ndξd
ρdBR

nd
. (5.68)

12In order to comply with the convention used everywhere in the present manuscript we denote as nα the asymp-totic value of ρ0(x), with α = u or d when x→ ±∞.
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Figure 5.1: Modification of the asymptotic Mach numbers induced by the back-reaction effects. We con-sider here all possible waterfall configurations, a given configuration being specified by a given value of
mu, see Sec. 3.1.4. As explained in the text we plot the quantities nαξαmα

BR/mα for α = u (blue solid line)and α = d (red solid line). The dashed line is obtained by removing the Hawking contribution and onlyaccounts for the departure of the expression of the sound velocity from the Gross-Pitaevskii result (3.7).The left plot displays the results corresponding to the boundary conditions ρuBR = 0 = vuBR, the rightone to the boundary conditions ρdBR = 0 = vdBR.

Expressions (5.68) and (5.67) are then inserted in (5.58) and (5.59) to compute the modification of the
asymptotic Mach numbers induced by the back-reaction effects.

A remark is in order here. In the above expressions (5.68) and (5.67) one needs to use an experi-
mental input : the value of the experimental parameter nuξu. Once this parameter is known, the equiv-
alent downstream quantity ndξd = nuξucd/cu is unambiguously fixed by the value of the ratio cd/cucorresponding to the configuration we consider (flat profile, waterfall or delta peak). A realistic choice is
nuξu = 70, which corresponds to the value in Steinhauer’s experiment [34]. In order to present results
relevant to possibly different experimental setups we plot in Fig. 5.1 the quantities nαξαmα

BR/mα for
α = u and α = d.

In Figure 5.1 we present two plots, corresponding to two different boundary conditions. The left plot
is obtained by imposing ρuBR = 0 = vuBR, meaning that the density and velocity of the upstream flow are
considered as fixed by the experimental setup. Back reaction effects thenmodify the downstreamprofile
and velocity compared to the values predicted by the (zeroth order) Gross-Pitaevskii equation. This, in
turn, induces a modification of the downstream Mach number by an amount md

BR, represented with ablue solid line in the figure. Note that the upstream Mach number is also modified in this case. Not by
the back reaction effect, but by the fact that the sound velocity is not exactly given by the Gross-Pitaevskii
formula (3.7), but rather by expression (5.47). In this case one simply getsmu

BR/mu = 1/(4πnuξu) whichcorresponds to the horizontal red line in the left plot of Fig. 5.1. In order to separate, in the modification
of the downstreamMach number, what is due to the Hawking effect fromwhat is due to themodification
of the speed of sound with respect to the Gross-Pitaevskii result (3.7), we plot as a dashed blue line, the
results obtained if all the Hawking terms are set equal to zero: G(H)

α = 0 = J (H)
α for α = u and d in Eqs.

(5.67) and (5.68).
The right plot in Figure 5.1 displays the results corresponding to boundary conditions where the

downstream density and velocity are considered as fixed: ρdBR = 0 = vdBR. The choice of a given set ofboundary conditions (fixed upstream asymptotic flow as in the left plot or fixed downstream asymptotic
flow as in the right plot) depends on the experimental setup. It appears that Steinhauer’s experiment
corresponds to a given asymptotic downstream flow, i.e., to the right plot in Figure 5.1. In this plot the
back reaction effects appear more significant than in the left one. As demonstrated by the order of mag-
nitude fixed by the results obtained by artificially killing the Hawking radiation (dashed lines) this effect
is simply associated to the dependence of the asymptotic flow on the conditions imposed in the other
side (which is larger in the right plot than in the left one). In the experimentally relevant situation of
the right plot, the back-reaction effect appears to decrease the difference between the upstream and
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downstream Mach numbers with respect to the value it would have according to the Gross-Pitaevskii
approach. We expect that this will be associated to a decrease intensity of the Hawking signal, indeed
corresponding to a tendency of the system to relax, the back-reaction profile being asymptotically closer
to relaxation than the Gross-Pitaevskii one. However, the right plot displays configurations with an op-
posite tendency. It could be interesting to propose experimental setups corresponding to this type of
boundary condition and to check if, indeed, instead of relaxing, the system would initially move to a
more out-of-equilibrium configuration. However, it is important to note that the intensity of the Hawk-
ing signal is not really determined by the difference between the asymptotic downstream and upstream
flows, contrarely to what is naively assumed in the few above lines. The intensity of the Hawking signal is
determined by the surface gravity. A track more secure than the simple analysis of the asymptotic flows
just presented would be to solve the stationary equations (5.41) not only in the asymptotic regions, but
in the whole space. This would enable to evaluate the shift in position of the horizon with respect to the
Gross-Pitaevskii prediction and, from Eqs. (2.105) and (2.106) , to determine the associated new (analog)
surface gravity and Hawking temperature.
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6 - TOPOLOGICALCONSTRAINTS IN2-DQUANTUMTURBULENCE

In this chapter, I will present some preliminary results of a combined experimental and theoretical
investigation of the kinetics of vortices in two-dimensional, compressible quantum turbulence1. We fol-
low the temporal evolution of a quantum fluid of exciton–polaritons, hybrid light–matter quasiparticles,
and measure both phase and modulus of the order parameter in the turbulent regime.

In this work we explore the link between dynamical and topological properties in two-dimensional
quantum turbulence. We propose to investigate the temporal properties of the quantum fluid velocity
field by a novel strategy. The idea was to devise a minimal model for the quantum flow which complies
with global topological constraints, without requiring local knowledge of the spatial dynamics of the
system. To achieve this, we derive kinetic equations of formation and annihilation of critical points of
the velocity field, and apply the approach to a non-equilibrium exciton-polariton fluid. We show that we
can reproduce the experimentally observed rate of creation and annihilation of quantized vortices, thus
identifying the elementary mechanisms responsible for the increase in the number of vortices – during
the quantum turbulence growth – and for its reduction – during the quantum turbulence decay.

Indeed, fundamental topological constraints require that the formation and annihilation of vortices
be guided by dynamical transitions involving velocity field critical points, namely nodes and saddles. Iden-
tifying the simplest mechanisms underlying these processes enables us to develop an effective kinetic
model that closely alignswith the experimental observations, and show that two different dynamical pro-
cesses are responsible for vortex number growth and decay. These findings underscore the crucial role
played by topological conservation laws in shaping nonlinear, turbulent evolution of two-dimensional
quantum fluids.

6.1 . QUANTUM HYDRODYNAMICS

A BEC is described by the non-linear Schrödinger equation (NLSE) or Gross-Piatevskii equation for
the complex scalar field ψ(r⃗, t), also known as the order parameter of the BEC. This equation reads

iℏ∂tψ = − ℏ2

2m
∇2ψ + Uψ + g|ψ|2ψ (6.1)

with U(r⃗, t) an external potential and g(r⃗, t) the interaction parameter. The order parameter can be
written in the density-phase representation

ψ(r⃗, t) =
√
ρ(r⃗, t) exp (i S(r⃗, t)) (6.2)

and accordingly the NLSE can be recast to the system of hydrodynamical equations
∂tρ+∇.(ρv⃗) = 0

ℏ∂tS = − ℏ2
2m(∇S)2 − ℏ2

2m
∇2√ρ√

ρ − gρ− U

(6.3)

where
v⃗(r⃗, t) =

ℏ
m
∇S(r⃗, t) (6.4)

is the irrotational, i.e. ∇ × v⃗ = 0, velocity of the condensate2. This is called the Madelung transforma-
tion3. In the NLSE equation (6.1) describing the hydrodynamics of quantum fluids, the term g|ψ|2 can
1The experimental data has been provided by Riccardo Panico. The experiment was conducted, under the super-vision of Dario Ballarini, at the Advanced Photonic Lab of the Institute of Nanotechnology (Lecce, IT). AlessandraLanotte and Giovanni Martone of the same Institute of Nanotechnology as well as Thibault Congy of the Northum-bria University also collaborated to the preliminary results presented here.
2The definition of v⃗ comes from the definition of the current J⃗ = (ℏ/m)Im(ψ∗∇ψ) = ρv⃗ with v⃗ defined as in (6.4).3We already used this transformation when presenting Analog models in Chapter 2 and when deriving the back-reaction equations in Chapter 5. Indeed, equations (6.3) are the 3D version of the 1D equations (2.32).
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be replaced by a more generic term gf(ρ) describing non-linearities more complicated than |ψ|2, with f
a possibly complex function accounting for non-linear losses4, whereas a complex potential U can ac-
count for linear losses such as absorption. This is the case in the non-equilibrium BEC of polaritons we
consider in the following.

6.2 . VORTICITY IN 2D QUANTUM FLUIDS

6.2.1 . 2D Turbulence
In 3D turbulence, the energy dissipates to ever smaller scales. This is not the case in two dimensional

systems. Denoting as v⃗ the velocity field and ω = (∇⃗ × v⃗ ) · e⃗z the vorticity, the kinetic energy E and
enstrophy Ω of an incompressible fluid are

E =
ρ

2

∫
d2r v2 Ω =

1

2

∫
d2r ω2 (6.5)

where ρ is the fluid’s density. In the absence of external forcing, finite viscosity results in the dissipation
of E and Ω in a two-dimensional fluid according to the laws (see, e.g., Ref. [70])

dE

dt
= −2νρΩ (6.6a)

dΩ

dt
= −2ν

∫
d2r |∇⃗ω|2 (6.6b)

where ν is the viscosity. Eq. (6.6b) shows that enstrophy can only decrease and is thus bounded from
above. Eq. (6.6a) then implies that dE/dt→ 0 in the limit ν → 0. This is the main difference with respect
to 3D turbulence in which Ω can be amplified by vortex stretching, resulting in finite energy dissipa-
tion even in the limit of vanishing viscosity5. In 2D turbulence energy is not dissipated, it is dynamically
transferred to large scales by an inverse cascade. Kraichnan [176] proposed an interpretation of the
phenomenon according to which the inverse energy cascade is associated with the growth of patches of
vorticity due to vortex merging and pushing energy toward larger length scales6.

A scenario of this type was put forward by Onsager [47] who applied statistical mechanics to amodel
of point-like vortices relevant to quantum fluids: in a closed system vortices of the same vorticity tend to
aggregate in clusters, forming a negative temperature equilibrium state that comprisesmore energy but
less entropy as compared to a configuration of randomly distributed vortices7. Quantum vortex cluster-
ing and inverse energy cascade were indeed observed recently in two-dimensional atomic BECs [75, 76]
and polariton condensates [79] demonstrating that classical and quantum two-dimensional turbulence
bare important similarities. Nonetheless there exists a significant difference between the classical and
quantum realm : quantum vortices carry topological charges and a description of vortex dynamics in a
quantum fluid should account for the conservation of these charges. In the following we argue that a
proper account of topological contraints in a 2D quantum fluid necessitates to consider not only vortices,
but also other critical points such as nodes and saddles.

6.2.2 . Vorticity index IV and Poincaré-Hopf index IP
In the wave-mechanical and quantum context, while the importance of quantization of vorticity has

been understood long ago in the physics of superfluid helium [47, 49], the relevance of another topo-
logical index, known as the Poincaré-Hopf index (see Eq. (6.11) below) has been stressed for stationary
two-dimensional waves only in the 80’s [178].
4This is, for example, relevant in non-linear optics, where one can have a term such as g|ψ|2/(1+|ψ|2/Isat)modelingthe saturation of the non-linearity at high intensity in a non-linear medium.5In 3D the r.h.s. of Eq. (6.6a) does not cancel when ν → 0 (more precisely at high Reynold number).6As opposed to vorticity, vorticity gradients (the r.h.s. termof (6.6b) which is called "palinstrophy") are not boundedin two dimensions, and one expects a direct cascade of enstrophy associated with the stretching of patches ofvorticity.7Note however that the Kraichnan and Onsager scenarii are not exactly identical : clustering (Onsager) is not thesame as merging (Kraichnan). Also, while in the initial Onsager model the number of vortices is conserved, it hasbeen suggested [177] that the formation of high energy clusters is reached through annihilation of low energyvortex-antivortex pairs, a phenomenon which has been dubbed "evaporative heating".
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We consider here a two-dimensional quantum fluid described by a scalar order parameter of the
form ψ(r⃗, t) =

√
ρ(r⃗, t) exp (iS(r⃗, t)). Here the real functions√ρ ≥ 0 and S correspond to the amplitude

and phase of the order parameter, respectively, and r⃗ = (x, y). The fluid’s velocity field v⃗ [49] is defined in
(6.4). In a two-dimensional setting, two topological indices are associated with any domain D delimited
by a closed contour C . The vorticity index IV (C ) associated to the close contour C is defined as the
circulation of the velocity v⃗ along the loop C , i.e.

IV (C ) =
m

2πℏ

∮
C
v⃗.d⃗l =

1

2π

∮
C
(∇S).d⃗l =

∮
C

dS

2π
(6.7)

Defining an angle φ as the polar angle of v⃗, i.e.
cosφ =

v⃗.e⃗x
v

= vx/v sinφ =
v⃗.e⃗y
v

= vy/v (6.8)
the Poincaré-Hopf index reads

IP (C ) =
1

2π

∮
C
(∇φ).d⃗l =

∮
C

dφ

2π
(6.9)

Definition (6.8) for the function φ(vx, vy) implies that
φ = arctan

vy
vx

⇒ dφ =
vxdvy − vydvx

v2x + v2y
(6.10)

Indices IV and IP assume (positive or negative) integer values because they simply relate to the vari-
ation along the close loop C of the phase of the order parameter and of the direction of the velocity,
respectively.

6.2.3 . Critical points and topological constraints to quantum turbulence
In hydrodynamics a critical point is a point where the velocity vanishes, also called a saturation point.

Here, by "critical points", we loosely refer to vortices, saddles and nodes. Theses "points" can be charac-
terized by the respective values of the vorticity index IV and the Poincaré-Hopf index IC , i.e.

IV =
1

2π

∮
C
dS IP =

1

2π

∮
C
dφ (6.11)

defined in the previous section 6.2.2. Both indices are zero if there are no singular nor stagnation point
insideD. Nontrivial topological indices occur when the phase S displays extrema (local maxima or min-
ima), saddles, or essential singularities. The corresponding points are nodes (attractive or repulsive),
saddles, and quantum vortices, respectively (see Fig. 6.1 and Table 6.1). The indices IP and IV associated
to a domainD are the sums of the indices of the critical points contained inD.

node saddle vortex(+) vortex(−)

IP +1 −1 + 1 + 1
IV 0 0 + 1 −1

Table 6.1: Values of the vorticity IV and of the Poincaré-Hopf index IP attached to non-degenerate critical points. Vortices with positive or negative vorticity are denoted as vortex(+)and vortex(−), respectively. The indices IP and IV associated to a domainD are the sums of theindices of the critical points contained in D.
Notably, the presence of nodes is a unique feature of compressible quantumfluids, such as polariton

superfluids. These nodes are indeed observed in our experimental results, and we demonstrate that
they play a crucial role in the onset of turbulence. Furthermore, it can be seen that the determination
of the critical points through the streamlines of the flow requires the measurement of the phase of
the scalar field : such a measurement is possible in the fluid of polaritons here considered. Through
a phenomenological model based on topological charge conservation, our work provides new insights
into the interplay of topology and quantum fluid dynamics, thus underscoring the crucial role played by
topological conservation laws in both the growth and the decay of two dimensional quantum turbulence.
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vortex
IV = ±1, IP = 1

saddle
IV = 0, IP = −1

node
IV = 0, IP = 1

Figure 6.1: Tolopolical characterization of vortices, saddles and nodes with their respective vorticity index
IV and Poincaré-Hopf index IP . The vorticity index IV is the circulation of the velocity field v⃗, i.e. ofthe gradient ∇S of the phase field S, along the contour C , whereas the Poincaré-Hopf index IP is thecirculation of the gradient∇φ of the polar angle ϕ of v⃗ along the contourC . The local velocity streamlines(oriented solid lines) and equiphase lines (thick colored lines) around a vortex, a saddle or a node, arereported. For a given domainD, IV and IP are the sums of the indices of all the critical points containedinD.

6.3 . A PHENOMENOLOGICAL MODEL FOR THE KINEMATICS

In the experiment a new generation of optical techniques that enables a precise measure of both the
intensity and the phase of a light sheet [32,35,36,52–54] was used. This offers the possibility of an accu-
rate and simple location not only of vortices but also of other critical points, such as saddles and nodes.
This enabled us to obtain evidences of several (topologically constrained) mechanisms of formation of
vortices and of associated singular points in the time domain, with an account of the evolution of the
streamlines.

6.3.1 . The physical system
The physical system we examine here is an out-of-equilibrium Bose-Einstein condensate of exci-

ton–polaritons. Exciton-polaritons are hybrid light–matter quasiparticles, resulting from the coupling
of photons and excitons8. The experiment involves injecting a high-energy polariton superfluid, and
allowing it to expand within a circular potential barrier [79].

Indeed, in the experiment, the polariton fluid is injected in a planarmicrocavity where a ring potential
confines the polariton fluid by inducing a local energy blueshift in the polariton resonance. To inject the
polariton fluid into the center of this potential, a pulsed laser (pulse duration of 2 ps) is focused into a
Gaussian spot with a beam waist of approximately 17 µm. The excitation energy is slightly blue-detuned
from the ground state by 1.2 meV in the high-energy case and 0.21 meV ine the low-energy case. It
provides the polaritons with an initial kinetic energy that allows for their rapid expansion within the
potential and subsequent hydrodynamic vortex formation upon collision with the potential barrier. The
time evolution of the polariton fluid is captured through the interference of the signal with a reference
pulse (a sample of the excitation beam) with a variable time delay, enabling the retrieval of both the
amplitude and phase of the fluid (Fig. 6.2). The temporal resolution is of around 1 ps and the spatial
resolution is finer than the estimated healing length of the vortices. For each experimental condition
and time frame, vortices and critical points are identified by computing the circulation around each point
of the two-dimensional phase map and the corresponding velocity field, respectively, and searching for
integermultiples of 2π. Froma simple comparison, one can further distinguishwhich of the critical points
are nodes.

The initial kinetic energy provided to the superfluid induces the creation not only of a dense vortex
gas but also of a large number of saddles and nodes. The co-existence of these three types of points has
8A exciton is a bound state of an electron and an electron hole that attract each other through the Coulomb force.
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Figure 6.2: Measured density (top) and phase (bottom) of the polariton fluid for the high energy case.The dashed red circle represents the position of the confining potential. The time frames, from left toright, correspond to: the initial experimental condition (-20 ps), when the polariton fluid is still mostlylocalized in the center of the potential and has yet to fill all the available space; 15 ps after the suddengrowth in the number of vortices, when the polariton fluid is flowing back after hitting the boundaries;the switching point at around 56 ps, when vortex growth stops and the Bristol mechanism becomesrelevant; and finally, a snapshot near the end of the dynamics at around 80 ps.

been explicitly experimentally demonstrated in linear [179] and nonlinear [180] optics. The optical nature
of polaritons makes it possible to measure both the phase and the modulus of the order parameter by
interferometric techniques [181]. As shown in Fig. 6.3, by analyzing the velocity field, the evolution of
hundreds of critical points can be tracked. In the enlarged region, the experimental phase portrait of
the exciton-polariton fluid clearly reveals three saddles, two nodes, and a negative vortex. This method
allows then to determine, at each time step, the number of vortices, saddles, and nodes present in the
system.

Figure 6.3: A snapshot of the polariton superfluid phase field, with the measured critical points. A zoomhighlights the local flow organization.

6.3.2 . The model
We consider the following main mechanisms of creation (or annihilation) of critical points in the ran-

dom flow field: (i) the nodes-to-vortices conversion in which two nodes coalesce and give birth to two
vortices and (ii) the saddle-node bifurcation which creates one saddle and one node from scratch. These
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two mechanisms conserve the vorticity and the Poincaré index; they correspond to well-identified bifur-
cations whose relevance for a two-dimensional quantum fluid has been validated in Ref. [180]. They can
be schematically written as chemical reactions:

node + node a
⇌
b

vortex(+) + vortex(−) (6.12a)
∅

c
⇌
d

node + saddle (6.12b)
In the above formulae, the (positive) quantities a, b, c, and d are the reaction rates (see Eq. (6.13) below).
Other mechanisms have been observed [180] which also conserve both the vorticity and the Poincaré-
Hopf index: a saddle can transform into two saddles and one node in a pitchfork bifurcation, or also two
vortices and two saddles can appear spontaneously (or coalesce) in what has been termed the “Bristol
mechanism” in Ref. [180]. These reactions have been discarded for simplicity reasons (they involve col-
lisions of a larger number of critical points) and also because much less often observed in a previous
experiment and in numerical simulations [180]9. From the modeling (6.12) we write a kinetic equation
inspired by rate equations of elementary chemical reactions :

dV±
dt

= aN2 − bV+V−
dS

dt
= c− dNS

dN

dt
= −2aN2 + 2bV+V− + c− dNS

(6.13)

whereN(t) denotes the number of nodes, S(t) the number of saddles, and V+(t) [V−(t)] the number of
vortices with positive [negative] vorticity. It results from the values of the topological indices listed in Fig.
6.3 that the total Poincaré-Hopf index of the system is IP = N + V+ + V− − S. It is easily verified that
IP is preserved by the system (6.13) : this comes as no surprise since the elementary processes in (6.12)
conserve the Poincaré-Hopf index. Similarly, the conserved total vorticity of the system is V+ − V−. Inthe following we make the simplifying assumption that this difference is equal to zero: V+(t) = V−(t) =

V (t)/2where V (t) is the total number of vortices. This hypothesis is confirmed by the experimental data
(such as displayed in Fig. 6.4) and is certainly sound in the configuration we consider where typically
V (t) ≫ 1 while no external angular momentum is imparted to the system.

Defining the rescaled quantities τ = t/t0, n = N/N0, v = V/N0, and s = S/N0, with t0 = 1/
√
2ac and

N0 =
√
c/2a, makes it possible to cast the system (6.13) under the following dimensionless form

dv

dτ
= n2 − αv2

ds

dτ
= 1− γns

dn

dτ
= 1− n2 − γns+ αv2 (6.14)

where α = b/(4a) and γ = d/(2a) 10.

9Let us remark that the "Bristol mechanisms" can be obtained from combining the two processes (6.12), with thesecond mechanism counted twice : the Bristol can then be considered as a higher order process.10For completeness, note that in terms of the newparameters, the rates of reaction read a = 1/2N0t0, b = 2α/N0t0,
c = N0/t0, d = γ/N0t0.
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Figure 6.4: (Top) Comparison of the experimental results for N(t), V (t), and S(t) (circles) with the the-oretical predictions (lines). Experimental data are averages of four realisations of the same dynamicalregime. For t ≤ tc, the solid lines have been obtained with the numerical integration of Eqs. (6.14);morevoer, γ = 0.5± 0.1, N0 = 170± 10 and t0 = 12± 1.5 ps. For t > tc, the dashed lines correspond tothe results of (6.14), while the solid lines come from the numerical resolution of (6.16) with ε = 0.05±0.01.(Bottom) Same as above for the quantities V (t)/S(t) and N(t)/S(t). The value of tc is 56 ps.

6.3.3 . Growth of turbulunce

We consider a turbulent regime of the polariton dynamics in which, after the fast expansion of the
quantum fluid, the onset of vortex clustering and the emergence of the inverse kinetic energy cascade
was evidenced on timescales of a few tens of picoseconds [79]. A low-energy data set, where the onset
of turbulence is inhibited by dissipation, is shown in section 6.3.5. The numbers of vortices, saddles
and nodes are displayed as circles in the upper part of Fig. 6.4. At t = 0, when the fluid encounters
the barrier, some critical points are already present, having formed during the fluid’s expansion. The
turbulent dynamics is initiated at this moment, which we treat as the initial condition.

Let us first focus on the stage of turbulence growth, duringwhich the numbers of vortices and saddles
increase significantly (stage 1 in Fig. 6.4). In this time lag, the nucleation of many new vortices dominates
the temporal evolution. This implies imposing α = 0 : indeed, when α ̸= 0 the system (6.14) has a fixed
point and the numbers of vortices, saddles, and nodes tend to saturate, which is not what is observed in
the experiment. We checked that a nonzero value of α always worsens the agreement of the theoretical
curve with data: this confirms that in this stage the incompressible kinetic energy of the system is mostly
increasing, as required for the establishment of the inverse kinetic energy cascade.

It is interesting to discuss the values of the rate of reactions in Eqs. (6.12). In particular c/d = N2
0 /γ =
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Figure 6.5: Experimental snapshots, taken at 15 and 16 ps, showing the formation of a vortex pair startingfrom two nearby nodes, as indicated by Eq. 6.12a. The streallines of the velocity field, v⃗ = (ℏ/m)∇⃗S, areplotted on top of the color-coded phase field, S(x, y).
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Figure 6.6: Experimental snapshots of the phase field S(x, y) taken toward the end of the experiment(76 and 77 ps), showing the annihilation of a pair of saddles and vortices via the Bristol mechanism.

6 × 104 ≫ 1, implying that the saddle-node bifurcation is mainly unidirectional : the annihilation of a
saddle with a node is much less frequent than their creatio ex nihilo. This indicates that the saddle-node
formation mechanism (6.12b) is the real fuel of the whole process. The nodes-to-vortices reaction (6.12a)
merely transmutes some of the nodes into vortices, but could not be effective on its own. This remark
is of significance : the spontaneous creation of uniquely a vortex-antivortex pair being topologically for-
bidden (it would not conserve the Poincaré-Hopf index) we are in need of an explanation of the increase
of the number V (t) of vortices. In the system we consider, the formation of vortices arises from two
saddle-nodes bifurcations (6.12a) followed by a nodes-to-vortices conversion (6.12b), ultimately resulting
in the formation of two saddles and two vortices. This is the reason why the numbers of saddles and of
vortices increase at the same pace, see the upper part of Fig. 6.4.

The results plotted in the lower panel of Fig. 6.4 indicate that the total Poincaré index is conserved
and small. Indeed in this caseN+V = S, the two quantities V/S andN/S sum to unity, and aminimum
of one should correspond to a maximum of the other, as observed in the lower plot of Fig. 6.4. This
property is model-independent: it is a prerequisite which should be embodied in any kinetic model,
but its fulfillment is not a guarantee of accuracy of the model. Experimental results confirm the exact
conservation of both IV and IP indices in every realization of the measurements.

It is intriguing to observe, during the time evolution of the experimental results, instances where two
nodes transform into a vortex and an antivortex, respectively, as predicted by (6.12a). In Fig. 6.5, we
present two consecutive time frames of the same spatial region, highlighting the phase field evolution
from a configuration containing nodes and saddles to one where two nodes are transformed into a
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vortex and an antivortex.
6.3.4 . Decay of turbulence

The results displayed in Fig. 6.4 show a stricking behavior, namely, a sharp temporal transition be-
tween stage 1, characterised by the nonlinear growth of the number of vortices/saddles, and stage 2,
characterised by a dramatic decrease of the numbers of vortices (and saddles). However, the number
of nodes is not experiencing a similar abrupt modification in the same period of time : this supports a
scenario which does not involve nodes, still conserving both IV and IP . The so-called Bristol mechanism
[178, 180], described by Eq. (6.15) below, is a perfect candidate :

vortex(+) + vortex(−) + saddle + saddle e
⇌
f

∅ (6.15)
In view of the significant decrease of the number of vortices and saddles during stage 2, we consider
that the rate of reaction f is zero in Eq. (6.15). Hence, the process is assumed to be unidirectional 11. The
system (6.14) accordingly modifies to

dv

dτ
= n2 − αv2 − ε v2s2,

ds

dτ
= 1− γns− ε v2s2

dn

dτ
= 1− n2 − γns+ αv2

(6.16)

where ε = 1
2eN

3
0 t0 = ec/(8a2) is the rescaled rate of annihilation of saddles and vortices. We keep for all

the other parameters the values previously determined, and during stage 2 we solve the system (6.16)
with ε ̸= 0. The corresponding results are displayed in Fig. 6.4. The agreement of the theoretical curve
with the experimental observation supports the idea that at this time delay the system enters a new
regime in which the annihilation mechanism (6.15) acquires an efficiency it previously did not have.

It is interesting to ask the question whether the mechanism of Eq. (6.15) could have been effective
earlier, with a rate of reaction f ̸= 0 explaining the rapid and concomitant increase of V and S during
stage 1. The observation of the behavior of N in the same period makes this hypothesis rather unlikely,
since N initially increases and then saturates. This advocates for a saddle-node creation process (6.12b)
which then feeds the nodes-to-vortices one (6.12a). Only this process can explain (i) the occurrence of
extrema of V/S and N/S at short times (lower plot of Fig. 6.4) and (ii) the saturation of N at a slightly
later time (upper plot of the same figure). And indeed, it is not possible to fit the data on the basis of
mechanisms (6.12a) and (6.15) only, or (6.12b) and (6.15) only.

In Fig. 6.6, the Bristol mechanism is observed in our experimental results during the second stage of
the dynamics, when dissipation begins to dominate. Two consecutive frames illustrate the simultaneous
annihilation of a pair of saddles and vortices within a laminar plane flow, marking the dissipation of
incompressible kinetic energy from the system.

6.3.5 . Low-energy data set
The data presented in the previous sections 6.3.3 and 6.3.4 correspond to a turbulent regime inwhich

a high-energy polariton superfluid is injected against a potential barrier. We consider in this section a
data set obtained at relatively low injection energy (E = 0.21meV here, instead of 1.20 meV in the high-
energy case).

The experimental data, presented in Fig. 6.7, display a tendency to saturate: from t = 60 ps on,
V (t), S(t), and N(t) vary quite slowly. To emulate this behavior, the system (6.14) should have a fixed
point and the value of the parameter α should thus be finite. In this case, if we denote as n∞, v∞, s∞ the
coordinates of the fixed point, defining β = 1/

√
α we get v∞ = βn∞, s∞ = 1/(γn∞) and

n∞ =
IP0 +

√
I2
P0 + 4(1 + β)/γ

2(1 + β)
(6.17)

11This unidirectional behavior was already observed in the experiment and the numerical simulations of [180]: Inthis reference the Bristol mechanism was always inducing the concomitant annihilation of two vortices and twosaddles, and never their creatio ex nihilo.
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Figure 6.7: Comparison of the experimental results of the low-energy data set for the numbers N(t) ofnodes, V (t) of vortices, and S(t) of saddles (circles) with the numerical integration of Eqs. (6.14) (solidlines).

In this expression IP0 = n+v−s is the constant value of the rescaled Poincaré index of the whole system
(IP0 = IP/N0). In the limit I2P0 ≪ 4(1 + β)/γ 12, formula (6.17) reads n∞ = [γ(1 + β)]−1/2 and implies that
s∞ = (1 + β)n∞. Comparing the values v∞/n∞ = β and s∞/n∞ = 1 + β with the values V/N ≈ 2 and
S/N ≈ 3 around t = 60 ps points to a value β ≈ 2 (i.e., α = 0.25). We found that the choice γ = 1± 0.1,
N0 = 86± 4, t0 = 28± 4 ps and α = 0.25± 0.05 gives a good account of the data set, see Fig. 6.7.

The system is not here in a turbulent regime such as the one studied in the main text. The injection
energy E is smaller, the number of vortices increases at a lower pace, and the stage of decay (stage
2 in Fig. 6.4) is not reached within the experimental time window. This interpretation of the different
behaviors of the two data sets is corroborated by the following evaluation of orders of magnitude : a
simple dimensional argument suggests that the characteristic time t0 should scale as t0 ∝ E−1/2. And
indeed the characteristic times t0 for the two sets of data are in a ratio tlow0 /thigh0 = (28±4) : (12±1.5) =

2.33± 0.6 which is consistent with the value√Ehigh/Elow =
√
1.20meV/0.21meV = 2.39.

6.3.6 . Discussion
The onset of a turbulent inverse cascade of kinetic energy implies a temporal growth of the incom-

pressible part of the total kinetic energy in the system. It was suggested in Ref. [79] that such energy input
is at the expenses of the compressible kinetic energy in the quantum flow. This dynamical observation
has its topological counterpart in the time window associated to the turbulence (and vortex clustering)
growth, where the numbers of vortices and saddles increase, while nodes stay almost constant (stage 1 in
Fig. 6.4). It is reasonable to think that not all vortices participate in the cascade, since they may not have
time to correlate, nevertheless their increase reflects in the growth of the incompressible kinetic energy
available for the cascade. When the ratio of compressible to incompressible kinetic energy stops grow-
ing, dissipationmechanisms prevail and turbulence starts decaying. This happens in our systemwith the
simultaneous rapid decrease of both vortices and saddles. Interestingly, at the same time the clustering
dynamics stops, as observed in Ref. [79]. Topological constraints also rule the mechanism of such a
12It can be checked a posteriori that this approximation is legitimate: the total experimental Poincaré-Hopf indexis −1± 2 whereas N0 is of order 102: I2P0 ≈ 10−4. The term 4(1 + β)/γ is instead of order unity.
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decay; a process based on four vortices interactions 13, previously proposed in [182, 183, 184, 185, 186],
here finds its origin in topological arguments. In the absence of a turbulent regime, the fate of vortices is
different. Indeed in such a case, we physically expect a dynamical equilibrium between vortex creation
and annihilation processes, in the presence of random, uncorrelated fluctuations. Our model faithfully
describe this process by (6.12), although slower.

Our kinetic model is a minimal one : it is the simplest possible which complies with topological con-
straints. It provides a global description of the system based on phenomenological parameters (the rate
coefficients) but is not meant to explain why these parameters assume different values in the turbulent
or nonturbulent regimes, nor to predict when the growth of turbulence stops andwhy its decay (at t ≥ tc)is so abrupt. The description of this phenomenon implies to deal with spatial correlations in the system
and goes beyond our global kinetic description.

Two-dimensional turbulence is an incredibly rich playground : after the pioneering contribution of
Polyakov [187], it has been shown that the vorticity domains exhibit the same universal scaling arising in
critical percolation theory, in both classical [188, 189] and quantum [190] fluids in the regime of inverse
energy cascade. It would be of great interest to broaden the scope of our kinetic approach by developing
a microscopic model able to integrate statistical properties and topological conservation laws. Such a
model should account for the interactions of critical points (as in the vortex clustering) in a framework
consistent with the conservation of topological indices.

6.3.7 . Article : Topological Pathways to Two-Dimensional Quantum Turbulence

R. Panico, G. Ciliberto, G. I. Martone, T. Congy, D. Ballarini, A. S. Lanotte, N. Pavloff, arXiv:2411.11671
doi : https://doi.org/10.48550/arXiv.2411.11671
We present a combined experimental and theoretical investigation of the formation and decay kinet-

ics of vortices in two dimensional, compressible quantum turbulence. We follow the temporal evolution
of a quantum fluid of exciton polaritons, hybrid light matter quasiparticles, andmeasure both phase and
modulus of the order parameter in the turbulent regime. Fundamental topological conservation laws
require that the formation and annihilation of vortices also involve critical points of the velocity field,
namely nodes and saddles. Identifying the simplest mechanisms underlying these processes enables us
to develop an effective kinetic model that closely aligns with the experimental observations, and shows
that different processes are responsible for vortex number growth and decay. These findings under-
score the crucial role played by topological constraints in shaping nonlinear, turbulent evolution of two
dimensional quantum fluids.

13Note that since in the observed dynamics, saddles and vortices have similar temporal evolutions, the decay dueto Bristol mechanism (6.15) is effectively equivalent to a four vortices decay process.
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7 - CONCLUSIONS AND PERSPECTIVES

The domain of analog gravity aims to overcome the lack of theory and experiment in the field of
quantum gravity by transposing some of itsmain issues and concerns to condensedmatter systems. Fol-
lowing this strategy, we studied quantumnon-separability, non-locality and back-reaction of the acoustic
Hawking radiation emitted by an analog black hole implemented in the flow of a 1D quasi-condensate.

In chapter 4, our theoretical work sets the ground for future experimental studies by providing quan-
titative predictions of the degree of entanglement and of violation of Bell inequalities in a realistic analog
configuration, both for bi- and tri-partite systems. Indeed, while the relativistic Hawking process involves,
in the stationary case, only two modes, a third mode is present in the system under investigation : while
not affecting the analogy with Hawking radiation in the considered regime, the third mode leads to a
richer phenomenology. We therefore conducted a systematic study of the system, confirming the non-
classical, i.e. nonseparable and nonlocal, character of analogous Hawking radiation thanks to experi-
mentally relevant criteria. Furthermore, our study of different criteria of nonlocality demonstrates that
the long wavelength quantum modes of the system consist in a superposition of continuous variable
versions of degenerate GHZ states. Interestingly, the continuous nature of the degrees of freedom, at
variance with GHZ states build on qbits, allows these modes to remain entangled after partial tracing.
This confirms that continuous variable quantum information with analog black hole models opens new
prospects of robust information processing in a variety of protocols, such as secret sharing or informa-
tion scrambling.

In Chapter 5, we derived back-reaction equations that are generically valid for a inhomogeneous
(flowing) condensate in any dimension. We specifically applied them to an analog black hole configura-
tion in a 1D flowing quasi-condensate. We found asymptotic solutions and provided some preliminary
results for consistent choices of parameters. Future work will be devoted to probe the exact dynamics
of the horizon under the back-reaction effect and determine the consequent correction to the Hawking
temperature of the system. Since in the gravitational framework, the quantum source of back-reaction
has proven arduous to assess, the analog hydrodynamic setups appear to be valuable systems for test-
ing models beyond (semi)classical gravity. In this perspective, since Hawking derivation of the Hawking
effect does not take into account the back-reaction, a natural follow up of our study will be to write the
modified Bogoliubov equations with a meanfield integrating the back-reaction. The effect of the back-
reaction on Hawking radiation, the "back-back-reaction" so to say, could then be investigated and the
thermality of the radiation reconsidered from this newperspective. This would again open newprospects
on the nature of information carried by Hawking radiation.

Finally, in Chapter 6, we conducted a combined experimental and theoretical investigation of the
kinetics of vortices in a 2D compressible quantum fluid of exciton–polaritons. Considering a minimal
phenomenological model based on topological constraints we derived kinetic equations of formation
and annihilation of critical points of the velocity field. These equations are able to reproduce the ex-
perimentally observed rate of creation and annihilation of quantized vortices both in the growing and
decaying phases of quantum turbulence. These results will need to be further explored by refined nu-
merical simulations. Furthermore, even if this final chapter is unrelated to analog gravity, one might
think of future 2D models, with vorticity at play, that would exploit the constraints herein described : in
this perspective, the topological charges considered in our effective phenomenological model of quan-
tum turbulence, might also prove useful in investigating the physics of analog rotating black-holes and
phenomena such as superradiance.
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A - BELL INEQUALITIES : analytical computations

A.1 . Squeezing operator

As seen in 4.2.1, for c = Tb ⇔ ci = V †biV with T a 2N × 2N matrix, c and b defined as a =

(â0, ..., âN , â
†
0, ..., â

†
N )T and V a squeezing operator, one has by definition

ci |0⟩c = V †biV |0⟩c ⇒ |0⟩b = V |0⟩c (A.1)
Then it can be shown (see Refs. [90], [86], [87]) that

V = | detα−1/2 exp

1
2

N−1∑
i,j=0

Xij ĉ
†
i ĉ

†
j

 exp

1
2

N−1∑
i,j=0

Yij ĉ
†
i ĉj

 exp

1
2

N−1∑
i,j=0

Zij ĉiĉj

 (A.2)

with
X = −β∗α−1 exp (−Y T ) = α Z = α−1β (A.3)

and the N ×N matrices α and β defined in 4.68. Since in (A.2) all the annihilation operators are on the
right, when V is applied to the vacuum |0⟩c it reduces to

V |0⟩c = (detα)−1/2 exp

1
2

N−1∑
i,j=0

Xij ĉ
†
i ĉ

†
j

 |0⟩c (A.4)

In this work we have defined |0⟩b as being the incoming vacuum |0⟩in and |0⟩c as being the outgoing
vacuum |0⟩out with V given by (4.82). As V is characterize, through the matrices α, β and X given in
(4.69) and (4.79), to be an operator squeezing the vacuum of the ĉi to yield the vacuum of the b̂i, onecan define similarly a V ′ or V ′′ operator to squeeze the vacuum of the êi and f̂i respectively in order todefine the same vacuum of the b̂i. Using relations

c = V †bV = T b

e =W †cW = T ′ c ⇒ e =W †V †bVW = T ′T b

f = Z†eZ = T ′′ e ⇒ f = Z†W †V †bVWZ = T ′′T ′T b

(A.5)

one obtains

α′ =

eiφ02S∗
00 eiφ12S∗

01 0
eiφ02S∗

10 eiφ12S∗
11 0

0 0 |S22|

 β′ = −

 0 0 |S02|
0 0 |S12|

e−iφ22S20 e−iφ22S21 0

 (A.6)

and
X ′ =

1

|S22|

 0 0 |S02|
0 0 |S12|

|S02| |S12| 0

 detα′ = ei(φ02+φ02−φ22) detα (A.7)
where we have used the symmetry of theX ′ matrix. Furthermore one obtains

α′′ =

eiφ12S∗
10 cos θ − eiφ02S∗

00 sin θ eiφ12S∗
11 cos θ − eiφ02S∗

01 sin θ 0
eiφ02S∗

00 cos θ + eiφ12S∗
10 sin θ eiφ02S∗

01 cos θ + eiφ12S∗
11 sin θ 0

0 0 |S22|

 (A.8)

and
β′′ = −

 0 0 0
0 0 sinh r2

e−iφ22S20 e−iφ22S21 0

 (A.9)
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Hence
X ′′ =

0 0 0
0 0 tanh r2
0 tanh r2 0

 detα′′ = −detα′ (A.10)
where again the symmetry ofX ′′ has been used to obtain the final expression given here. These relations
yields straightforwardly relations (4.106) and (4.102) when considering (4.89) and (4.99).

Let us finally justify that
1

cosh r2
etanh r2f̂

†
1 f̂

†
2 |0ω⟩f = e

r2
(
f̂†
1 f̂

†
2−f̂1f̂2

)
|0ω⟩f (A.11)

One defines
ζ = reiθ Â = ζ∗f̂1f̂2 − ζf̂ †1 f̂

†
2 B̂ = −eiθ tanh rf̂ †1 f̂ †2 (A.12)

and
F̂1(z) = ezÂf̂1 e

−zÂ = Z−1
A (z)f̂1ZA(z) (A.13)

with z real. One sees immediately that
Z−1
A (z) = ZA(−z) = Z†

A(z) (A.14)
which means that ZA is unitary. Considering the series expansion

F̂1(z) =
∑
n=0

zn

n!
F̂

(n)
1 (0) (A.15)

one has, by virtue of the commutation relation for the annihilation and creation operators f̂i and f̂ †i ,
F̂1(z = −1) =

(
1 +

|ζ|2
2!

+
|ζ|4
4!

+ ...

)
f̂1 −

|ζ|
ζ∗

(
|ζ|+ |ζ|3

3!
+ ...

)
f̂ †2 = cosh rf̂1 − eiθ sinh rf̂ †2 (A.16)

that is to say, setting ZA(z = −1) = ZA as a shorthand notation,
F̂1(z = −1) = Z−1

A f̂1 ZA = cosh rf̂1 − eiθ sinh rf̂ †2 (A.17)
Similarly, noticing that ZA(z = 1) = Z−1

A (z = −1) and therefore that F̂1(z = 1) = ZAf̂1Z
−1
A , one can see,

just by taking ξ → −ξ in (A.16), that one obtains
F̂1(z = 1) = ZAf̂1 Z

−1
A = cosh rf̂1 + eiθ sinh rf̂ †2 (A.18)

Since Â is symmetric by exchange 1 ↔ 2, one obtains Z−1
A f̂2 ZA and ZAf̂2 Z

−1
A just by taking 1 ↔ 2 in

(A.17) and (A.18). Then one has by definition
ZAf̂1 Z

−1
A ZA |0ω⟩f = ZAf̂1 |0ω⟩f = 0 ⇒ (cosh rf̂1 + eiθ sinh rf̂ †2)(ZA |0ω⟩f ) = 0 (A.19)

where we have applied (A.17). Writing
|ξ⟩ = ZA |0ω⟩f =

∑
m,n

Cm,n |m,n⟩f (A.20)

one obtains1 from last relation in (A.19) that
∞∑
n=0

∞∑
q=−1

[
µCn+q+1,n

√
n+ q + 1 + ν Cn+q,n−1

√
n
]
|n+ q, n⟩f = 0 (A.21)

1Taking m′ = m + 1 in the first term and n′ = n + 1 in the second term, then renaming m′ → m and n′ → n anddefiningm = n+ q.
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with µ = cosh r and ν = eiθ sinh r and Cq,−1 = 0. The expression in squared brackets must then vanish
for all n and q. Writing the first terms in n one has

n = 0 µCq+1,0
√
q + 1 + 0 = 0

n = 1 µCq+2,1
√
q + 2 + ν Cq+1,0 = 0

n = 2 µCq+3,2
√
q + 3 + ν Cq+2,1

√
2 = 0

(A.22)

For q ≥ 0 one can see that all the Cn+q+1,n must vanish and that q = −1makes the C0,0 undetermined
and implies

µCn,n + ν Cn−1,n−1 = 0 ⇒ Cn,m = C0,0

(
−ν
µ

)n

δn,m (A.23)
Plugging this result in (A.20) one obtains2

|ξ⟩ = ZA |0ω⟩f = C0,0

[∑
n

(
−ν
µ

)n [f †1 ]
n[f †2 ]

n

n!

]
|0ω⟩f = C0,0e

−eiθ tanh rf̂†
1 f̂

†
2 |0ω⟩f (A.24)

which3 implies here θ = π and r = r2 in ζ , Â and B̂ of Eq. A.12. The normalization of (4.106) finally shows
that C−1

0,0 = cosh r2.

A.2 . Eigenstates of the pseudo-spin operators

In this appendix we list the properties of the eigenstates of the pseudo-spin operators (4.191) which
are useful in the main text. We will consider a given one of the three modes (j = 0, 1 or 2), always the
same, and will omit the associated label (j) in order to lighten the notations. In a similar way, we do not
write the ω-dependence which is implicit in all this appendix.
Let us define [106] the states

|E⟩ = 1√
2
(|q⟩+ |−q⟩) |O⟩ = 1√

2
(|q⟩ − |−q⟩) (A.25)

with |q⟩ the eigenstate of the position operator. Then one can define the operators
1̂E =

∫ ∞

0
dq |E⟩ ⟨E| 1̂O =

∫ ∞

0
dq |O⟩ ⟨O| (A.26)

One sees that for a generic state
|ψe/o⟩ =

∫ +∞

−∞
dq ψe/o(q) |q⟩ (A.27)

with the wave function ψe even, i.e. ψe(−q) = ψe(q), and the wave function ψo odd, i.e. ψo(−q) = −ψo(q),one has
1̂E |ψe⟩ = |ψe⟩ 1̂O |ψe⟩ = 0 (A.28)

and
1̂O |ψo⟩ = |ψo⟩ 1̂E |ψo⟩ = 0 (A.29)

The parity operator or pseudo-spin operator (4.191c) is then defined as
Π̂z = 1̂E − 1̂O Π̂z |ψe⟩ = + |ψe⟩ Π̂z |ψo⟩ = − |ψo⟩ (A.30)

The operators 1̂E and 1̂O can be expressed in the number representation basis. Indeed defining |q⟩ =∑
nCn(q) |n⟩ and using q̂ = (â + â†)/

√
2 one obtains from ⟨n| q̂ |q⟩ = q ⟨n|q⟩ with ⟨n|q⟩ = Cn(q) therecursive relation √

n+ 1Cn+1(q) +
√
nCn−1(q) =

√
2 q Cn(q) (A.31)

2Applying (a†)n |0⟩ = √
n! |n⟩.

3The same result would have been found if starting from ZAf̂2 Z
−1
A instead by virtue of the symmetry 1 ↔ 2 in (??)

of the f†i operators.
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Since
Cn(q) = ⟨n|q⟩ = (2nn!

√
π )−1/2 exp(−q2/2)Hn(q) (A.32)

is a normalized Hermite function, relation (A.31) can be compared to the relationHn+1(q)+2nHn−1(q) =

2q Hn(q) for the Hermite polynomials Hn. Then knowing that Hn(−q) = (−1)nHn(q) one can see that
Cn(−q) = (−1)nCn(q). This last relation, since one has

1̂E/O =
1

2

[∫ +∞
0 dq |q⟩ ⟨q|+

∫ +∞
0 dq |−q⟩ ⟨−q| ±

∫ +∞
0 dq |−q⟩ ⟨q| ±

∫ +∞
0 dq |q⟩ ⟨−q|

]
=

1

2

[∫ +∞
−∞ dq |q⟩ ⟨q| ±

∫ +∞
−∞ dq |q⟩ ⟨−q|

]
=

1

2

[
1±

∫ +∞
−∞ dq |q⟩ ⟨−q|

] (A.33)

and ∫ +∞

−∞
dq |q⟩ ⟨q| = 1 ⇒

∫ +∞

−∞
Cn(q)Cm(q) = δnm (A.34)

where we used ⟨n|m⟩ = δnm, leads to
[1̂E/O]nm = ⟨n| 1̂E/O |m⟩ = 1

2
(1± (−1)m) δnm =

{
δnm for n even / odd
0 for n odd / even (A.35)

that is to say
[1̂E ]nm =

∞∑
n=0

|2n⟩ ⟨2n|

[1̂O]nm =
∞∑
n=0

|2n+ 1⟩ ⟨2n+ 1|
(A.36)

and
⟨n| Π̂z |m⟩ = (−1)mδnm (A.37)

Thus
Π̂z =

∞∑
n=0

(
|2n⟩⟨2n| − |2n+ 1⟩⟨2n+ 1|

) (A.38)
The eigenstates of Π̂z are the number states and they have eigenvalue±1 depending on their parity. We
denote them as

|z+n ⟩ = |2n⟩ and |z−n ⟩ = |2n+ 1⟩ (A.39)
Contrarily to usual spins 1/2, the two eigenvalues (here+1 and−1) are infinitely degenerate4 since every
even function has eigenvalue +1 and every odd function has eigenvalue −1 : the pseudo-spin Π̂z isnothing else than the parity operator. It is then worth noticing that this degeneracy property is shared
by any projection of the pseudo-spin operator (4.191). Indeed, in the |q⟩ basis, in addition to

Π̂z =

∫ ∞

0
dq |E⟩ ⟨E| −

∫ ∞

0
dq |O⟩ ⟨O| =

∫ +∞

−∞
dq |q⟩ ⟨−q| (A.40)

one has also
Π̂x =

∫∞
0 dq |E⟩ ⟨O|+

∫∞
0 dq |O⟩ ⟨E| =

∫ +∞
0 dq |q⟩ ⟨q| −

∫ +∞
0 dq |−q⟩ ⟨−q|

Π̂y = i
∫∞
0 dq |O⟩ ⟨E| − i

∫∞
0 dq |E⟩ ⟨O| = i

∫ +∞
0 dq |q⟩ ⟨−q| − i

∫ +∞
0 dq |−q⟩ ⟨q|

(A.41)

Therefore, taking
ψo(q) =

{
±ψe(q) for q ≥ 0
∓ψe(q) for q < 0

(A.42)
4The two generic eigenfunction of the Π̂z operator can be written as |ψe/o⟩ =

∑+∞
n=0 c

±
n |z±n ⟩for the + and − eigen-values, respectively.
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one can write
|ψe⟩ =

∫ +∞
0 dq ψe(q) |q⟩+

∫ +∞
0 dq ψe(q) |−q⟩

|ψo⟩ =
∫ +∞
0 dq [±ψe(q)] |q⟩ −

∫ +∞
0 dq [±ψe(q)] |−q⟩

(A.43)

thus obtaining
Π̂x |ψe⟩ = ± |ψo⟩ Π̂x |ψo⟩ = ± |ψe⟩ (A.44)

and
Π̂y |ψe⟩ = i± |ψo⟩ Π̂y |ψo⟩ = i∓ |ψe⟩ (A.45)

The generic eigenstates of Π̂x for eigenvalues ±1 are then given by
|ψ+

x ⟩ =
±√
2

(
|ψe⟩+ |ψ0⟩

)
|ψ−

x ⟩ =
±√
2

(
|ψe⟩ − |ψ0⟩

) (A.46)
and those for Π̂y for eigenvalues ±1 by

|ψ+
y ⟩ =

±√
2

(
|ψe⟩+ i |ψ0⟩

)
|ψ−

y ⟩ =
±√
2

(
|ψe⟩ − i |ψ0⟩

) (A.47)
as long as the constraint (A.42) is verified.

The eigenstates |x±n ⟩ of Π̂x associated to the eigenvalue ±1 can also be constructed by rotating the
eigenstates |z±n ⟩ of Π̂z by angles ±π/2 around the y axis, i.e.

|x±n ⟩ = R̂y

(
±π
2

)
|z+n ⟩ =

1√
2

(
1∓ i Π̂y

)
|z+n ⟩ (A.48)

where R̂y(θ) = exp(− i
2θ Π̂y) is the operator of rotation of angle θ around the y axis. The fact that |x±n ⟩is an eigenstate of Π̂x with eigenvalue ±1 is easily checked by direct application of Π̂x to the left of

expression (A.48) and use of the relations
Π̂rΠ̂s = i εrst Π̂t + δrs1 (A.49)

where εrst is the totally antisymmetric Levi-Civita symbol and (r, s, t) = x, y or z. Indeed
Π̂x|x±n ⟩ =

1√
2

(
Π̂x ± 1

)
|z+n ⟩ =

1√
2

(
Π̂2

yΠ̂x ± 1
)
|z+n ⟩ =

1√
2

(
−iΠ̂yΠ̂z ± 1

)
|z+n ⟩ = ±|x±n ⟩ (A.50)

By the same token one obtains straightforwardly
|y±n ⟩ = R̂z

(
±π
2

)
|x+n ⟩ (A.51)

and
Π̂y|x±n ⟩ = ∓i|x∓n ⟩ Π̂z|x±n ⟩ = |x∓n ⟩ (A.52a)
Π̂x|y±n ⟩ = ±i|y∓n ⟩ Π̂z|y±n ⟩ = |y∓n ⟩ (A.52b)
Π̂x|z±n ⟩ = |z∓n ⟩ Π̂y|z±n ⟩ = ±i|z∓n ⟩ (A.52c)

Applying (A.49) to the previous relations (A.52) gives the usual expressions of the |z±n ⟩ in terms of the
|x±n ⟩ or |y±n ⟩. Then, through (A.38), these relations give straightforwardly the expression of Π̂x and Π̂y inthe number representation basis, with5

Π̂x =

∞∑
n=0

(
|x+n ⟩⟨x+n | − |x−n ⟩⟨x−n |

)
=

∞∑
n=0

(
|z+n ⟩⟨z−n |+ |z−n ⟩⟨z+n |

) (A.53)
and

Π̂y =
∞∑
n=0

(
|y+n ⟩⟨y+n | − |y−n ⟩⟨y−n |

)
= i

∞∑
n=0

(
|z−n ⟩⟨z+n | − |z+n ⟩⟨z−n |

) (A.54)
5Hence, any generic eigenfunction of the pseudo-spin operators can be written as |ψ±

s ⟩ =
∑+∞

n=0 (c
±
s )n|s±n ⟩ with

s = x, y, z.
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A.3 . The CHSH inequality

Let us say that Alice can measure two observables Â and Â′ which yield respectively the outcomes
A = {±1} and A′ = {±1}. Bob can also measure two observables B̂ and B̂′ which yield respectively the
outcomes B = {±1} and B′ = {±1}. If Alice could perform two measurements at a time and so could
Bob6 then one would be able to define an observable B̂ and an outcome B such as

B = (A+A′)B + (A−A′)B′ = ±2 (A.55)
It is then compulsory that

B̂ = (Â+ Â′)B̂ + (Â− Â′)B̂′ ⇒ |⟨B̂⟩| ≤ 2 (A.56)
or, written explicitly,

|⟨ÂB̂⟩+ ⟨Â′B̂⟩+ ⟨ÂB̂′⟩ − ⟨Â′B̂′⟩| ≤ 2 (A.57)
This last relation (A.57) is called the CHSH inequality from Clauser-Horner-Shimony-Holt (see Ref. [105]).
Since the averages ⟨.⟩ are statistical averages, the two measurements by Alice (and same for Bob) can
now be not simultaneous, which means that Eq. (A.55) no longer holds but that Eqs. (A.56) and (A.57)
still do. Referring to spin-1/2 measurements, one can define four unit vectors in a 3-dimensional real
vector space, i.e. a, a′, b and b′, and the spin observable

Π̂ =
ℏ
2
σ̂ =

ℏ
2
(σx, σy, σz)

T (A.58)
where the σi are the Pauli matrices. Then the observables can be set as

Â = σ̂.a Â′ = σ̂.a′ B̂ = σ̂.b B̂′ = σ̂.b′ (A.59)
Considering maximally entangled Bell states

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩)

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩)

(A.60)

yields straightforwardly
⟨σ̂x ⊗ σ̂x⟩Ψ± = ⟨σ̂y ⊗ σ̂y⟩Ψ± = ±1 ⟨σ̂z ⊗ σ̂z⟩Ψ± = −1

⟨σ̂x ⊗ σ̂x⟩Φ± = −⟨σ̂y ⊗ σ̂y⟩Φ± = ±1 ⟨σ̂z ⊗ σ̂z⟩Φ± = +1

(A.61)

with all the cross-terms ⟨σ̂r ⊗ σ̂s⟩ where r ̸= s vanishing for all Bell states. Therefore from
⟨σ̂r ⊗ σ̂s⟩Ψ− = −δrs (A.62)

one obtains immediately
⟨ÂB̂⟩Ψ− =

∑
r,s

arbs⟨σ̂r ⊗ σ̂s⟩Ψ− = −
∑
r,s

arbsδrs = −a.b = − cos θ (A.63)

In order to maximise the left-hand side |⟨B̂(i,j,k)⟩| of the inequality (A.57), one must extremize
⟨B̂⟩Ψ− = −a.b− a′.b− a.b′ + a′.b′ = −(a+ a′).b− (a− a′).b′ (A.64)

6This is not possible for non commuting quantum observables Â and Â′ (or B̂ and B̂′) but the example helpsunderstanding the upper and lower bounds of classical observations.Let us remark here that the observationsby Alice and those by Bob do commute : hence, in the following, the tensor product structure of the observabledescribing a "simultaneous" observation by Alice and Bob with one of their respective observables.
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One writes
k+a+ = a+ a′ k−a− = a− a′ (A.65)

which implies, for a.a′ = cosφ,
k2+ = 4 cos2

φ

2
k2− = 4 sin2

φ

2
(A.66)

One is left with
⟨B̂⟩Ψ− = −2 cos

φ

2
a+.b− 2 sin

φ

2
a−.b

′ (A.67)
This last expression looks like f(ϕ) = x cosϕ+ y sinϕ = ρ cos(ϕ−φ) for x = ρ cosφ and y = ρ sinφ. Then
one sees that f is maximum for fmax = ρ and since ρ2 = x2 + y2 one can maximize ⟨B̂⟩ by obtaining for
the right hand side of (A.57)

2
√
[a+.b]2 + [a−.b′]2 (A.68)

Then aligning b along a+ and b′ along a−
7 one obtains the maximization
max |⟨B̂⟩|Ψ− = 2

√
2 (A.69)

which violates inequality (A.57). One can see from this maximization that all the vectors lie in the same
plane. By going back to ( A.61) it can be seen that for any Bell state a plane can be found where (A.63)
holds, thus making it possible to maximize in a similar way the violation of Bell’s inequality to 2

√
2 with

all Bell states8.
The upper boundof the violation, also called Cirel’son bound [159], can intuitively be foundby considering
that

⟨B̂⟩2 ≤ ⟨B̂2⟩ (A.70)
With operators such as the Pauli matrices which verify

(n.σ̂)2 = 1 (A.71)
one obtains

B̂2 = 41− [Â, Â′][B̂, B̂′] (A.72)
Recalling the algebra of the Pauli matrices, i.e.

[σ̂i, σ̂j ] = 2iϵijkσ̂k {σ̂i, σ̂j} = 2δij1 (A.73)
one obtains

⟨B̂2⟩ ≤ 8 ⇒ ⟨B̂⟩ ≤
√
8 (A.74)

A.4 . Analytic maximization of ⟨B̂(i|j)⟩

In this appendix we present the maximisation of the expectation value of the CHSH operator (4.210).
The well-known maximization procedure can also be found, for example, in Refs. [191, 192]. With r, s ∈

7This amounts for example, with a.a′ = 0, to take
a.b = a′.b = a.b′ = cos

π

4
=

1√
2

a′.b′ = cos
3π

4
= − 1√

2

with all the vectors lying in the same plane.8More precisely one must choose the xy plane for Ψ+, the xz plane for Φ+ and the yz for Φ−. For these threestates one would get ⟨ÂB̂⟩ = +cos θ in ( A.63).
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{x, y, z} and Π̂ a pseudo-spin operator acting in the space of particle i or j, one has
⟨B̂(i,j)⟩ = ⟨a.Π̂(i) ⊗ b.Π̂(j)⟩+ ⟨a′.Π̂(i) ⊗ b.Π̂(j)⟩+ ⟨a.Π̂(i) ⊗ b′.Π̂(j)⟩ − ⟨a′.Π̂(i) ⊗ b′.Π̂(j)⟩

=
∑
r,s
[⟨arΠ̂(i)

r ⊗ bsΠ̂
(j)
s ⟩+ ⟨a′rΠ̂(i)

r ⊗ bsΠ̂
(j)
s ⟩+ ⟨arΠ̂(i)

r ⊗ b′sΠ̂
(j)
s ⟩ − ⟨a′rΠ̂(i)

r ⊗ b′sΠ̂
(j)
s ⟩]

=
∑
r
[ar
∑
s
T (ij)
rs bs + a′r

∑
s
T (ij)
rs bs + ar

∑
s
T (ij)
rs b′s − a′r

∑
s
T (ij)
rs b′s]

=
∑
r
[ar (T b)r + a′r (T b)r + ar (T b′)r − a′r (T b′)r]

= a.(T b) + a′.(T b) + a.(T b′)− a′.(T b′)

= (a+ a′).(T b) + (a− a′).(T b′)

(A.75)

As previously in section (A.3), let us define
k+a+ = a+ a′ k−a− = a− a′ (A.76)

This implies a+.a− = 0. Then, taking a±, a and a′ normalized to one and a.a′ = cos θ with θ ∈ [0, π] one
gets

k+ = 2 cos
θ

2
k− = 2 sin

θ

2
(A.77)

that is to say
⟨B̂(i,j)⟩ = a+.(T b)2 cos

θ

2
+ a−.(T b′)2 sin

θ

2
(A.78)

Again, this last expression looks like f(ϕ) = x cosϕ+y sinϕ = ρ cos(ϕ−φ) for x = ρ cosφ and y = ρ sinφ.
Then one sees that f is maximum for fmax = ρ and since ρ2 = x2 + y2 one can maximize ⟨B̂(i,j,k)⟩ by
obtaining for the right hand side of (A.75)

2
√

[a+.(T b)]2 + [a−.(T b′)]2 (A.79)
Clearly, one can see that this expression is maximal for a+.T b = ∥a+∥∥T b∥ cosϕ+ and for a−.T b =

∥a−∥∥T b′∥ cosϕ− with ϕ+ and ϕ− equal to 0 or π. But since the two scalar products and all the compo-
nents of the matrix and of the vectors are here real, taking the hermitian conjugate of the previous rela-
tions, onehasa+.T b = b.T̂ Ta+ anda−.T b′ = b′.T̂ Ta−. Thus onehas alsob.T Ta+ = ∥b∥∥T Ta+∥ cosφ+and b′.T Ta− = ∥b′∥∥T Ta−∥ cosφ− which is of course still maximal for φ+ and φ− equal to 0 or π. With
the vectors b and b′ normalized to unity, this implies that the previous expression for the r.h.s of (A.75)
is just

2

√
||T̂ Ta+||2 + ||T̂ Ta−||2 (A.80)

which has still to be maximized with the conditions a+.a− = 0 and a+/− normalized. As shown in [192],
in the previous relation, one has the scalar product for example [a+]rTrtT T

ts [a+]s. The matrix T T T being
symmetric it can be diagonalized and has real eigenvalues. In order to maximize our relation one must
take in this scalar product a+ as being the eigenvector of the extremal (maximal or minimal) eigenvalue
λ1 of the matrix T T T . Then, since a+ and a− are orthogonal one must take a− as being the eigenvector
of the second extremal (maximal or minimal) eigenvalue λ2 of the matrix T T T . One is finally left with

max a+,a− ||T̂ Ta+||2 + ||T̂ Ta−||2 = λ21 + λ22 (A.81)
Let us remark that one could have also defined from (A.75) the a± vectors not as given in (A.76) but as
k+a+ = b+ b′ and k−a− = a− a′. In this case one would have ended up with a maximization of (A.75)
given by

max a+,a− ||T̂ a+||2 + ||T̂ a−||2 = λ21 + λ22 (A.82)
which implies that T T T and T TT have same eigenvalues9. Thus the CHSH parameter B(i|2)(ω) defined
in (4.211) reads

B(i|2) = 2
√
λ1 + λ2 , (A.83)

9The twomatrices have different off-diagonal terms at non zero temperature for j = 2 but their eigenvalues given
in (A.88) are the same even if for T T T one has C = T (ij)

xx T (ij)
yx + T (ij)

yy T (ij)
xy which differs by a minus sign from the

C given in (A.87).
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where λ1 and λ2 are the two largest eigenvalues of matrix T T T where T (ω) is the 3 × 3 matrix with
entries

T (ij)
rs =

〈
Π̂(i)

r ⊗ Π̂(j)
s

〉
, (A.84)

with (r, s) ∈ {x, y, z}2 (see Eq. (4.194)) and (ij) = (01), (02) or (12). The similar procedure for obtaining
the upper bound of expression (A.83), also known as the Cirel’son bound, has already been mentioned
at the end of Appendix A.3. Therefore the upper bound of B(i|2) corresponds to the value 2

√
2 given in

(A.74).
At zero temperature or at any finite temperature in a generic basis where the covariance matrix σe is

not necessarily in its standard form, the 3×3 hermitian matrix T TT given in (A.82) must be diagonalized
in order to obtain the two extremal eigenvalues needed to maximize (A.80) through (A.81) : then a+ and
a− will be the two eigenvectors of this matrix corresponding to the two extremal eigenvalues 10. The
results presented in Appendix A.10.2 show that in all the cases we consider the matrix T (ω) is block
diagonal11 :

T =

Txx Txy 0
Tyx Tyy 0
0 0 Tzz

 , (A.85)
and thus

T T T =

A C 0
C B 0
0 0 T 2

zz

 , (A.86)
with

A = T 2
xx + T 2

yx B = T 2
yy + T 2

xy C = TxxTxy + TyyTyx (A.87)
one obtains the eigenvalues

λ1 = T 2
zz

λ2 =
A+B +

√
(A−B)2 + 4C2

2

λ3 =
A+B −

√
(A−B)2 + 4C2

2

(A.88)

defined in such a way that
λ1 →

T=0
T 2
zz

∣∣∣
T=0

λ2 →
T=0

T 2
xx

∣∣∣
T=0

λ3 →
T=0

T 2
yy

∣∣∣
T=0

(A.89)
with the largest eigenvalues of matrix T T T for zero or finite temperature being always λ1 and λ2 as canbe seen from the final remarks in Appendix A.10.2. For the two-mode state i2 with i = 0, 1 they can be
computed from Expressions (4.196), (4.198) and (A.87). The detailed computations for all the (ij) states
are given in Appendix A.10.2. With this in mind, Eq. (A.83) determines the value of the CHSH parameter
(4.211).

As a final remark we can recall here that instead of choosing to work in the basis of the c-modes,
one may perform a Local Linear Unitary BOgoliubov transformation (LLUBO) for attempting to simplify
the form of the covariance matrix. As already stated in Appendix 4.3.3, in the bipartite case, the 4 × 4

covariance matrix (4.175) associated with the reduced two-mode state (i|2) can be brought by an appro-
priately chosen LLUBO to a standard form where the matrix εi2 are diagonal [117]. Working in this basis
does not alter the entanglement properties of the system (they remain unaffected compared to that of
the c-modes), butmakes the computations easier andmay improve the signal of nonlocality. In this basis
the result (4.196) is not affected and at any (zero or finite) temperature expressions (4.198) modify to

Txx =
2

π
arctan

2 |⟨ĉiĉ2⟩|√
Ai2

= −Ai2Tyy,

Txy = Tyx = 0,

(A.90)
10For j = 1 and therefore i = 0 the matrix T is hermitian and therefore the eigenvalues of T TT are just theeigenvalues of T squared.
11For simplicity we write T (ij)

rs simply as Trs since the i and j can easily be restored.
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where Ai2 is defined in Eq. (4.199). The matrix T is thus diagonal and λ2 in expression (A.88) is equal to
T 2
xx. Equation (A.83) then reads

B(i|2) =2
√

T 2
xx + T 2

zz (A.91a)
=2

√
4

π2
arctan2

(
2|⟨ĉiĉ2⟩|√

Ai2

)
+

1

A2
i2

. (A.91b)
We note here that the difference between the result (A.83) evaluated in the c-mode basis and expression
(A.91b) is always small. The reason is that, in the c-mode basis, the off diagonal entries of the upper left
blocks of matrix (A.85) and (A.86) are always small compared to the diagonal ones, because at all tem-
perature |Im ⟨ĉiĉ2⟩| ≪ |Re ⟨ĉiĉ2⟩|. However, our numerical checks always demonstrate a small increase
of the Bell parameter (A.91b) compared to the one evaluated using (A.83) in the c-mode basis. We thus
present our numerical results in Figs. 4.2, 4.3, 4.3, 4.4, 4.7 and 4.7 using formula (A.91b).

To summarize, the result (A.91b) should be considered as an optimized value of the witness of non-
locality B(i|2). We note here that we do not have a general proof of the better efficiency of the method
which consists in using the basis in which the covariance matrix is in its standard form, but we believe
that a general mathematical result of this type would be quite useful.

A.5 . Tripartite Cirel’son bound and analytic maximization of ⟨Ŝ (0|1|2)(ω = 0)⟩

In this section we first study the upper bound of the quantity S(0|1|2)(ω) defined in (4.216) and then
study the possibility of maximisation of the average ⟨Ŝ (0|1|2)⟩ of the operator (4.215) by an appropriate
choice of the measurement directions a, a′, b, b′, c and c′. Denoting as Â = a · Π̂(0), Â′ = a′ · Π̂(0),
B̂ = b · Π̂(1), etc. makes it possible to write the square of the tripartite Svetlichny operator (4.215) as

4
(
Ŝ (0|1|2)

)2
=8 + {Â, Â′} ⊗ {B̂, B̂′} ⊗ {Ĉ, Ĉ ′}

− 2[Â, Â′]⊗ [B̂, B̂′]⊗ 1(2)

− 21(0) ⊗ [B̂, B̂′]⊗ [Ĉ, Ĉ ′]

− 2[Â, Â′].⊗ 1(1) ⊗ [Ĉ, Ĉ ′],

(A.92)

where [·, ·] and {·, ·} denote the commutator and the anticommutator, respectively. From the SU(2) al-
gebra of the pseudo-spins it is easily proven that

[Â, Â′] = 2i(a× a′) · Π̂(0), (A.93a)
{Â, Â′} = 2(a · a′)1(0), (A.93b)

with similar formulae for the quantities B̂, B̂′ and Ĉ , Ĉ ′. Since the operators Â, B̂ and Ĉ operate in
different Hilbert spaces, one can assume without loss of generality that all the vector products of type
(A.93a) appearing in (A.92) are colinear with ez . In this case all the unit vectors a, a′, b, b′, c and c′ lie in
the xy plane. Denoting as θa the angle between a′ and a, θb the angle between b′ and b, and θc the anglebetween c′ and c (all these angles being in [0, π]), one gets(

Ŝ (0|1|2)
)2

=2 + 2 cos θa cos θb cos θc

+ 2 sin θa sin θb Π̂
(0)
z ⊗ Π̂(1)

z ⊗ 1(2)

+ 2 sin θb sin θc 1
(0) ⊗ Π̂(1)

z ⊗ Π̂(2)
z

+ 2 sin θa sin θc Π̂
(0)
z ⊗ 1(1) ⊗ Π̂(2)

z

(A.94)

It is a simple matter to check that when θa, θb and θc run each through [0, 2π] the eigenvalues of the
operator appearing in the right hand side of the above formula are all comprised in [0, 8]. The extremal
values 0 and 8 are reached for (θa, θb, θc) = (0, 0, π) and (π/2, π/2, π/2), respectively. It then follows that
for any choice of the measurement directions a, a′, b, b′, c and c′〈

Ŝ (0|1|2)
〉2

≤
〈
(Ŝ (0|1|2))2

〉
≤ 8 (A.95)
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and thus the tripartite entanglement parameter (4.216) verifies
S(0|1|2)(ω) ≤ 2

√
2 (A.96)

This is the tripartite equivalent of Cirel’son bound.
In the remaining of this Appendix we consider a related but somehow different problem. In order to

violate as much as possible the Svetlichny inequality S(0|1|2) < 2we aim at choosing measurement direc-
tions a, a′, b, b′, c and c′ which maximize the expectation value of Ŝ (0|1|2). This can be done numerically
as explained in Appendix A.6. We show here that this maximization can also be performed analytically
in a particular instance. As previously in section (A.3), let us define

k+a+ = a+ a′ k−a− = a− a′ (A.97)
This implies a+.a− = 0. Then, taking a±, a and a′ normalized to one and a.a′ = cos θ with θ ∈ [0, π] one
obtains

k+ = 2 cos
θ

2
k− = 2 sin

θ

2
(A.98)

which yields in (4.216)
⟨Ŝ (0,1,2)⟩ = + cos

θ

2
⟨a+.Π̂(0) ⊗ b.Π̂(1) ⊗ c′.Π̂(2)⟩+ sin

θ

2
⟨a−.Π̂(0) ⊗ b′.Π̂(1) ⊗ c′.Π̂(2)⟩

+ cos
θ

2
⟨a+.Π̂(0) ⊗ b′.Π̂(1) ⊗ c.Π̂(2)⟩ − sin

θ

2
⟨a−.Π̂(0) ⊗ b.Π̂(1) ⊗ c.Π̂(2)⟩

(A.99)

Defining
W = ⟨a+.Π̂(i) ⊗ b.Π̂(j) ⊗ c′.Π̂(k)⟩

Z = ⟨a+.Π̂(i) ⊗ b′.Π̂(j) ⊗ c.Π̂(k)⟩

X = ⟨a−.Π̂(i) ⊗ b′.Π̂(j) ⊗ c′.Π̂(k)⟩

Y = ⟨a−.Π̂(i) ⊗ b.Π̂(j) ⊗ c.Π̂(k)⟩

(A.100)

the previous expression (A.99) giving the average of the three-mode operator (4.215) becomes, taking
θ = ϕ/2,

⟨Ŝ (0|1|2)⟩ = (W + Z) cosϕ+ (X − Y ) sinϕ, (A.101)
One can then easily see that, exactly as previously in section (A.3), this last expression looks like f(ϕ) =
x cosϕ + y sinϕ = ρ cos(ϕ − φ) for x = ρ cosφ and y = ρ sinφ. Then one sees that f is maximum for
fmax = ρ with ρ2 = x2 + y2. Therefore it is convenient to introduce temporarily the notations

W + Z = ρ cosφ, X − Y = ρ sinφ (A.102)
which make it possible to cast (A.101) under the simple form

⟨Ŝ (0|1|2)⟩ = ρ cos(ϕ− φ) (A.103)
The maximum value of this expression is ρ, i.e.

maxθ⟨Ŝ (0|1|2)⟩ =
√

(W + Z)2 + (X − Y )2. (A.104)
The next step of the maximization procedure is easily performed at zero temperature and zero energy
(ω = 0). The reason is that, as illustrated in a typical case by (A.114), the explicit expressions of the W ,
X , Y , Z coefficients in (A.100) and (A.104) involve combinations of terms of the type Trst (as defined in
Eq. (4.195)) that take on particularly simple values at T = 0 and ω = 0. Firstly, all the Trst with at least
one component along x vanish. Therefore, the contribution of the components along x of the different
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vectors involved in (A.100) cancels. It is thus enough to perform the maximization only considering vec-
tors a±, b, b′, c and c′ lying in the y, z plane. A second simplification stems from the fact that, in the y, z
plane, all the Trst’s with an odd number of y cancel at T = 0 and ω = 0. In the waterfall and delta peak
configurations12 the only non-zero coefficients are (see the discussion in Appendix 4.3.1)

Tzzz = Tyyz = Tyzy = −Tzyy = 1. (A.105)
In this case, the particular choice

a+ = b = c′ = ez, a− = −b′ = −c = ey, (A.106)
plugged in Eqs. (A.100) leads to

W + Z = Tzzz + Tzyy = 2,

X − Y = −Tyyz + Tyzy = 2.
(A.107)

and expression (A.104) then shows that the upper bound (A.96) is reached. It is therefore not possible
that another arrangement of vectors a, a′, b, b′, c and c′ reaches a higher value and thus

S(0|1|2)(ω = 0) =
T=0

2
√
2. (A.108)

The situation is completely different at finite temperature. In this case, as explained in Appendix 4.3.1 all
the averages of the type (4.195) cancel when ω → 0. It then follows that the quantities (A.100) behave in
the same way and thus

S(0|1|2)(ω = 0) =
T ̸=0

0. (A.109)
A final remark regarding the maximal value of S(0|1|2)(ω) at zero temperature when computed in the

{f} basis. In this basis, at zero temperature, one has at all energies
Trst =

{f}
⟨Π̂(f0)

r ⊗ Π̂(f1)
s ⊗ Π̂

(f2)
t ⟩ = ⟨Π̂(f0)

r ⟩⟨Π̂(f1)
s ⊗ Π̂

(f2)
t ⟩ (A.110)

with
⟨Π̂(f0)

z ⟩ = 1 ⟨Π̂(f0)
y ⟩ = 0 ⟨Π̂(f0)

x ⟩ = 0 (A.111)
Then, one can take in (A.100) and (A.104) the vector a+ = ±ez and one is therefore left with

max θ⟨Ŝ (f0|f1|f2)(ω)⟩
∣∣
T=0

= |⟨b.Π̂(f1) ⊗ c′.Π̂
(f2)⟩+ ⟨b′.Π̂

(f1) ⊗ c.Π̂
(f2)⟩| (A.112)

Since in this basis ⟨T̂ρ⟩(f1,f2)zz = 1 at all energies and since the vector b, b′, c and c′ are not constrained
with respect to each other one can take them all to be +ez , thus obtaining

S(f0|f1|f2)(ω) =
T=0

2 (A.113)
Taking a− = ±ez instead of a+ doesn’t change the result of the maximization. Therefore, at any energy,
there is never violation of the Svetlichny inequality when the average (4.216) of the Svetlichny operator
is computed in the {f} basis since at zero temperature, in this basis, the system is in a genuine bipartite
(i.e. not tripartite) state (see section 4.6.5).
12The situation is slightly different in the case of a flat profile configuration, where Tyyz = −1 and Tzzz = Tzyy =
Tyzy = 1, with all other coefficients also vanishing. Once this modification is accounted for, the maximizationprocedure yields the same final result.
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A.6 . Numerical maximization of ⟨Ŝ (0|1|2)⟩

As explained in Sec. 4.6, the maximal value of the three-mode Bell operator ⟨Ŝ (0|1|2)⟩ can be found
by optimizing the orientation of the unit vectors a, a′, b, b′, c and c′. However, solving this optimization
problem analytically proves challenging due to the need to maximize a function depending on 12 real
parameters. Indeed, the orientation of each of the six previous normalized vectors in the 3-dimensional
physical space corresponds to six times two degrees of freedom, leading in total to twelve parameters.

Consequently, we resort to a numerical method to evaluate the maximal violation of Bell inequali-
ties and determine the corresponding optimal orientations for the vectors a, a′, b, b′, c, and c′. More
explicitly, we use a genetic algorithm which has proved very efficient for optimizing a function over
a large parameter space [193]. This algorithm is based on natural selection : the code starts with a
random set of solutions (in our case each of them consists of 12 parameters) which form all together
what we call a population. For each set of vectors (a,a′, b, b′, c, c′), the expectation value ⟨Ŝ (0|1|2)⟩ is
then computed by means of the technique exposed in 4.3.1. For instance the contribution of the term
⟨a · Π̂(0)⊗ b · Π̂(1)⊗ c · Π̂(2)⟩ to ⟨B̂(0|1|2)⟩ can be evaluated from the knowledge of the terms Trst definedin Eq. (4.195) :

⟨a · Π̂(0) ⊗ b · Π̂(1) ⊗ c · Π̂(2)⟩ =
∑
r,s,t

arbsctTrst (A.114)

where the sum runs over the indices (r, s, t) ∈ {x, y, z}3. At variance with the bipartite case, at finite
temperature it not not possible to find a Local Linear Unitary BOgoliubov transformation (LLUBO) en-
abling to cast the 6 × 6 covariance matrix (4.146) under a standard form where all the εij matrices are
diagonal (see the discussion in 4.3.3). The expectation values are thus computed in the natural basis of
the c-modes where the values of the Trst coefficients are given by Eqs. (4.202), (4.203), (4.204) and (4.205).

At each step of the algorithm the code computes the expectation value ⟨Ŝ (0|1|2)⟩ for a set of vectors
(a,a′, b, b′, c, c′) and ranks the members of the population by computing a fitness scaling function, a kind
of selection rule : only the members of the population with the lowest fitness value will be retained –
they are called the parents – and used to generate new sets of solutions, called the children. Then, at
the next step, the selection rules are applied to the children, some of them become parents in turn and
engender a new generation. The algorithm stops when all children look like their parents, or, in other
words, when

|vℓ+1 − vℓ| < δ, (A.115)
where vℓ = (a,a′, b, b′, c, c′) is the set of solutions at step ℓ of the algorithm, and δ is the chosen conver-
gence precision fixed before the beginning of the selection process.

In our case, the fitness scaling function is simply the opposite of the average ⟨Ŝ (0|1|2)⟩ of the three-
mode Bell operator. Trying to obtain the lowest fitness score is thus equivalent to maximize the Bell
operator. For a given set of vectors vℓ at step ℓ, the next generation is computed as follows : vℓ+1 =

vℓ + wℓ, where wℓ is a random weight which controls the mutations between the parents vℓ and the
children vℓ+1, andwhich tends to decreasewhen the code starts to converge. For a detailed presentationof the algorithm we refer to Ref. [194]. Note finally that the procedure just presented is also used for
determining the optimized Mermin parameter (4.232).

A.7 . Basis dependent expressions of the covariance matrix of the system

A.7.1 . Rotated covariance matrix of the three-mode state at any finite temperature

Recalling that (4.173) is given by

[σi]e =

Ai 0

0 Ai

 [ϵ01]e =

 F01 G01

−G01 F01

 [ϵi2]e =

 Fi2 −Gi2

−Gi2 −Fi2

 (A.116)
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one has explicitly

σe =


[σ0]e [ϵ01]e [ϵ02]e

[ϵT01]e [σ1]e [ϵ12]e

[ϵT02]e [ϵT12]e [σ2]e

 =



A0 0 F01 G01 F02 −G02

0 A0 −G01 F01 −G02 −F02

F01 −G01 A1 0 F12 −G12

G01 F01 0 A1 −G12 −F12

F02 −G02 F12 −G12 A2 0

−G02 −F02 −G12 −F12 0 A2


(A.117)

The determinant of the matrix σe is
detσe = D2 (A.118)

with
D = A0A1A2 −A0(F

2
12 +G2

12)−A1(F
2
02 +G2

02)−A2(F
2
01 +G2

01)

−2F02G01G12 + 2F12G01G02 + 2F01G02G12 + 2F01F02F12

(A.119)
Then, setting

Aij =
i<j

AiAj − (F 2
ij +G2

ij)

B0 = −A0F12 + F01F02 +G01G02

B1 = −A1F02 + F01F12 −G01G12

B2 = −A2F01 + F02F12 +G02G12

(A.120)

and
C0 = −A0G12 − F02G01 +G02F01

C1 = −A1G02 + F12G01 +G12F01

C2 = −A2G01 − F02G12 +G02F12

(A.121)

the inverse of the matrix σe is

[σe]
−1 =

1

D



A12 0 B2 C2 B1 −C1

0 A12 −C2 B2 −C1 −B1

B2 −C2 A02 0 B0 −C0

C2 B2 0 A02 −C0 −B0

B1 −C1 B0 −C0 A01 0

−C1 −B1 −C0 −B0 0 A01


(A.122)

One can also check 13 that
A01A02 − (B2

0 + C2
0 ) = A0D

A01A12 − (B2
1 + C2

1 ) = A1D

A02A12 − (B2
2 + C2

2 ) = A2D

(A.123)

At T = 0 in a standard form basis one has also
B1B2 −A12B0 =

T=0
F12D

B0B2 −A02B1 =
T=0

F02D

B0B1 −A01B2 =
T=0

F01D

(A.124)

13These are useful relations for computing the Wigner function integrals.
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Relation (A.122) is a generic definition of the inverse covariance matrix of our system and it is valid for
any (zero or finite) temperature. The zero temperature inverse covariance matrix is obtained by taking
the values at T = 0 of its components using the zero temperature expressions of (4.172). Furthermore,
at zero temperature, an appropriate rotation can always be found in order to obtain the standard form
of the inverse covariance matrix.

A.7.2 . Rotated covariance matrix of the 3-mode state at zero temperature
When, in the idealised case, the system is considered to be at zero temperature, the average ⟨...⟩ is

taken over the vacuum of the incoming modes and is given by ⟨...⟩0 : in this section, in order to lightenthe notation, we will consider ⟨...⟩ to be ⟨...⟩0. One can then take σe = SRσcS
T
R of (4.157) with

SR = diag{R(φ02), R(φ12), R(−φ22)} (A.125)
that is to say

Φi2 =
i ̸=2

φi2

Φ22 = −φ22

(A.126)
with the φij given by (4.64). In the vacuum state, relations (4.59), (4.64) and (4.65) imply

⟨ĉ0ĉ†1⟩ = |S00||S10|ei(φ00−φ10) + |S01||S11|ei(φ01−φ11) = |S02||S12|ei(φ02−φ12) (A.127)
and therefore

|⟨ĉ0ĉ†1⟩| = |S02||S12|
Re⟨ĉ0ĉ†1⟩ = |⟨ĉ0ĉ†1⟩| cos(φ02 − φ12)

Im⟨ĉ0ĉ†1⟩ = |⟨ĉ0ĉ†1⟩| sin(φ02 − φ12)

(A.128)

Similarly one has
⟨ĉiĉ2⟩ =

i ̸=2
|Si0||S20|ei(φi0−φ20) + |Si1||S21|ei(φi1−φ21) = |Si2||S22|ei(φi2−φ22) (A.129)

and therefore
|⟨ĉiĉ2⟩| =

i ̸=2
|Si2||S22|

Re⟨ĉiĉ2⟩ =
i ̸=2

|⟨ĉiĉ2⟩| cos(φi2 − φ22)

Im⟨ĉiĉ2⟩ =
i ̸=2

|⟨ĉiĉ2⟩| sin(φi2 − φ22)

(A.130)

Furthermore, using (4.59) one gets
⟨ĉ†i ĉi⟩ =

i ̸=2
|Si2|2

⟨ĉ†2ĉ2⟩ = |S20|2 + |S21|2 = |S22|2 − 1
(A.131)

where to obtain the last equality of the second line we have used (4.62). Then, looking at (A.128) and
(A.130), one can write from (A.131)

|⟨ĉ0ĉ†1⟩| = |S02||S12| =
√

⟨ĉ†0ĉ0⟩
√
⟨ĉ†1ĉ1⟩

|⟨ĉiĉ2⟩| =
i ̸=2

|Si2||S22| =
√

⟨ĉ†i ĉi⟩
√
1 + ⟨ĉ†2ĉ2⟩

(A.132)

Finally, writing
ai = 1 + 2⟨ĉ†i ĉi⟩ (A.133)

one obtains, considering (4.165),
[σi]e = ai 12

[ϵ01]e =
√
a0 − 1

√
a1 − 112 = b0112

[ϵi2]e =
i ̸=2

√
ai − 1

√
a2 + 1σz = bi2σz

(A.134)
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with σz the Pauli matrix and
b01 =

√
a0 − 1

√
a1 − 1 bi2 =

i ̸=2

√
ai − 1

√
a2 + 1 (A.135)

In terms of the scattering matrix components one has therefore
a0 = 1 + 2|S02|2 a1 = 1 + 2|S12|2 a2 = −1 + 2|S22|2 (A.136)

and
b01 = 2|S02||S12| b02 = 2|S02||S22| b12 = 2|S12||S22| (A.137)

A.7.3 . Covariance matrix in the {f̂} basis
At any zero or finite temperature, one obtains in the f̂ basis, the general expressions

[σi]f =

(
Ai 0
0 Ai

)
(A.138)

and
[ϵ01]f =

(
F01 G01

−G01 F01

)
[ϵ02]f =

(
F02 G02

G02 F02

)
[ϵ12]f =

(
F12 0
0 −F12

)
(A.139)

for the [σi]f and [ϵij ]f of the covariance matrix, with
A0 = 1 + 2⟨f̂ †0 f̂0⟩ →

T=0
a0 = 1

A1 = 1 + 2⟨f̂ †1 f̂1⟩ →
T=0

a1 = −1 + 2|S22|2

A2 = 1 + 2⟨f̂ †2 f̂2⟩ →
T=0

a2 = −1 + 2|S22|2

F01 = 2Re⟨f̂0f̂ †1⟩ →
T=0

0

G01 = 2 Im⟨f̂0f̂ †1⟩ →
T=0

0

F12 = 2Re⟨f̂1f̂2⟩ = 2⟨f̂1f̂2⟩ →
T=0

f12 = 2|S22|
√
|S22|2 − 1

F02 = 2Re⟨f̂0f̂2⟩ →
T=0

0

G02 = 2 Im⟨f̂0f̂2⟩ →
T=0

0

(A.140)

as can be seen from (4.180). At zero temperature then one can see that mode 0 decouples from the
two other modes and therefore

[σ]f =
T=0

σ(f0) ⊕ σ(f1|f2) (A.141)
Then,

[σi]f =
T=0

ai 0

0 ai

 [ϵ01]f =
T=0

[ϵ02]f = 02×2 [ϵ12]f =
T=0

f12 0

0 −f12

 (A.142)
or, explicitly,

σf =
T=0


[σ0]f [ϵ01]f [ϵ02]f

[ϵT01]f [σ1]f [ϵ12]f

[ϵT02]f [ϵT12]f [σ2]f

 =
T=0



1 0 0 0 0 0

0 1 0 0 0 0

0 0 a1 0 f12 0

0 0 0 a1 0 −f12
0 0 f12 0 a2 0

0 0 0 −f12 0 a2


(A.143)

The determinant of the matrix σf is
detσf =

T=0
[d]2 (A.144)
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with
d = a1a2 − [f12]

2 = 1 (A.145)
Then, setting

a12 = a1a2 − [f12]
2 = d = 1 a02 = a2 a01 = a1 b0 = −f12 (A.146)

the inverse of the matrix σf is

[σf ]
−1 =

T=0



1 0 0 0 0 0

0 1 0 0 0 0

0 0 a02 0 b0 0

0 0 0 a02 0 −b0
0 0 b0 0 a01 0

0 0 0 −b0 0 a01


(A.147)

Let us remark here that the maximized violation of Bell’s inequalities for the three-mode system at zero
temperature in the f̂ basis has been computed in (A.113). Regarding the maximized violation for the
two-mode system one has at any temperature and after tracing out the f̂0 mode :

σ
(12)
f =


A1 0 F12 0

0 A1 0 −F12

F12 0 A2 0

0 −F12 0 A2

 =
T=0


a1 0 f12 0

0 a1 0 −f12
f12 0 a2 0

0 −f12 0 a2

 (A.148)

The determinant of the σ(12)f matrix is then
det[σ

(12)
f ] =

i ̸=2
[A1A2 − F 2

12]
2 = [(1 + 2n̄01)(1 + 2n̄2)]

2 =
T=0

1 (A.149)
The determinant of σ(12)f is therefore always one at all energies at all temperatures (zero or finite). The
inverse of σ(12)f is

[σ
(12)
f ]−1 =

1

A12


A2 0 −F12 0

0 A2 0 F12

−F12 0 A1 0

0 F12 0 A1

 =
T=0


a2 0 −f12 0

0 a2 0 f12

−f12 0 a1 0

0 f12 0 a1

 (A.150)

with here, since here G12 = 0,
A12 = A1A2 − F 2

12 (A.151)
To obtain the maximization of the violation in the f̂ after tracing out mode f̂0 one must then simply
use the same Trst as for the Hawking-Partner pair, i.e. pair (1, 2), but replacing the different terms by
the corresponding expression obtained in this section : especially one must take G12 = 0 and A12 =

A1A2 − F 2
12 at all energies and all temperatures (zero or finite).

A.8 . Rotated covariance matrices of the two-mode states

The Hawking-Partner state and the Companion-Partner state

Tracing out of our system state either the Hawking (particle 0) or the Companion (particle 1), i.e. taking
ξ̂(i2) =

i ̸=2

√
2(q̂i, p̂i, q̂2, p̂2)

T (A.152)
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one straightforwardly obtains from (4.146) the rotated two mode covariance matrix

σe =
i ̸=2

[σi]
(i2)
e [ϵi2]e

[ϵTi2]e [σ2]e

 =


Ai 0 Fi2 −Gi2

0 Ai −Gi2 −Fi2

Fi2 −Gi2 A2 0

−Gi2 −Fi2 0 A2

 =
T=0


ai 0 bi2 0

0 ai 0 −bi2
bi2 0 a2 0

0 −bi2 0 a2

 (A.153)

where the last relation points out that it always possible to find a rotation that put the covariance matrix
in the standard form14. The determinant of the σe matrix is then

det[σ(i2)e ] =
i ̸=2

A2
i2 →

T=0
a2i2 (A.154)

and the inverse is

[σ(i2)e ]−1 =
i ̸=2

1

Ai2


A2 0 −Fi2 Gi2

0 A2 Gi2 Fi2

−Fi2 Gi2 Ai 0

Gi2 Fi2 0 Ai

 =
T=0

1

ai2


a2 0 −bi2 0

0 a2 0 bi2

−bi2 0 ai 0

0 bi2 0 ai

 (A.155)

The Hawking-Companion state

Tracing out of our system state the Partner (particle 2), i.e. taking
ξ̂(01) =

i ̸=2

√
2(q̂0, p̂0, q̂1, p̂1)

T (A.156)
one straightforwardly obtains from (4.146) the rotated two mode covariance matrix

σ(01)e =

 [σ0]e [ϵ01]e

[ϵT01]e [σ2]e

 =


A0 0 F01 G01

0 A0 −G01 F01

F01 −G01 A1 0

G01 F01 0 A1

 =
T=0


a0 0 b01 0

0 a0 0 b01

b01 0 a1 0

0 b01 0 a1

 (A.157)

The determinant of the σe matrix is
det[σ(01)e ] = A2

01 →
T=0

a201 (A.158)
and the inverse is

[σ(01)e ]−1 =
1

A01


A1 0 −F01 −G01

0 A1 G01 −F01

−F01 G01 A0 0

−G01 −F01 0 A0

 =
T=0

1

a01


a1 0 −b01 0

0 a1 0 −b01
−b01 0 a0 0

0 −b01 0 a0

 (A.159)

A.9 . Gaussian Wigner function

A.9.1 . Gaussian Wigner function for the 3-mode state

14Therefore the notation T = 0 implies the existence of such a rotation but doesn’t mean that all the basis at zerotemperature lead to the standard form.
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For our 3-mode state, i.e. for q = {q0, q1, q2} and p = {p0, p1, p2}, i.e. for
ξ̂ =

i ̸=2

√
2(q̂0, p̂0, q̂1, p̂1, q̂2, p̂2)

T (A.160)

the Wigner function is given by
Wρ̂(q,p) = N3W+(q)W−(p)W (q,p) (A.161)

where

N3 =
1

π3D

W+(q) = exp

{
−A12q

2
0 +A02q

2
1 +A01q

2
2 + 2B2q0q1 + 2B1q0q2 + 2B0q1q2

D

}
W−(p) = exp

{
−A12p

2
0 +A02p

2
1 +A01p

2
2 + 2B2p0p1 − 2B1p0p2 − 2B0p1p2

D

}
W (q,p) = exp

{
−2C2(q0p1 − q1p0)− 2C1(q0p2 + q2p0)− 2C0(q1p2 + q2p1)

D

}
(A.162)

Then one can check 15 that (A.162) is normalized as
∫ +∞

−∞
dq0dp0dq1dp1dq2dp2Wρ̂(q0, p0, q1, p1, q2, p2) = Tr{ρ̂} = 1 (A.163)

A.9.2 . Gaussian Wigner function for the 2-mode states
For our entangled two-mode state where N = 2 for the dimension of q with q =

j>i
{qi, qj} and p =

j>i

{pi, pj}, i.e.
ξ̂(ij) =

j>i

√
2(q̂i, p̂i, q̂j , p̂j)

T (A.164)
the Wigner function is given by

Wρ̂(q,p) = N (ij)W−(q)W±(p)W
±(q,p) (A.165)

where
N (ij) =

j>i

1

π2Aij

W−(q) =
j>i

exp

{
−
Ajq

2
i +Aiq

2
j − 2Fijqiqj

Aij

}

W±(p) =
j>i

exp

{
−
Ajp

2
i +Aip

2
j ± 2Fijpipj

Aij

}

W±(q,p) =
i ̸=2

exp

{
−2Gij [qjpi ± qipj ]

Aij

}
(A.166)

15Using the "completing the square" formula (with a real and positive)
∫ +∞

−∞
dx e−ax2+bx+c =

√
π

a
e

b2

4a+c
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with W± and W± respectively being W+ and W+ for j = 2 (i.e. i = 0, 1) or W− and W− for j = 1 (i.e.
i = 0). This means that one has explicitly

Wρ̂(q,p) = N (i2)W−(q)W+(p)W
+(q,p)

W−(q) =
i ̸=2

exp

{
−Aiq

2
2 +A2q

2
i − 2Fi2qiq2
Ai2

}
W+(p) =

i ̸=2
exp

{
−Aip

2
2 +A2p

2
i + 2Fi2pip2
Ai2

}
W+(q,p) =

i ̸=2
exp

{
−2Gi2 [qip2 + q2pi]

Ai2

}
(A.167)

and

Wρ̂(q,p) = N (01)W−(q)W−(p)W
−(q,p)

W−(q) = exp

{
−A0q

2
1 +A1q

2
2 − 2F01q0q1
A01

}
W−(p) = exp

{
−A0p

2
1 +A1p

2
0 − 2F01p0p1
A01

}
W−(q,p) = exp

{
−2G01 [q1p0 − q0p1]

A01

}
(A.168)

Again one can check that (A.165) is normalized as
∫ +∞

−∞
dqidpidqjdpjWρ̂(qi, pi, qj , pj) = Tr{ρ̂} = 1 (A.169)

A.10 . Expectation values for continuous variables through the Wigner function

A.10.1 . Wigner function of the GKMR pseudo-spins

Using the |qi⟩ basis with i = {0, 1, 2}, one obtains

WΠ̂z
(qi, pi) =

∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi| Π̂z |qi + 1

2zi⟩

=
∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi|

[∫ +∞
−∞ dq′i |q′i⟩ ⟨−q′i|

]
|qi + 1

2zi⟩

=
∫ +∞
−∞ dzi e

ipizi
∫ +∞
−∞ dq′i ⟨qi − 1

2zi|q′i⟩ ⟨−q′i|qi + 1
2zi⟩

= δ(2qi)
∫ +∞
−∞ dzi e

ipizi

= 2π δ(2qi)δ(pi)

= π δ(qi)δ(pi)

(A.170)

140



where a change of variable Zi = zi/2 has been performed before integration over Z in order to take into
account the scaling properties of the δ function. Similarly, one obtains

WΠ̂y
(qi, pi) =

∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi| Π̂y |qi + 1

2zi⟩

=
∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi|

[
i
∫ +∞
0 dq′i |q′i⟩ ⟨−q′i| − i

∫ +∞
0 dq′i |−q′i⟩ ⟨q′i|

]
|qi + 1

2zi⟩

= 2i δ(2qi)e
−2ipiqi

∫ +∞
0 dq′i

[
e−2ipiq

′
i − e2ipiq

′
i

]
= i δ(qi)

∫ +∞
0 dq′i

[
e−2ipiq

′
i − e2ipiq

′
i

]
= i δ(qi)

[∫ +∞
0 dq′i sgn(q′i)e−2ipiq

′
i +
∫ 0
−∞ dq′i sgn(q′i)e−2ipiq

′
i

]
= i δ(qi)

∫ +∞
−∞ dq′i sgn(q′i)e−2ipiq

′
i

(A.171)

The last line can also be written−δ(qi)p.v.(1/pi) using limε→0+
∫ +∞
0 dq′ie

±2ipiq
′
ie−εq′ to compute the inte-

grals of the third last line. Finally one gets also
WΠ̂x

(qi, pi) =
∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi| Π̂x |qi + 1

2zi⟩

=
∫ +∞
−∞ dzi e

ipizi ⟨qi − 1
2zi|

[∫ +∞
0 dq′i |q′i⟩ ⟨q′i| −

∫ +∞
0 dq′i |−q′i⟩ ⟨−q′i|

]
|qi + 1

2zi⟩

= 2e−2ipiqi
∫ +∞
0 dq′i

[
e2ipiq

′
iδ(2qi − 2q′i)− e−2ipiq

′
iδ(2qi + 2q′i)

]
= 2

∫ +∞
0 dq′i [δ(2qi − 2q′i)− δ(2qi + 2q′i)]

=
∫ +∞
0 dq′i [δ(qi − q′i)− δ(qi + q′i)]

= Θ(qi)−Θ(−qi)

= sgn(qi)

(A.172)

where we used the definition of the Heaviside function Θ(x − a) =
∫ x
−∞ dx δ(x − a) to compute the

second last line after taking q′i → −q′i whereas the sign function in the last line is defined as sgn(qi) = +1

for qi positive, sgn(qi) = −1 for qi negative and sgn(qi) = 0.
A.10.2 . Expectation values of the GKMR pseudo-spins for the 2-mode states

From (4.194), (A.165) (A.170), (A.171) and (A.172) one has
⟨Π̂(i)

z ⊗ Π̂
(j)
z ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂z

(qi, pi)WΠ̂z
(qj , pj)

=
j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)π

2δ(qi) δ(pi) δ(qj) δ(pj)

=
j>i

π2N

=
j>i

1

Aij

(A.173)

The previous result is obtained in the general case of a thermal distribution. Setting the occupation
numbers to zero one gets the result for the vacuum state. Summarizing one has

⟨Π̂(i)
z ⊗ Π̂

(j)
z ⟩th =

j>i

1

Aij

⟨Π̂(i)
z ⊗ Π̂

(j)
z ⟩0 =

j>i

1

aij

(A.174)
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The computation for ⟨Π̂(i)
x ⊗Π̂

(j)
x ⟩ ismore involved : it requires (and so does ⟨Π̂(i)

y ⊗Π̂
(j)
y ⟩) some integration

steps by completing the square. One has
⟨Π̂(i)

x ⊗ Π̂
(j)
x ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂x

(qi, pi)WΠ̂x
(qj , pj)

= N
∫ +∞
−∞ dqidqjW−(qi, qj) sgn(qi) sgn(qj) ∫ +∞

−∞ dpidpjW±(pi, pj)

(A.175)

Writing Bij = 1/Aij and Cij = 1/[AiAj − F 2
ij ], the integration over p gives by completing the square

∫ +∞
−∞ dpidpjW±(pi, pj) =

j>i

∫ +∞
−∞ dpi e

−Bij [Ajp
2
i+2Gijqjpi]

×
∫ +∞
−∞ dpj e

−Bij [Aip
2
j±2(Gijqi+Fijpi)pj ]

=
j>i

π
√

Cij

Bij
eG

2
ijBijCij[Ajq

2
i +Aiq

2
j−2Fijqiqj]

(A.176)

and therefore
⟨Π̂(i)

x ⊗ Π̂
(j)
x ⟩ =

j>i

Nπ
√

Cij

Bij

∫ +∞
−∞ dqidqj sgn(qi) sgn(qj)e−Cij[Ajq

2
i +Aiq

2
j−2Fijqiqj]

=
j>i

Nπ
√

Cij

Bij

[∫ +∞
0 dqi e

−CijAjq
2
i
∫ +∞
0 dqje

[−CijAiq
2
j+2CijFijqiqj ]

−
∫ 0
−∞ dqi e

−CijAjq
2
i
∫ +∞
0 dqj e

[−CijAiq
2
j+2CijFijqiqj ]

−
∫ +∞
0 dqi e

−CijAjq
2
i
∫ 0
−∞ dqje

[−CijAiq
2
j+2CijFijqiqj ]

+
∫ 0
−∞ dqi e

−CijAjq
2
i
∫ 0
−∞ dqj e

[−CijAiq
2
j+2CijFijqiqj ]

]
(A.177)

Using the formula for a real∫ q

p
dx e−ax2+bx+c = e

b2

4a
+c

∫ Q

P
dX e−aX2

= e
b2

4a
+c

[
1

2

√
π

a

[erf(Q√
a)− erf(P√a)]] (A.178)

where erf(x) is the error function, with erf(±∞) = ±1, erf(0) = 0 and erf(−x) = − erf(x), and where we
have performed the change of variable

X = x− b

2a

P = p− b

2a

Q = q − b

2a

(A.179)

one is left with only
⟨Π̂(i)

x ⊗ Π̂(j)
x ⟩ =

j>i

Nπ
√
Cij

Bij

[
2

√
π

a

∫ +∞

0
dqi e

−CijAjq
2
i e

b2

4a
+c erf

(
b

2
√
a

)]
(A.180)

with a = CijAi , b = 2CijFijqi and c = 0, that is to say
⟨Π̂(i)

x ⊗ Π̂(j)
x ⟩ =

j>i
2
Nπ

Bij

√
π

Ai

∫ +∞

0
dqi e

− 1
Ai

q2i erf
(√

CijFijqi√
Ai

)
(A.181)

Using the Taylor expansion of the error function 16, the integral in the previous expression is, after the
change of variable Qi = (1/Ai)q

2
i , just√

Ai

π

+∞∑
n=0

(−1)n

n!(2n+ 1)

(
Fij

√
Cij

)2n+1
∫ +∞

0
dQie

−QiQn
i (A.182)

16i.e. erf(x) = 2√
π

∑+∞
n=0

(−1)nx2n+1

n!(2n+ 1)
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Since the remaining integral is just the definition of the gamma function Γ(n + 1) =
∫ +∞
0 dt e−t tn = n!

and that, for x ∈ [−1, 1], one has
arctan(x) =

+∞∑
n=0

(−1)nx2n+1

(2n+ 1)
(A.183)

one is finally left with
⟨Π̂(i)

x ⊗ Π̂(j)
x ⟩ =

j>i
2
Nπ

Bij
arctan

(
Fij

√
Cij

) (A.184)
that is to say, after restoring the initial variables,

⟨Π̂(i)
x ⊗ Π̂(j)

x ⟩ =
j>i

2

π
arctan

 Fij√
AiAj − F 2

ij

 (A.185)

The previous result is obtained in the general case of a thermal distribution. Setting the occupation
numbers to zero one gets the result for the vacuum state. Summarizing one has

⟨Π̂(i)
x ⊗ Π̂

(j)
x ⟩th =

j>i

2

π
arctan

 Fij√
AiAj − F 2

ij


⟨Π̂(i)

x ⊗ Π̂
(j)
x ⟩0 =

j>i

2

π
arctan

(
bij√
aij

) (A.186)

Regarding ⟨Π̂(i)
y ⊗ Π̂

(j)
y ⟩ one has

⟨Π̂(i)
y ⊗ Π̂

(j)
y ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂y

(qi, pi)WΠ̂y
(qj , pj)

= −N
∫ +∞
−∞ dq′idq

′
j sgn(q′i) sgn(q′j) ∫ +∞

−∞ dpidpjW±(pi, pj)e
−2ipiq

′
ie−2ipjq

′
j

(A.187)

The integration over p gives by completing the square
∫ +∞
−∞ dpidpjW±(pi, pj)e

−2ipiq
′
ie−2ipjq

′
j =

j>i

∫ +∞
−∞ dpi e

−BijAjp
2
i−2ipiq

′
i

×
∫ +∞
−∞ dpj e

−BijAip
2
j−2(iq′i±BijFijpi)pj

=
j>i

π
√

Cij

Bij
e
−

Cij
Bij

[Aiq
′2
i +Ajq

2
j∓2Fijq

′
iq

′
j]

(A.188)

where we used at the very end 1 + CijF
2
ij = AiAjCij . Thus one obtains

⟨Π̂(i)
y ⊗ Π̂

(j)
y ⟩ =

j>i
−Nπ

√
Cij

Bij

[∫ +∞
0 dq′i e

−
Cij
Bij

Aiq
′2
i
∫ +∞
0 dq′je

−
Cij
Bij

Ajq
2
j±2

Cij
Bij

Fijq
′
iq

′
j

−
∫ 0
−∞ dq′i e

−
Cij
Bij

Aiq
′2
i
∫ +∞
0 dq′j e

−
Cij
Bij

Ajq
2
j±2

Cij
Bij

Fijq
′
iq

′
j

−
∫ +∞
0 dq′i e

−
Cij
Bij

Aiq
′2
i
∫ 0
−∞ dq′je

−
Cij
Bij

Ajq
2
j±2

Cij
Bij

Fijq
′
iq

′
j

+
∫ 0
−∞ dq′i e

−
Cij
Bij

Aiq
′2
i
∫ 0
−∞ dq′j e

−
Cij
Bij

Ajq
2
j±2

Cij
Bij

Fijq
′
iq

′
j

]
(A.189)

which is analogous to (A.177). We can therefore apply once again (A.178) and obtain straightforwardly
⟨Π̂(i)

y ⊗ Π̂(j)
y ⟩ =

j>i
−Nπ

√
Cij

Bij

[
2

√
π

a

∫ +∞

0
dq′i e

−
Cij
Bij

Aiq
′2
i e

b2

4a
+c erf

(
b

2
√
a

)]
(A.190)

with a =
Cij

Bij
Aj , b = ±2

Cij

Bij
Fijq

′
i and c = 0, that is to say

⟨Π̂(i)
y ⊗ Π̂(j)

y ⟩ =
j>i

∓2Nπ

√
π

BijAj

∫ +∞

0
dq′i e

− 1
BijAj

q′2i erf
(√

Cij

BijAj
Fijq

′
i

)
(A.191)
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Using the Taylor expansion of the error function once again, the integral of the previous expression is,
after the change of variable Qi =

1
BijAj

[q′i]
2, just

√
BijAj

π

+∞∑
n=0

(−1)n

n!(2n+ 1)

(√
CijFij

)2n+1
∫ +∞

0
dQie

−QiQn
i (A.192)

where once again we recognize in the integral over Qi the gamma function Γ(n + 1) = n!. Considering
again the Taylor expansion of the arctan function one is left with

⟨Π̂(i)
y ⊗ Π̂(j)

y ⟩ =
j>i

∓2πN arctan
(
Fij

√
Cij

) (A.193)
that is to say, after restoring the initial variables,

⟨Π̂(i)
y ⊗ Π̂(j)

y ⟩ =
j>i

∓ 2

πAij
arctan

 Fij√
AiAj − F 2

ij

 (A.194)

with the upper sign (here "−") for j = 2 and the lower sign (here "+") for j = 1. The previous result is
obtained in the general case of a thermal distribution. Setting the occupation numbers to zero one gets
the result for the vacuum state. Summarizing one has

⟨Π̂(i)
y ⊗ Π̂

(j)
y ⟩th =

j>i
∓ 2

πAij
arctan

 Fij√
AiAj − F 2

ij


⟨Π̂(i)

y ⊗ Π̂
(j)
y ⟩0 =

j>i
∓ 2

πaij
arctan

(
bij√
aij

) (A.195)

We are left with the cross-terms. One has

⟨Π̂(i)
x ⊗ Π̂

(j)
z ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂x

(qi, pi)WΠ̂z
(qj , pj)

=
j>i

Nπ
∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj W−(q)W±(p)W±(q, p) sgn(qi)δ(qj)δ(pj)

=
j>i

Nπ
[∫ +∞

−∞ dqi sgn(qi)e−BijAjq
2
i

] [∫ +∞
−∞ dpie

−BijAjp
2
i

]
=
j>i

0

(A.196)
and a similar computation leads to same results for ⟨Π̂(i)

z ⊗ Π̂
(j)
x ⟩. Furthermore one has

⟨Π̂(i)
y ⊗ Π̂

(j)
z ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂y

(qi, pi)WΠ̂z
(qj , pj)

=
j>i

iNπ
∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj W−(q)W±(p)W±(q, p)

× δ(qi)δ(qj)δ(pj)
∫ +∞
−∞ dq′isgn(q′i)e−2ipiq

′
i

=
j>i

iNπ
∫ +∞
−∞ dq′i sgn(q′i) ∫ +∞

−∞ dpie
−BijAjp

2
i−2iq′ipi

=
j>i

iNπ

√
π

BijAj

∫ +∞
−∞ dq′i sgn(q′i)e−

Bij
Aj

q′2i

=
j>i

0

(A.197)
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and a similar computation leads to the same results for for ⟨Π̂(i)
z ⊗ Π̂

(j)
y ⟩. Finally one has

⟨Π̂(i)
x ⊗ Π̂

(j)
y ⟩ =

j>i

∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj Wρ̂(qi, pi, qj , pj)WΠ̂x

(qi, pi)WΠ̂y
(qj , pj)

=
j>i

iN
∫ +∞
−∞ dqi

∫ +∞
−∞ dpi

∫ +∞
−∞ dqj

∫ +∞
−∞ dpj W−(q)W±(p)W±(q, p)

× sgn(qi)δ(qj) ∫ +∞
−∞ dq′jsgn(q′j)e−2ipjq

′
j

=
j>i

iN π

Bij

√
Cij

∫ +∞
−∞ dqi sgn(qi)e−CijAjq

2
i

×
∫ +∞
−∞ dq′jsgn(q′j)e−

CijAj
Bij

q′2j ±2iAjCijGijqiq
′
j

=
j>i

∓4N π

Bij

√
Cij

∫ +∞
0 dqi e

−CijAjq
2
i
∫ +∞
0 dq′je

−
CijAj
Bij

q′2j sin
(
2AjCijGijqiq

′
j

)

(A.198)

and a similar computation leads to
⟨Π̂(i)

y ⊗ Π̂
(j)
x ⟩ =

j>i
−4N π

Bij

√
Cij

∫ +∞
0 dqj e

−CijAiq
2
j
∫ +∞
0 dq′ie

−
CijAi
Bij

q′2i sin (2AiCijGijqjq
′
i) (A.199)

Performing a change of variables in the two previous expressions, one is left with
⟨Π̂(i)

x ⊗ Π̂
(j)
y ⟩ =

j>i
∓ 4

πAj

√
CijAij

∫ +∞
0 dQi

∫ +∞
0 dQ′

j e
−Q2

i−Q′2
j sin

(
2
Gij√
Aij

QiQ
′
j

)

⟨Π̂(i)
y ⊗ Π̂

(j)
x ⟩ =

j>i
− 4

πAi

√
CijAij

∫ +∞
0 dQj

∫ +∞
0 dQ′

i e
−Q2

j−Q′2
i sin

(
2
Gij√
Aij

QjQ
′
i

) (A.200)

Both expressions are proportional to an expression of the form∫ +∞

0
dx

∫ +∞

0
dy e−x2−y2 sin (axy) (A.201)

which contains terms like ∫ +∞

0
dy e−y2+γiaxy = e−

a2

4
x2

∫ +∞

−γiax
2

dY e−Y 2 (A.202)
with γ = ±1 and where in the second step we have performed the change of variable Y = y − γiax2 . Anevaluation of such a term using (A.178) yields, after simplification and using erf(z∗) = −erf(z), to

√
π

2i

∫ +∞

0
dx e

−
(
1+a2

4

)
x2erf(iax

2

) (A.203)

Then one performs the change of variable X =
(
1 + a2

4

)
x2 and dX = 2

√(
1 + a2

4

)
Xdx and then the

Taylor expansion of the error function which allows to introduce in the expression the gamma function∫ +∞
0 dX e−X Xn = Γ(n+ 1) = n!. One is finally left with

1

2
√
1 + a2

4

∞∑
n=0

1

2n+ 1

 a

2
√

1 + a2

4

2n+1

=
1

2
√
1 + a2

4

arctanh

 a

2
√
1 + a2

4

 (A.204)

Then using
arsinh(u) = ln

(
u+

√
1 + u2

)
arctanh(u) = ln

(√
u+ 1

u− 1

) (A.205)

it can easily be shown that
arsinh(u) = arctanh

(
u√

1 + u2

)
(A.206)
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hence the final relation∫ +∞

0
dx

∫ +∞

0
dy e−x2−y2 sin (axy) =

1√
4 + a2

arsinh
(a
2

) (A.207)
Therefore, after restoring the initial values, one ends up with

⟨Π̂(i)
x ⊗ Π̂

(j)
y ⟩ =

j>i
∓ 2

πAj
arsinh

(
Gij√
Aij

)

⟨Π̂(i)
y ⊗ Π̂

(j)
x ⟩ =

j>i
− 2

πAi
arsinh

(
Gij√
Aij

) (A.208)

where the upper line in ∓ is for j = 2 and the lower line for j = 1 and i = 0.
One can see that at zero temperature, since then the Gij vanish, one has

⟨Π̂(i)
x ⊗ Π̂(j)

y ⟩ =
T=0

⟨Π̂(i)
y ⊗ Π̂(j)

x ⟩ =
T=0

0 (A.209)
Therefore at zero temperature, when a standard form basis is considered, the 3 × 3 matrix T (ij)

rs given
in (4.194) is already diagonal (and so is consequently the matrix T TT given in (A.82)) since in this case
all the Gij vanish. From the previous results, since at zero temperature and at any finite temperature
detσe ≥ 1 and | arctan(x)| ≤ π

2 , one can also see that
|⟨Π̂(i)

z ⊗ Π̂
(j)
z ⟩| =

j>i

1√
detσe

≤ 1

|⟨Π̂(i)
x ⊗ Π̂

(j)
x ⟩| ≤

j>i
1

(A.210)

Furthermore one can easily see that
|⟨Π̂(i)

y ⊗ Π̂(j)
y ⟩| =

j>i
|⟨Π̂(i)

z ⊗ Π̂(j)
z ⟩||⟨Π̂(i)

x ⊗ Π̂(j)
x ⟩| (A.211)

Because of the two previous relations (A.210) and (A.211) one has therefore
|⟨Π̂(i)

y ⊗ Π̂
(j)
y ⟩| ≤

j>i
|⟨Π̂(i)

z ⊗ Π̂
(j)
z ⟩|

|⟨Π̂(i)
y ⊗ Π̂

(j)
y ⟩| ≤

j>i
|⟨Π̂(i)

x ⊗ Π̂
(j)
x ⟩|

(A.212)

All the previous relations are true at zero temperature and at any finite temperature.
A.10.3 . Expectation values of the GKMR pseudo-spins for three-mode state

Following the same line of reasoning as in (A.10.2) one obtains, after some algebra, the expectation
values of the GKMR pseudo-spins for three-mode systems Trst as defined in (4.195). For three z one has

Tzzz =
1

D
=

T=0

1

d
(A.213)

For two z and one x, because of the delta functions in (A.170), one hasW (q,p) = 1 and for the integral
over qi one is left only with ∫ +∞

−∞
dqi sgn(qi)e−Ajk

D
q2i (A.214)

which is zero. Hence at any temperature
Txzz = Tzxz = Tzzx = 0 (A.215)

Similarly for two z and one y, one has W+(q) = 1 and W (q,p) = 1, and after integration over the
remaining momentum qi one is left with∫ +∞

−∞
dq′i sgn(q′i)e− D

Ajk
q′i

2 (A.216)
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Hence at any temperature
Tyzz = Tzyz = Tzzy = 0 (A.217)

For two x and one z one obtains :

Tzxx = − 2

πA0
arctan

(
B0√

A01A02 −B2
0

)

=
T=0

2

πa0
arctan

(
b01b02 − a0b12√

a0d

) (A.218)

Txzx = − 2

πA1
arctan

(
B1√

A01A12 −B2
1

)

=
T=0

2

πa1
arctan

(
b01b12 − a1b02√

a1d

) (A.219)

Txxz = − 2

πA2
arctan

(
B2√

A02A12 −B2
2

)

=
T=0

2

πa2
arctan

(
b02b12 − a2b01√

a2d

) (A.220)

For two y and one z one gets :

Tzyy = +
2

πD
arctan

(
B0√

A01A02 −B2
0

)

=
T=0

− 2

πd
arctan

(
b01b02 − a0b12√

a0d

) (A.221)

Tyzy = +
2

πD
arctan

(
B1√

A01A12 −B2
1

)

=
T=0

− 2

πd
arctan

(
b01b12 − a1b02√

a1d

) (A.222)

Tyyz = − 2

πD
arctan

(
B2√

A02A12 −B2
2

)

=
T=0

+
2

πd
arctan

(
b02b12 − a2b01√

a2d

) (A.223)

For terms with one x, one y and one z, because of the definition (A.170) of the Wigner function of Π̂z , oneretrieve expressions similar to the ones already computed in the 2-mode case. More specifically, one
obtains (using (A.123)) after integration over the momentum space p

i

π
√
AjkAij − J2

j

∫ +∞

−∞
dqidQisgn(qi)sgn(Qk)e

Ajk

AjkAij−J2
j
(−Ajq

2
i −DQ2

k−2iEjkQkqi) (A.224)

where one has taken W (j)

Ŝz
, W (k)

Ŝy
and W (i)

Ŝx
with Ajk being Ajk for k > j or Akj for j > k (and similarly

for Aij ), Ejk = +Cj for j ̸= 2 and k ̸= 1, E21 = −C2 and finally Jj = Bj for j ̸= 2 and J2 = −B2. At zero
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temperatureEjk =
T=0

0 and therefore both the integral vanish. Just by writing explicitly the sign functions
and by a change of variables the previous expression can be rewritten as

4

πAjk

√
AjkAij − J2

j

AjD

∫ +∞

−∞
dqidQi e

−q2i −Q2
k sin (aqiQk) (A.225)

with a = 2Ejk/
√
AjD. Then applying (A.207) one obtains straightforwardly

2

πAjk
arsinh

(
Ejk√
AjD

)
(A.226)

Therefore one ends up with
Txyz = − 2

πA12
arsinh

(
C2√
A2D

)
=

T=0
0 (A.227)

Tyxz = +
2

πA02
arsinh

(
C2√
A2D

)
=

T=0
0 (A.228)

Tyzx = +
2

πA01
arsinh

(
C1√
A1D

)
=

T=0
0 (A.229)

Txzy = +
2

πA12
arsinh

(
C1√
A1D

)
=

T=0
0 (A.230)

Tzxy = +
2

πA02
arsinh

(
C0√
A0D

)
=

T=0
0 (A.231)

Tzyx = +
2

πA01
arsinh

(
C0√
A0D

)
=

T=0
0 (A.232)

In the case of Tyyy considered at any temperature, because of the three δ(qi) inW (i)

Ŝy
, one hasW+(q) =

1 and W (q,p) = 1. After integration over the momentum space p, one finds an expression that is
proportional to∫ +∞

−∞
dQ0dQ1dQ2 sgn(Q0) sgn(Q1) sgn(Q1)e

AQ2
0+BQ2

1+CQ2
2+DQ0Q1+EQ0Q2+FQ1Q2 (A.233)

with A, B, C , D, E, F all real coefficients and with the Qi corresponding to the q′i of (A.171). This expres-sion is proven straightforwardly to be zero without evaluating the integrals. In the case of Txxx, even if
W+(q) andW (q,p) are no longer equal to one, after integration over the momentum space p, one finds
an expression analogous to (A.233) with with the Qi corresponding to the qi of (A.172). Then Txxx is alsozero at any temperature. For any permutation in the x and y for expressions such as Tyxx or Tyyx, afterintegration over the momentum space p, one finds, in addition to square terms such as q2i or q′j2, terms
such as qiq′j and q′iq′j for expressions with two y or qiq′j and qiq′j for expressions with two x in the re-
maining exponential (to be evaluated respectively over dqidq′jdq′k or dqidq′jdqk with i ̸= j ̸= k). Again the
expression are analogous to (A.233) but with coefficientsD, E and F being complex when associated to
products such as qiq′j and real for any product such as qiqj or q′iq′j : there are therefore straightforwardlyproven to be zero. All together one has at any tempertature :

Txxx = Txxy = Txyx = Tyxx = Tyyx = Tyxy = Txyy = Tyyy = 0 (A.234)
The previous results show that the only non vanishing coefficients are those which have a correspondent
expression in the 2-mode mean value of T̂ρ, i.e. once one of the modes is traced out (which is equivalent
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to have in the 3-mode expression at least an index being z sinceW (i)

Π̂z
∝ δ(qi)δ(pi) basically "traces out"the mode i)17.

17One can retrieve the two-mode expressions from the three mode ones just by applying the following informalprocedure. Take a three mode with at least one z, then if z in position i :
Ai → 1
Aij → AiAj → Aj

Bi → −AiFhk → −Fhk with h and k different from i
D → Ahkwith h and k different from i

.
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B - BACK-REACTION IN AN ANALOG BLACK HOLE

B.1 . Back-reaction equations from 2nd order expansion of the field operator in the
Gross-Pitaevskii equation

The back reaction equations are obtained by averaging equations (5.19) and (5.20) over the system
state, as this is done in (5.28). For (5.22) and (5.23) holding at zeroth order, the second order quantum
fluctuations terms appearing in (5.19) and (5.20) to be considered are respectively :

− ℏ
2
√
ρ0
L̂
(0)
t {δρ̂0, δθ̂0}+ L̂

(0)
GP

√
ρ0δθ̂

2

0 + i
(
L̂
(0)
GP − 2gρ0

) [δρ̂0, δθ̂0]

2
√
ρ0

+
(
L̂
(0)
GP − 4gρ0

) δρ̂20

4ρ
3/2
0

(B.1)

ℏ√ρ0
(
L̂
(0)
t − (∇.v0)

)
δθ̂20 +

ℏ
4ρ

3/2
0

(
L̂
(0)
t + (∇.v0)

)
δρ̂20

+i
ℏ

2
√
ρ0
L̂
(0)
t [δρ̂0, δθ̂0] +

(
L̂
(0)
GP + 2gρ0

) {δρ̂0, δθ̂0}
2
√
ρ0

(B.2)

By the same reasoning, substituting ρ(x, t) → ρ0(x, t) + ρBR(x, t) and ρ(x, t) → θ0(x, t) + θBR(x, t)in the zeroth order quantum fluctuations terms of (5.19) and (5.20), with (5.22) and (5.23) still holding,
one should be left with terms linear in ρBR and θBR since these are already second order terms. Using
expansion (5.27) for (5.18) it follows that

−2L̂GP
√
ρ = −2

√
ρ0

( −ℏ2

4mρ0
∇.
(
ρ0∇

ρBR

ρ0

)
+mv0.vBR + gρBR + ℏ∂tθBR

)
(B.3)

−ℏ√
ρ
L̂tρ =

−ℏ√
ρ0

(∂tρBR +∇(ρBRv0 + ρ0vBR)) (B.4)
The right-hand-side terms of relations (B.3) and (B.4) will appear in our back-reaction equations added
to the average over the system state of the terms respectively in (B.1) and (B.2). In order to write these
equations in a more efficient form we systematicaly apply the same procedure. Recalling the definition
of L̂GP and L̂t given in (5.18), and noticing that, for any two operators Â and B̂, one has

L̂
(0)
GP ÂB̂ = (L̂

(0)
GP Â)B̂ − Â

ℏ2

2m
(∇2B̂)− ℏ2

m
(∇Â).(∇B̂) (B.5)

L̂
(0)
t ÂB̂ = Â(L̂

(0)
t B̂) + (L̂

(0)
t Â)B̂ − (∇.v0)ÂB̂ (B.6)

one can apply zeroth order equations (5.22) and (5.23), by setting Â to either √ρ0 or ρ0, or first orderrelations (5.24) and (5.25) with Â and B̂ being either δρ0 or δθ0. This is already what we have done withthe zeroth order equations to obtain relations (B.3) and (B.4). Therefore let us now consider the terms
in (B.1) and (B.2) to obtain more efficient formulations 1. Let us start with the terms of (B.1). Introducing
as Â a √

ρ0 in relation (B.5) and applying this relation, i.e. systematically simplifying the expression with
(5.22), one obtains with little algebra :

L̂
(0)
GP

√
ρ0δθ̂

2

0 = −2
√
ρ0

(
ℏ2

4mρ0
∇
(
ρ0∇δθ̂

2

0

))
i
(
L̂
(0)
GP − 2gρ0

) [δρ̂0, δθ̂0]

2
√
ρ0

= −2
√
ρ0

(
ℏ2

4mρ0
∇
(
ρ0∇

i[δρ̂0, δθ̂0]

2ρ0

)
+ gρ0

i[δρ̂0, δθ̂0]

2ρ0

)
(
L̂
(0)
GP − 4gρ0

) δρ̂20

4ρ
3/2
0

= −2
√
ρ

(
ℏ2

4mρ0
∇
(
ρ0∇

δρ̂20
4ρ20

)
+ gρ0

δρ̂20
2ρ20

) (B.7)

1One can notice that in relation (B.5), without reversing the order of Â and B̂, the operator L̂(0)
GP can also be applied

to B̂ instead of Â : in this case∇2 should be applied to Â, the last term of the right-hand-side remaining the same.
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Finally noticing that the first term in (B.1) is just
− ℏ
2
√
ρ0
L̂
(0)
t {δρ̂0, δθ̂0} = −2

√
ρ0

(
ℏ
4ρ0

(∂t + (∇.v0) + v0.∇){δρ̂0, δθ̂0}
)

(B.8)
all the terms for the first back reaction equation have now been rewritten. Regarding the terms for the
second back reaction equation in (B.2) the computations to obtain more efficient expressions are a bit
more involved. First of all, since for index µ being t or x, one has ∂µδθ̂20 = {∂µδθ̂0, δθ̂0}, the same being
true for δρ̂0, one obtains :

ℏ√ρ0
(
L̂
(0)
t − (∇.v0)

)
δθ̂20 =

√
ρ0

{
ℏ
(
L̂
(0)
t − (∇.v0)

)
δθ̂0, δθ̂0

}
= −1

2

{
L̂
(0)
GP

δρ̂0√
ρ0
, δθ̂0

}
− g

√
ρ0

{
δρ̂0, δθ̂0

}
=

ℏ2√ρ0
4m

{
∇2 δρ̂0

ρ0
, δθ̂0

}
+

ℏ2(∇ρ0)
4m

√
ρ0

{
∇δρ̂0
ρ0
, δθ̂0

}
−g√ρ0

{
δρ̂0, δθ̂0

}
(B.9)

where to go from the first to the second line the first order equation (5.24) has been applied and to go
from the second to the third line we have set δρ̂0/√ρ0 =

√
ρ0δρ̂0/ρ0 and then again set Â to √

ρ0 inrelation (B.5) to simplify the expression by applying the zeroth order equation (5.22). Furthermore one
obtains

ℏ
4ρ

3/2
0

(
L̂
(0)
t + (∇.v0)

)
δρ̂20 =

1

4ρ
3/2
0

{
ℏL̂(0)

t δρ̂0, δρ̂0

}
=

1

2ρ0

{
L̂
(0)
GP

√
ρ0δθ̂0, δρ̂0

}
=

−ℏ2

4m
√
ρ0

{
∇2δθ̂0, δρ̂0

}
− ℏ2(∇ρ0)

4mρ
3/2
0

{
∇δθ̂0, δρ̂0

}
(B.10)

where in the first line we have used δρ̂20 = {δρ̂0, δρ̂0}/2whereas to go from the first to the second line the
first order equation (5.25) has been applied and to go from the second to the third line we have again set
Â to√ρ0 in relation (B.5) to simplify the expression by applying the zeroth order equation (5.22). Similarly
one has

(
L̂
(0)
GP + 2gρ0

) {δρ̂0, δθ̂0}
2
√
ρ0

=
−ℏ2√ρ0

2m
∇2 {δρ̂0, δθ̂0}

2ρ0
− ℏ2∇ρ0

2m
√
ρ0

∇{δρ̂0, δθ̂0}
2ρ0

+g
√
ρ0{δρ̂0, δθ̂0}

=
−ℏ2√ρ0

4m
{∇2 δρ̂0

ρ0
, δθ̂0} −

ℏ2

4m
√
ρ0

{δρ̂0,∇2δθ̂0}

+
ℏ2(∇ρ0)
4mρ

3/2
0

{δρ̂0,∇δθ̂0} −
ℏ2

2m
√
ρ0

{∇δρ̂0,∇δθ̂0}

−ℏ2(∇ρ0)
4m

√
ρ0

{∇δρ̂0
ρ0
, δθ̂0}+ g

√
ρ0{δρ̂0, δθ̂0}

(B.11)

where to obtain the right-hand-side of the first line we have set {δρ̂0, δθ̂0}/√ρ0 = √
ρ0{δρ̂0, δθ̂0}/ρ0 andagain set Â to√ρ0 in relation (B.5) to simplify the expression by applying the zeroth order equation (5.22).

Then, going from the obtained expression to the last expression requires only little algebra. Adding all
the terms of the previous expressions (B.9), (B.10) and (B.11), leaves only

− ℏ2

2m
√
ρ0

{δρ̂0,∇2δθ̂0} −
ℏ2

2m
√
ρ0

{∇δρ̂0,∇δθ̂0} = − ℏ√
ρ0

(
ℏ
2m

∇{δρ̂0,∇δθ̂0}
)

(B.12)
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We are now left with a last term in (B.2). Just by applying (B.6), one sees that :
+i

ℏ
2
√
ρ0
L̂
(0)
t [δρ̂0, δθ̂0] = i

1

2
√
ρ0

(
[ℏL̂(0)

t δρ̂0, δθ̂0] + [δρ̂0, ℏL̂
(0)
t δθ̂0]− ℏ(∇.v0)[δρ̂0, δθ̂0, ]

)
= i

1

2
√
ρ0

(−2
√
ρ0ℏ2

2m
[∇2√ρ0δθ̂0, δθ̂0] +

ℏ2

4m
√
ρ0

[δρ̂0,∇2 δρ̂0√
ρ0

]

)
= 0

(B.13)

where from the first to the second linewe have applied the first order equations (5.24) and (5.25) knowing
that δρ̂0 and δθ̂0 commute respectively with themselves, whereas from the second to the third line we
have also applied relation (5.11) that states that δρ̂0 and δθ̂0 commute respectively with their own spatial
derivatives.
We are now ready to summarize our computations in our back-reaction equations. Indeed, on the one
hand, taking the average of equation (5.19) over the system state, that is to say applying the first line
of (5.28), remembering that all the first order quantum fluctuations terms vanish, and resuming all the
remaining terms of (B.1) as we have written them in relations (B.3), (B.7) and (B.8), one finally obtains,
after dividing by −2

√
ρ0, the first back-reaction equation :

ℏ∂tθBR +mv0.vBR +
ℏ
2ρ0

(∂t + (∇.v0) + v0.∇)Re⟨δρ̂0δθ̂0⟩

+gρ0

(
ρBR

ρ0
+

⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0

)
− ℏ2

4mρ0
∇
(
ρ0∇

(
ρBR

ρ0
−
(⟨δρ̂20⟩

4ρ20
+ ⟨δθ̂20⟩ −

δ(0)

2ρ0

)))
= 0

(B.14)

where we have written ⟨{δρ̂0, δθ̂0}⟩ = 2Re⟨δρ̂0δθ̂0⟩ and ⟨[δρ̂0, δθ̂0]⟩ = ⟨iδ(0)⟩ = iδ(0). Dividing this
equation by m, one can introduce the coefficients c(t,x)ξ(t,x) = ℏ/m and c2(t,x) = g(t,x)ρ0(t,x)/mwith c the velocity of sound in the fluid and ξ the healing length.

On the other hand, taking the average of equation (5.20) over the system state, that is to say applying
the second line of (5.28), remembering that all the first order quantum fluctuations terms vanish, and
resuming all the remaining terms of (B.2) as we have written them in relations (B.4) and (B.12), one finally
obtains, after dividing by −ℏ/√ρ0, the second back-reaction equation :

∂tρBR +∇
(
ρBRv0 + ρ0vBR +

ℏ
m
Re⟨δρ̂0∇δθ̂0⟩

)
= 0 (B.15)

where we have written ⟨{δρ̂0,∇δθ̂0}⟩ = 2Re⟨δρ̂0∇δθ̂0⟩.

B.2 . Source terms in the 1-D Back-Reaction equations

Let us now consider a stationary one-dimensional transonic flow. In relation (5.6) we defined the
operator Ψ̂(t,x) in the density-phase representation. Expanding at first order, for a one-dimensional
configuration, this definition yields

Ψ̂(t, x) ≈ φ0(x) + φ0(x)

(
δρ̂0(t, x)

2ρ0(x)
+ iδθ̂0(t, x)

)
(B.16)

where
φ0(x) = ei θ0(x)

√
ρ0(x) (B.17)

is defined for ρ0(x) and θ0(x) being stationary solutions of the zeroth order equations (5.22) and (5.23)
whereas δρ̂0(t, x) δθ̂0(t, x) are solutions of the first order equations (5.24) and (5.25) parametrized by
ρ0(x) and θ0(x). Comparing the expansion (B.16) to the Bogoliubov approximation

Ψ̂(t, x) = ϕ(x) + δΨ̂(t, x) (B.18)
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where ⟨Ψ̂(t, x)⟩ = ϕ(x) and ⟨δΨ̂(t, x)⟩ = 0 with δΨ̂(t, x) a first order quantum fluctuation. When Ψ̂(t, x)

is taken up to first order, ϕ(x) is just the zeroth order term φ0(x). Then, comparing the expansion (B.16)
to the Bogoliubov approximation (B.18) at first order yields immediately

δρ̂0(t, x) = φ0(x)δΨ̂
†(t, x) + φ∗

0(x)δΨ̂(t, x)

δθ̂0(t, x) =
i

2ρ0(x)

(
φ0(x)δΨ̂

†(t, x)− φ∗
0(x)δΨ̂(t, x)

) (B.19)

which also shows that δρ̂0 and δθ̂0 are hermitian operators. Taking the definition of φ0(x) from relation
(4) in reference [38] one has :

φ0(Xα) =
√
nαe

imαXαϕα(Xα) (B.20)
where we have defined x = Xαξα with ξα the healing length andmα the Mach number for αmeaning u
(upstream) or d (downstream). With this definition one sees that

ρ0(Xα) = |φ0(Xα)|2 = nα|ϕα(Xα)|2 (B.21)
From relation (45) still in reference [38] one has

δΨ̂(t,Xα) = eimαXα

∫ ∞

0

dω√
2π

∑
L∈[U,D1]

[
ūL(Xα, ω)e

−iωtbL(ω) + v̄∗L(Xα, ω)e
iωtb†L(ω)

]
+ eimαXα

∫ Ω

0

dω√
2π

[
ūD2(Xα, ω)e

−iωtb†D2(ω) + v̄∗D2(Xα, ω)e
iωtbD2(ω)

] (B.22)

Applying these definitions at equal time, we want to compute the source terms in the back-reaction
equations (5.29) and (5.30) with the state of the system being the vacuum of quasi-particles. Let us start
with the term

⟨δρ̂20⟩
4ρ20

+ ⟨δθ̂20⟩ −
δ(0)

2ρ0
(B.23)

in (5.29). To this end, for L being U ,D1 orD2 one defines
ũL(Xα, ω) = ūL(Xα, ω)ϕ

∗
α(Xα)

ṽL(Xα, ω) = v̄L(Xα, ω)ϕα(Xα)

(B.24)

Then, dropping for convenience the ω andXα dependence of ũL and ṽL and theXα dependence of ϕα,one can write
δρ̂0 =

√
nα

∫ ∞

0

dω√
2π

∑
L∈[U,D1]

[
[ũL + ṽL]e

−iωtbL(ω) + [ũ∗L + ṽ∗L]e
iωtb†L(ω)

]
+
√
nα

∫ Ω

0

dω√
2π

[
[ũD2 + ṽD2]e

−iωtb†D2(ω) + [ũ∗D2 + ṽ∗D2]e
iωtbD2(ω)

] (B.25)

and
δθ̂0 =

i

2
√
nα|ϕα|2

∫ ∞

0

dω√
2π

∑
L∈[U,D1]

[
[ṽL − ũL]e

−iωtbL(ω) + [ũ∗L − ṽ∗L]e
iωtb†L(ω)

]
+

i

2
√
nα|ϕα|2

∫ Ω

0

dω√
2π

[
[ṽD2 − ũD2]e

−iωtb†D2(ω) + [ũ∗D2 − ṽ∗D2]e
iωtbD2(ω)

] (B.26)

With these definitions in mind, recalling that one has always ⟨b̂L(ω)b̂L′(ω′)⟩ and ⟨b̂L(ω)b̂L′(ω′)⟩ equal to
zero and, when averaging on the vacuum state, ⟨b̂†L(ω)b̂L′(ω′)⟩ = 0 and ⟨b̂L(ω)b̂†L′(ω′)⟩ = δL,L′δ(ω − ω′),
one obtains

⟨δρ̂20⟩ = nα

∫ ∞

0

dω

2π

∑
L∈[U,D1]

|ũL + ṽL|2 + nα

∫ Ω

0

dω

2π
|ũD2 + ṽD2|2 (B.27)
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⟨δθ̂20⟩ =
1

4nα|ϕα|4
∫ ∞

0

dω

2π

∑
L∈[U,D1]

|ũL − ṽL|2 +
1

4nα|ϕα|4
∫ Ω

0

dω

2π
|ũD2 − ṽD2|2 (B.28)

⟨δρ̂0δθ̂0⟩ =
i

2|ϕα|2
∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
|ũL|2 + 2iIm(ũ∗LṽL)− |ṽL|2

]
+

i

2|ϕα|2
∫ Ω

0

dω

2π

[
|ṽD2|2 + 2iIm(ũ∗D2ṽD2)− |ũD2|2

] (B.29)

⟨δθ̂0δρ̂0⟩ =
i

2|ϕα|2
∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
|ṽL|2 + 2iIm(ũ∗LṽL)− |ũL|2

]
+

i

2|ϕα|2
∫ Ω

0

dω

2π

[
|ũD2|2 + 2iIm(ũ∗D2ṽD2)− |ṽD2|2

] (B.30)

One can see that all these quadratic terms are time independent. It is also straightforward to obtain
⟨[δρ̂0, δθ̂0]⟩ =

i

|ϕα|2
∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
|ũL|2 − |ṽL|2

]
+

i

|ϕα|2
∫ Ω

0

dω

2π

[
|ṽD2|2 − |ũD2|2

] (B.31)

Then, adding these last relations together and recalling that−δ(0) = i⟨[δρ̂0, δθ̂0]⟩ one finally ends upwith
⟨δρ̂20⟩
4ρ20

+ ⟨δθ̂20⟩ −
δ(0)

2ρ0
=

1

nα|ϕα|2
∫ ∞

0

dω

2π

∑
L∈[U,D1]

|v̄L|2 +
1

nα|ϕα|2
∫ Ω

0

dω

2π
|ūD2|2 (B.32)

In the same way one obtains in (5.29) the terms

Re⟨δρ̂0δθ̂0⟩ =
∫ ∞

0

dω

2π

∑
L∈[U,D1]

Im

(
ϕ∗α
ϕα
ūLv̄

∗
L

)
+

∫ Ω

0

dω

2π
Im

(
ϕ∗α
ϕα
ūD2v̄

∗
D2

)
(B.33)

and
⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0
=

1

nα|ϕα|4
∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
|ṽL|2 + Re(ũLṽ

∗
L)
]

+
1

nα|ϕα|4
∫ Ω

0

dω

2π

[
|ũD2|2 + Re(ũD2ṽ

∗
D2)
] (B.34)

Now let us compute also the terms with the derivatives. From (B.33) one has immediately
∂XαRe⟨δρ̂0δθ̂0⟩ =

∫ ∞

0

dω

2π

∑
L∈[U,D1]

∂XαIm

(
ϕ∗α
ϕα
ūLv̄

∗
L

)
+

∫ Ω

0

dω

2π
∂XαIm

(
ϕ∗α
ϕα
ūD2v̄

∗
D2

)
(B.35)

Furthermore one has
⟨δρ̂0∂Xαδθ̂0⟩ =

i

2

∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
(ũL + ṽL)∂Xα

(
ū∗L
ϕ∗α

− v̄∗L
ϕα

)]

+
i

2

∫ Ω

0

dω

2π

[
(ũ∗D2 + ṽ∗D2)∂Xα

(
v̄D2

ϕ∗α
− ūD2

ϕα

)] (B.36)

and
⟨(∂Xαδθ̂0)δρ̂0⟩ =

i

2

∫ ∞

0

dω

2π

∑
L∈[U,D1]

[
(ũ∗L + ṽ∗L)∂Xα

(
v̄L
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− ūL
ϕα

)]

+
i

2

∫ Ω

0

dω

2π

[
(ũD2 + ṽD2)∂Xα

(
ū∗D2
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− v̄∗D2

ϕα

)] (B.37)
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Hence
Re⟨δρ̂0∂Xαδθ̂0⟩ =

1

2

∫ ∞

0

dω

2π

∑
L∈[U,D1]

Im

[
(ũ∗L + ṽ∗L)∂Xα

(
ūL
ϕα

− v̄L
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+
1

2

∫ Ω

0

dω

2π
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[
(ũD2 + ṽD2)∂Xα

(
v̄∗D2

ϕα
− ū∗D2

ϕ∗α

)] (B.38)

From the last term (B.41) one can also easily deduce that
Re⟨δρ̂0∂2Xα

δθ̂0⟩ =
1

2
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0

dω

2π
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2
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(
ūL
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2
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0
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2π
Im

[
(ũD2 + ṽD2)∂

2
Xα

(
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ϕα
− ū∗D2

ϕ∗α

)] (B.39)

Re⟨(∂Xαδρ̂0)δθ̂0⟩ =
1

2

∫ ∞
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2π
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Re⟨(∂Xαδρ̂0)∂Xαδθ̂0⟩ =
1

2

∫ ∞

0

dω

2π

∑
L∈[U,D1]
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[
[∂Xα(ũ

∗
L + ṽ∗L)] ∂Xα

(
ūL
ϕα
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+
1

2
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dω

2π
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[
[∂Xα(ũD2 + ṽD2)] ∂Xα

(
v̄∗D2

ϕα
− ū∗D2

ϕ∗α

)] (B.41)

The first and second derivatives of (B.32) that appear in the first back reaction equation (??) are straight-
forward from (B.32). Still in the first back reaction equation the term (B.35) can alternatively be computed
from

∂XαRe⟨δρ̂0δθ̂0⟩ = Re⟨(∂Xαδρ̂0)δθ̂0⟩+ Re⟨δρ̂0∂Xαδθ̂0⟩ (B.42)
Finally the term of the second back reaction equation (5.30)

∂XαRe⟨δρ̂0∂Xαδθ̂0⟩ = Re⟨(∂Xαδρ̂0)∂Xαδθ̂0⟩+ Re⟨δρ̂0∂2Xα
δθ̂0⟩ (B.43)

is straightforward from the previous terms.
Rewriting the depletion term

The depletion term can be rewritten as
⟨δρ̂20⟩
4ρ20

+ ⟨δθ̂20⟩ −
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2ρ0
=

1

2
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]
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[
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4ρ0

]
(B.44)

with
⟨δθ̂20⟩ −
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1
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Then one can check numerically that
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] (B.46)

is zero.
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Source terms for a homogeneous 1D flow

For a homogeneous flow one has |ϕα|2 = 1 and the vectors to be used are the ones defined in relations
(27-31) of reference [38]. One has

1

ξα
⟨δρ̂0∂Xαδθ̂0⟩ =

cα
4πξ2α

∑
l∈u or d1,d2 in/out

∫ el
0 dεα
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=
1

4πξ2α
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l∈u or d1,d2 in/out

∫ cl∞
cl0

dQlQl sgn(ElVg(Ql))

(B.47)

where we used for the first line el =
l ̸=d2

∞ and ed2 = Ω, and for the second line Vg(Ql)dQl = cαdεα and
defined Ql →

ε→ i
cli. One obtains for Qα = qξα

1

ξα
⟨δρ̂0∂Xαδθ̂0⟩ =

1

4πξ2α

∫ +∞

−∞
dQαQα (B.48)

This term therefore diverges but it isx-independent. The source termproportional to theG2 = g2(0)
2−ρ20is given in relation (183) of Ref. [89]. It reads

⟨δρ̂20⟩
2ρ20

− δ(0)

2ρ0
=
G2

2ρ20
= − 1

πnαξα
(B.49)

The term Re⟨δρ̂0δθ0⟩ is zero for a homogenous flow.
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