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We present a combined experimental and theoretical investigation of the formation and decay kinetics of
vortices in two-dimensional, compressible quantum turbulence. We follow the temporal evolution of a quantum
fluid of exciton polaritons, hybrid light-matter quasiparticles, and measure both phase and modulus of the order
parameter in the turbulent regime. Fundamental topological conservation laws require that the formation and
annihilation of vortices also involve critical points of the velocity field, namely nodes and saddles. Identifying
the simplest mechanisms underlying these processes enables us to develop an effective kinetic model that closely
aligns with the experimental observations, and shows that different processes are responsible for vortex number
growth and decay. These findings underscore the crucial role played by topological constraints in shaping
nonlinear, turbulent evolution of two-dimensional quantum fluids.
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Introduction. Topological and dynamical properties of two-
dimensional systems are strongly intertwined. This is true not
only in condensed matter setups [1–3] but also for hydrody-
namical systems, be these classical or quantum. In classical
fluids the identification of topological critical points proves
helpful for classifying flow patterns [4,5] and studying two-
dimensional spatiotemporal chaos and turbulence [6–10]. As
for quantum fluids, the importance of quantization of vorticity
has been understood long ago [11,12] and vortices indeed play
a major role in the route to two-dimensional quantum turbu-
lence [13–22], as they do in the classical context [23–27].
In this Letter, we further explore the link between dynam-
ical and topological properties in two-dimensional quantum
turbulence. We propose to investigate the temporal proper-
ties of the quantum fluid velocity field by a novel strategy.
The idea is to devise a minimal model, which complies with
global topological constraints, without requiring local knowl-
edge of the spatial dynamics of the system. To achieve this,
we derive kinetic equations of formation and annihilation
of critical points of the velocity field, and apply the ap-
proach to a nonequilibrium exciton-polariton fluid. We show
that we can reproduce the experimentally observed rate of
creation and annihilation of quantized vortices, thus identify-
ing the elementary mechanisms responsible for the increase
in the number of vortices, during the quantum turbulence
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growth, and for its reduction, during the quantum turbulence
decay.

We consider a two-dimensional quantum fluid de-
scribed by a scalar order parameter of the form ψ (�r, t ) =
A(�r, t ) exp{i�(�r, t )}. Here the real functions A (� 0) and �

correspond to the amplitude and phase of the order parameter,
respectively, and �r = (x, y). The velocity field of the fluid is
�v = (h̄/m) �∇� [12]. In a two-dimensional setting, two topo-
logical indices are associated with any domain D delimited by
a close contour C, namely, the vorticity IV and the Poincaré
index IP [28]

IV = 1

2π

∮
C

d�, IP = 1

2π

∮
C

dϕ, (1)

where ϕ denotes the polar angle of �v.
IV is (up to a factor 2π ) the variation of the phase �

along the contour C. IP is the net algebraic number of rev-
olutions made by the velocity field’s direction along C [29].
It is interesting to note that what is commonly referred to
as the vorticity in the context of the two-dimensional xy
model is actually the Poincaré index; see, e.g., Refs. [30,31].
Both indices are zero if there are no singular nor stagnation
points inside D. They assume nontrivial values when the phase
� displays extrema (local maxima or minima), saddles, or
essential singularities. The corresponding points are nodes
(attractive or repulsive), saddles, and quantum vortices, re-
spectively. Figure 1 gives the values of the indices attached to
each of these points, which we loosely denote as critical points
in the following. The vorticity and Poincaré index attached to
a given domain are the sum of the indices of all the critical
points it contains.
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FIG. 1. Sketch of the streamline pattern around a (positive)
vortex, a saddle, and a node (phase minimum). Darker regions cor-
respond to larger values of the phase � of the order parameter. A
vortex is a branch point of the phase, the corresponding branch cut is
represented by a discontinuity of the color map in the left plot. Nodes
and saddles are stagnation points where �v = �0.

The coexistence of the three types of critical points
presented in Fig. 1 has been explicitly experimentally demon-
strated in linear [32] and nonlinear [33] optics. The physical
system we examine here involves injecting a high-energy po-
lariton superfluid, and allowing it to expand within a circular
potential barrier [22]. The initial kinetic energy provided to
the superfluid induces the creation not only of a dense vor-
tex gas but also of a large number of saddles and nodes.
The optical nature of polaritons allows for the measurement
of both the modulus and the phase of the order parameter
through interferometric techniques [21,34,35], which enables
recording the flow pattern with a level of detail currently
unattainable in other types of superfluids. As shown in Fig. 2,
by analyzing the velocity field, we can track the evolution
of hundreds of critical points. This method enables us to
determine, at each time step, the number of vortices, sad-
dles, and nodes present in the system. We emphasize that the
presence of nodes is a unique feature of compressible and
nonstationary quantum fluids, such as polariton superfluids.
These nodes are indeed observed in our experimental results,
and we demonstrate below that they play a crucial role in the
onset of turbulence.

ππ

-π

0

20 μm2 μm

FIG. 2. A snapshot of the polariton superfluid phase field, with
the measured critical points. The three types of critical points are
represented with the same symbols as in Fig. 1. A zoom, with
streamlines represented as oriented solid lines, highlights the local
flow organization, revealing three saddles, two nodes (one attractive
and one repulsive), and a negative vortex.

Model. We consider the following main mechanisms of
creation (or annihilation) of critical points in the flow field:
(i) the nodes-to-vortices conversion in which two nodes coa-
lesce and give birth to two vortices and (ii) the saddle-node
bifurcation, which creates one saddle and one node from
scratch. These two processes conserve the vorticity and the
Poincaré index; they correspond to well-identified bifurca-
tions whose relevance for a two-dimensional quantum fluid
has been validated in Ref. [33]. They can be schematically
written as chemical reactions:

node + node
a
�
b

vortex(+) + vortex(−) , (2a)

Ø
c
�
d

node + saddle, (2b)

where vortices with positive or negative vorticity are denoted
as vortex(+) or vortex(−), respectively. The (positive) quanti-
ties a, b, c, and d are the reaction rates, see Eq. (3) below.
Mechanism (2a) appeared implicitly in works by Indebetouw
[36] and the Soskin group [37], then explicitly in Ref. [38].
Mechanism (2b) is mentioned by Freund in Ref. [39]. Other
mechanisms have been observed [33], which also conserve
both the vorticity and the Poincaré index: a saddle can trans-
form into two saddles plus one node in a pitchfork bifurcation,
or also a vortex-antivortex pair and two saddles can appear
spontaneously (or coalesce) in a process first identified by Nye
et al., [28], which has been termed the “Bristol mechanism” in
Ref. [33]. These reactions have been discarded for simplicity
reasons (they involve collisions of a larger number of critical
points) and also because much less often observed in a previ-
ous experiment and in numerical simulations [33].

From the modeling (2), we write a kinetic equation inspired
by rate equations of elementary chemical reactions:

dV±
dt

= aN2 − bV+V−,
dS

dt
= c − dNS,

dN

dt
= −2aN2 + 2bV+V− + c − dNS, (3)

where N (t ) denotes the number of nodes, S(t ) the number
of saddles, and V+(t ) [V−(t )] the number of vortices with
positive [negative] vorticity. It results from the values of the
topological indices listed in Fig. 1 that the total Poincaré
index of the system is IP = N + V+ + V− − S. It is easily
verified that IP is preserved by the system (3): this comes as
no surprise since the elementary processes (2) both conserve
the Poincaré index. Similarly, the conserved total vorticity
of the system is V+ − V−. In the following we make the
simplifying assumption that this difference is equal to zero:
V+(t ) = V−(t ) = V (t )/2 where V (t ) is the total number of
vortices. This hypothesis is confirmed by the experimental
data (such as displayed in Fig. 3) and is certainly sound in the
configuration we consider where typically V (t ) � 1 while no
external angular momentum is imparted to the system.

Defining the rescaled quantities τ = t/t0, n = N/N0, v =
V/N0, and s = S/N0, with t0 = 1/

√
2ac and N0 = √

c/2a,
makes it possible to cast the system (3) under the following
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FIG. 3. (Top) Comparison of the experimental results for N (t ),
V (t ) and S(t ) (circles) with the theoretical predictions (lines). Exper-
imental data are averages of four realizations of the same dynamical
regime. For t � tc, the solid lines have been obtained with the numer-
ical integration of Eqs. (4) with the values γ = 0.52, N0 = 170, and
t0 = 11 ps [40]. For t > tc, the dashed lines correspond to the results
of (4), while the solid lines come from the numerical resolution of (6)
with ε = 0.045. (Bottom) Same as above for the quantities V (t )/S(t )
and N (t )/S(t ). The value of tc is 56 ps.

dimensionless form:

dv

dτ
= n2 − αv2,

ds

dτ
= 1 − γ ns,

dn

dτ
= 1 − n2 − γ ns + αv2, (4)

where α = b/(4a) and γ = d/(2a) [41].
Results. We consider a turbulent regime of the polariton

dynamics in which, after fast expansion of the quantum fluid,
the onset of vortex clustering and the emergence of the inverse
kinetic energy cascade was evidenced on timescales of a few
tens of picoseconds [22]. The numbers of vortices, saddles and
nodes, extracted from the data of Ref. [22], are displayed as
circles in the top part of Fig. 3. At t = 0, when the fluid hits
the barrier, some critical points are already present, having
formed during the fluid’s expansion. The turbulent dynamics
is initiated at this moment, which we treat as the initial condi-
tion. A low-energy data set, where the onset of turbulence is
inhibited by dissipation, is presented in Ref. [42] along with
additional details on the experimental configuration. Let us
first focus on the stage of turbulence growth, during which
the numbers of vortices and saddles increase significantly
(stage 1 in Fig. 3). In this time lag, the nucleation of many
new vortices and saddles dominates the temporal evolution.
This implies imposing α = 0: indeed, when α �= 0 the system
(4) has a fixed point and the numbers of vortices, saddles,

and nodes tend to saturate, which is not what is observed
in the experiment. We checked that a nonzero value of α

always worsens the agreement of the theoretical curve with
data: this confirms that in this stage the incompressible kinetic
energy of the system is mostly increasing, as required for the
establishment of the inverse cascade of kinetic energy, see the
Discussion section below.

It is interesting to discuss the values of the rate of reactions
in Eqs. (2). In particular c/d = N2

0 /γ = 6 × 104 � 1, imply-
ing that the saddle-node bifurcation is mainly unidirectional:
the annihilation of a saddle with a node is much less frequent
than their creatio ex nihilo. This indicates that the saddle-node
formation mechanism (2b) is the real fuel of the whole pro-
cess. The nodes-to-vortices reaction (2a) merely transmutes
some of the nodes into vortices, but could not be effective on
its own. This remark is of significance: the spontaneous cre-
ation of uniquely a vortex-antivortex pair being topologically
forbidden (it would not conserve the Poincaré index) we are in
need of an explanation of the increase of the number V (t ) of
vortices. In the system we consider, the formation of vortices
arises from two saddle-nodes bifurcations (2a) followed by a
nodes-to-vortices conversion (2b), ultimately resulting in the
formation of two saddles and two vortices. This is the reason
why, as shown in the top part of Fig. 3, the numbers of saddles
and of vortices increase at the same pace. The results plotted
in the bottom panel of Fig. 3 indicate that the total Poincaré
index is conserved and small. Indeed in this case N + V = S,
the two quantities V/S and N/S sum to unity, and a minimum
of one should correspond to a maximum of the other. This
property is model independent: it is a prerequisite, which
should be embodied in any kinetic model, but its fulfillment is
not a guarantee of accuracy of the model. Experimental results
confirm the exact conservation of both IV and IP indices in
every realization of the measurements.

The results displayed in Fig. 3 show a striking behavior,
namely, a sharp temporal transition from stage 1, character-
ized by the nonlinear growth of the number of vortices and
saddles, to stage 2, characterized by a dramatic decrease of
the number of vortices and saddles. However, the number
of nodes is not experiencing a similar abrupt modification
in the same period of time: this supports a scenario, which
does not involve nodes, still conserving both IV and IP. The
so-called Bristol mechanism [28], described by Eq. (5) below,
is a perfect candidate:

vortex(+) + vortex(−) + saddle + saddle
e
�

f
Ø. (5)

In view of the significant decrease of the number of vor-
tices and saddles during stage 2, we consider that the rate of
reaction f is zero in Eq. (5). Hence, the process is assumed to
be unidirectional [43]. The system (4) accordingly modifies to

dv

dτ
= n2 − αv2 − ε v2s2,

ds

dτ
= 1 − γ ns − ε v2s2,

dn

dτ
= 1 − n2 − γ ns + αv2, (6)

where ε = 1
2 eN3

0 t0 = ec/(8a2) is the rescaled rate of anni-
hilation of saddles and vortices. We keep for all the other
parameters the values previously determined, and during stage
2 we solve the system (6) with ε �= 0. The corresponding
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µ

FIG. 4. Compensated experimental spectra of the incompressible
kinetic energy, averaged over two different time windows: during the
stage in which the inverse cascade develops ([36–56] ps), and during
the decay stage ([60–80] ps). The gray area identifies the spectral
region of wave numbers, the so-called inertial range, associated to
the inverse cascade of the incompressible kinetic energy k1 < k < k2,
where k1ξ/2π = 0.3 and k2ξ/2π = 1.06, ξ = h̄(2mg|ψ |2)−1/2 be-
ing the healing length. The horizontal dashed line is just a guide
for the eye.

results are displayed in Fig. 3. The agreement of the theo-
retical curve with the experimental observation supports the
idea that after t = tc the system enters a new regime in which
the annihilation mechanism (5) acquires an efficiency it previ-
ously did not have.

It is interesting to ask the question whether the mechanism
of Eq. (5), which is explicitly observed in our experiment [42],
could have been effective earlier, with a rate of reaction f �= 0
explaining the rapid and concomitant increase of V and S dur-
ing stage 1. The observation of the behavior of N in the same
period makes this hypothesis rather unlikely, since N initially
increases and then saturates. This advocates for a saddle-node
creation process (2b), which then feeds the nodes-to-vortices
one (2a). Only this process can explain (i) the occurrence of
extrema of V/S and N/S at short times (bottom plot of Fig. 3)
and (ii) the saturation of N at a slightly later time (top plot of
the same figure). And indeed, it is not possible to accurately
reproduce the experimental data on the basis of mechanisms
(2a) and (5) only, or (2b) and (5) only.

Discussion. The sharp modification of the time evolution
of the number of vortices and saddles at tc = 56 ps is well
described by the inclusion of the Bristol mechanism (5), but
the very fact that such a transition occurs is not explained by
our model. We show here that this transition occurs exactly at
the time where the inverse turbulent cascade stops.

In Fig. 4 we reanalyze the data of Ref. [22] by displaying
the experimental one-dimensional spectra of the incompress-
ible kinetic energy Einc(k), where k = |�k| [44], averaged over
two different time windows. In the gray area for wave numbers
k1 < k < k2, the average of spectra measured for time lags
t ∈ [36, 56] ps (blue points in Fig. 4) exhibits a behavior
compatible with the expected Kolmogorov-like scaling [45],
Einc(k) ∝ k−5/3 [46]. This tendency no longer persists beyond
tc: the average of spectra measured for t ∈ [60, 80] ps (red
points in Fig. 4) displays a narrower scaling region and a

FIG. 5. Time evolution of the incompressible kinetic energy
Einc(t ) defined in Eq. (7).

smaller amplitude. These are both indications of the end of
the inverse cascade.

This trend is further confirmed by an analysis of the
temporal behavior of the part of the incompressible kinetic
energy contained within the inertial range of the inverse
cascade (i.e., for k ∈ [k1, k2]), that we call Einc(t ). This
quantity is defined by

Einc(t ) ≡
∫ k2

k1

Einc(k, t ) dk. (7)

Its evaluation is made possible by the recording at each time
lag of the experimental spectrum Einc(k, t ). Einc(t ), plotted
in Fig. 5, is an estimate of the energy available to establish
the inverse cascade process. The onset of a turbulent inverse
cascade of kinetic energy implies a temporal growth of the
incompressible part of the total kinetic energy in the system.
Indeed, the results show that, after setup time, Einc(t ) goes on
growing as expected, until the critical time tc = 56 ps. At this
stage the available incompressible kinetic energy starts its
decay and can no longer sustain the inverse transfer process
across scales.

The fact that the crossover time tc is observed during the
growth then simultaneous rapid decrease of both the vortices
and saddles numbers, and that tc also marks the end of the tem-
poral growth of the incompressible kinetic energy, suggests
that these processes are fed by the incompressible kinetic en-
ergy available in the inertial range. When this stops growing,
dissipation mechanisms prevail and turbulence starts decay-
ing. Interestingly, at the same time the clustering dynamics
stops [42].

Conclusion. In the experiments we presented, dynamical
observations associated to the turbulence growth/decay have
their topological counterpart in the time window where the
numbers of vortices and saddles increase/decrease. It is rea-
sonable to think that not all vortices participate in the cascade,
since they may not have time to correlate, nevertheless their
increase reflects in the growth of the incompressible kinetic
energy available for the cascade.

Topological constraints also rule the mechanism of the
turbulence decay; a process based on four-vortex interactions
[47] previously proposed in Refs. [48–52], here finds its origin
in topological arguments. In the absence of a turbulent regime,
the fate of vortices is different. In such a case, we physically
expect a dynamical equilibrium between vortex creation and
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annihilation processes, in the presence of random, uncorre-
lated fluctuations. Our model faithfully describe this process,
see Ref. [42].

The kinetic model here introduced is the simplest that
complies with topological constraints. It provides a global, av-
eraged description of the system based on phenomenological
parameters (the rate coefficients) but is not designed to explain
why these parameters assume different values in the turbu-
lent or non-turbulent regimes, nor to predict when turbulence
growth halts and why its decay is so abrupt. Addressing these
phenomena requires to account for vortex clustering, i.e., to
deal with spatial correlations within the system.

This focus on spatial correlations is crucial in the study
of two-dimensional turbulence: since Polyakovs pioneering
contribution [53] it has been shown that the vorticity domains
exhibit the same universal scaling arising in critical percola-
tion theory, in both classical [54,55] and quantum [56] fluids
in the regime of inverse energy cascade. Broadening the scope
of our kinetic approach to set up a microscopic model that
integrates these statistical properties would therefore be of
great interest. Such a model should account for interactions
between critical points (such as vortex clustering) within a
framework consistent with the conservation of topological
indices.
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METHODS

The experiment conducted utilized a planar
AlxGa1−xAs microcavity containing 12 GaAs quan-
tum wells, with aluminium fractions of 0.2 and 0.95 in
the distributed Bragg reflectors, kept at a temperature
of approximately 5 K. A ring potential, with a radius of
∼75 µm, is generated using an off-resonance CW laser
beam (λ = 735 nm), shaped by a spatial light modulator
displaying a Bessel function. This potential confines the
polariton fluid by inducing a local energy blueshift in
the polariton resonance due to the high exciton density
under the CW pump. To inject the polariton fluid into
the center of this potential, a pulsed laser (pulse duration
of 2 ps) is focused into a Gaussian spot with a beam
waist of approximately 17 µm. The excitation energy is
slightly blue-detuned from the ground state by 1.2 meV
(0.21 meV for the “low-energy” case reported in a later
section), providing the polaritons with an initial kinetic
energy that allows for their rapid expansion within
the potential and subsequent hydrodynamic vortex
formation upon collision with the potential barrier.

The time evolution of the polariton fluid is captured
using off-axis digital holography, which involves the in-
terference of the signal with a reference pulse (a sample of
the excitation beam) with a variable time delay, enabling
the retrieval of both the amplitude and phase of the fluid,
as illustrated in Fig. S1. The temporal resolution is of
around 1 ps and the spatial resolution is finer than the
estimated healing length of the vortices. Each time frame
is obtained by integrating over a large number of pulses,
given the pulsed pump’s repetition rate of 80 MHz and
the typical integration time of 1 ms. Despite the averag-
ing, spatial inhomogeneities allows for the observation of
coherent vortex dynamics. To ensure statistical signifi-
cance, the analysis averaged four measurements by trans-
lating the sample in-plane to eliminate morphological ef-
fects. Different spatial configurations can be observed at
different sample locations, yet the statistical properties
of the observables remain consistent. For each exper-
imental condition and time frame, we identify vortices
and critical points by computing the circulation around
each point of the two-dimensional phase map and the

corresponding velocity field, respectively, and searching
for integer multiples of 2π. From a simple comparison,
we can further distinguish which of the critical points are
nodes.

BIFURCATION DETECTION

We give here a couple of examples of bifurcations such
as those discussed in the main text, and detected dur-
ing the time evolution of the experiment. The first is
an instance where two nodes transform into a vortex-
antivortex pair according to the mechanism in Eq. (2a)
of the main text, which we recall here for completeness:

node + node
a
⇀↽
b

vortex(+) + vortex(−) . (S1)

In the left panel of Fig. S2, we present two consecutive
time frames of the same spatial region, highlighting the
evolution of the flow pattern from a configuration con-
taining nodes and saddles (at t = 15 ps) to one where
two nodes are transformed into a vortex and an antivor-
tex (t = 16 ps).

In the right panel of Fig. S2, the Bristol annihilation
mechanism [Eq. (5) of the main text, reproduced here]

vortex(+) + vortex(−) + saddle + saddle
e
⇀↽
f

Ø , (S2)

is observed in our experiment during the second stage
of the dynamics, when dissipation begins to dominate
(t > tc = 56 ps). Two consecutive frames (at times
t = 76 and t = 77 ps) illustrate the simultaneous annihi-
lation of two saddles and a vortex-antivortex pair within
a laminar plane flow, marking the dissipation of incom-
pressible kinetic energy from the system.

VORTEX CLUSTERING

In the main text, we discussed the crossover time tc at
which the number or vortices, initially increasing signifi-
cantly in the turbulent regime, starts a rapid decay. This
time is non universal and depends on the initial config-
uration of the system. However, the survey of different
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FIG. S1. Measured density (top), phase (middle), and critical points (bottom) of the polariton fluid for the high-energy case.
At each time frame, the density is normalized to ensure its maximum value is 1. The dashed red circle represents the position
of the confining potential. In the bottom row the white diamonds are nodes, the blue ones are saddles, and the red points
are vortices (their signs are omitted for legibility). The time frames, from left to right, correspond to: the initial experimental
condition (t = −20 ps), when the polariton fluid is still mostly localized in the center of the potential and has yet to fill all
the available space; t = 15 ps after the sudden growth in the number of vortices, when the polariton fluid is flowing back after
hitting the boundaries; the switching point at around t = 56 ps, when vortex growth stops and the Bristol mechanism becomes
relevant; and finally, a snapshot near the end of the dynamics at t = 80 ps.
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FIG. S2. (left) Experimental snapshots, taken at times t = 15 and t = 16 ps, showing the formation of a vortex-antivortex pair

starting from two nearby nodes, as indicated by Eq. (S1). The streamlines of the velocity field ~v = (h̄/m)~∇Θ are plotted as
oriented solid lines, on top of the color-coded phase field Θ(x, y). (right) Experimental snapshots of streamlines and the phase
field taken during stage 2 of the experiment, at times t = 76 and t = 77 ps, showing the annihilation of two saddles and a
vortex-antivortex pair via the Bristol mechanism (S2).
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FIG. S3. Experimental correlation function (S3) averaged
over 4 realizations plotted as a function of time. The dots
correspond to the mean value, the vertical segments are the
standard deviations. Adapted from Ref. [3].

observables characterizing the non-linear dynamics in the
turbulent superfluid discussed in the main text indicates
that tc is also the time at which the inverse cascade stops
and turbulence starts its decay.

A first simple remark is in order: if vortices of the same
vorticity are gathered in packs they cannot annihilate
since they need to encounter vortices of opposite vorticity
to do so. Hence, clustering tends to prevent vortices from
annihilating each other. An initial increase followed by
a (faster) decrease of clustering is revealed in Fig. S3
which displays the average of the correlation function C,
defined as [1, 2]

C =
1

V

V∑
i=1

ci, (S3)

where V is the total number of vortices and ci = 1 (−1)
if the vortex closest to a given vortex i has the same
(opposite) vorticity. The largest possible value of the
correlation function is C = +1 and is reached for perfect
clustering. C = −1 is associated with the state of lowest
energy and (positive) temperature; increasing values of C
correspond to higher energetic states of the vortex gas.
The figure shows that clustering starts to decrease at the
same time tc = 56 ps at which vortex decay sets in. The
concomitant decrease of clustering and of the number of
vortices is an interesting test of coherence of the point of
view we have on the phenomenology of the system, but
is not in itself an explanation of the underlying physi-
cal mechanism. The results discussed in the main text
suggest that it is the incompressible component of the
kinetic energy which triggers both phenomena.

LOW-ENERGY DATA SET

The data presented in the main text correspond to a
turbulent regime in which a high-energy polariton super-
fluid is injected against a potential barrier. We consider

in this section a data set obtained at relatively low in-
jection energy: E = Elow = 0.21 meV here, instead of
Ehigh = 1.20 meV in the main text (both sets of data are
extracted form the experiment of Ref. [3]).

The low-energy experimental results for the number of
critical points, presented in Fig. S4, display a tendency
to saturate: from t = 60 ps on, V (t), S(t), and N(t) vary
quite slowly. To emulate this behavior, the dimensionless
dynamical system for V , S and N should have a fixed
point. We recall the corresponding equations here for
completeness [Eqs. (4) of the main paper]:

dv

dτ
= n2 − αv2, ds

dτ
= 1− γns,

dn

dτ
= 1− n2 − γns+ αv2,

(S4)

where v = V/N0, S = S/N0, n = N/N0, τ = t/t0 and α
and γ are re-scaled reaction rates.
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FIG. S4. Comparison of the experimental results of the low-
energy data set for the numbers N(t) of nodes, V (t) of vor-
tices, and S(t) of saddles (circles) with the numerical integra-
tion of Eqs. (S4) (solid lines).

The parameter α needs to be finite for the system
(S4) to have a fixed point. In this case, if we denote as
n∞, v∞, s∞ the coordinates of the fixed point, defining
β = 1/

√
α we get v∞ = βn∞, s∞ = 1/(γn∞) and

n∞ =
IP0 +

√
I2
P0 + 4(1 + β)/γ

2(1 + β)
. (S5)

In this expression IP0 = n+ v− s is the constant value of
the rescaled Poincaré index of the whole system (IP0 =
IP/N0). In the limit I2P0 � 4(1 + β)/γ [4], formula (S5)
reads n∞ = [γ(1 + β)]−1/2 and implies that s∞ = (1 +
β)n∞. Comparing the values v∞/n∞ = β and s∞/n∞ =
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1+β with the experimental values V/N ≈ 2 and S/N ≈ 3
around t = 60 ps points to a value β ≈ 2, i.e., α = 0.25.
We found that the choice γ = 1, N0 = 80, t0 = 27 ps,
and α = 0.25 gives a good account of the data set, see
Fig. S4.

The system is not here in a turbulent regime such as
the one studied in the main text. It is interesting to note
that the value α = 0.25 corresponds to equality a = b in
the node to vortex conversion (S1). Of course we can not
ascertain exact equality, but it is clear that a ' b which
implies that in the non-turbulent setting considered in
the present section, the node-to-vortex conversion (S1) is
on average in equilibrium. Remarkably, the situation is
completely different in the turbulent setting considered
in the main text, where b = 0 which corresponds to a uni-
directional reaction, increasing the number of vortices, as
expected in the inverse cascade which occurs during the
growth of turbulence.

Also, in the case considered in this section the in-
jection energy E is smaller than in the turbulent case,
the number of vortices increases at a lower pace, and
the stage of decay (stage 2 in Fig. 3 of the main
text) is not reached within the experimental time win-
dow. This interpretation of the different behaviors of the
two data sets is corroborated by the following evalua-

tion of orders of magnitude: A simple dimensional ar-
gument suggests that the characteristic time t0 should
scale as t0 ∝ E−1/2. And indeed the characteristic times
tlow0 and thigh0 for the two sets of data are in a ratio

tlow0 /thigh0 = 27 ps/11 ps = 2.45 which is consistent with

the value
√
Ehigh/Elow =

√
1.20 meV/0.21 meV = 2.39.
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