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We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is
shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield
information about fidelity decay or spectral statistics. We study their matrix elements and entanglement pro-
duction and show that they converge with time to distributions which differ from random matrix predictions.
A randomized version of these maps can be implemented even more economically and yields pseudorandom
operators with original properties, enabling, for example, one to produce fractal random vectors. These algo-
rithms are within reach of present-day quantum computers.
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The study of quantum information has attracted more and
more interest from the scientific community in the recent
past. Quantum communication and quantum computation
have been shown to be deeply different from their classical
counterparts. Algorithms have been built showing that quan-
tum computers can outperform classical devices for some
problems �1�. In particular, quantum mechanical systems can
be simulated much faster on a quantum computer �2�. An
especially congenial class of models corresponds to quantum
maps. They can display complex dynamics, but can be de-
scribed by simple evolution operators. It has been shown that
the quantum baker’s map �3�, the quantum kicked rotator �4�,
and the quantum sawtooth map �5� can be simulated effi-
ciently on a quantum computer. Still, even the simplest mod-
els are difficult to implement on the small-size quantum
computers experimentally available, and only the quantum
baker’s map has been implemented to date with three qubits
�6�. General algorithms have been proposed to probe phase
space distributions �7�, fidelity decay �8�, form factors �9�, or
localization length �10� of such maps. Quantum maps have
been also used as test grounds to study the production of
entanglement in quantum systems �11�. Very recently, they
have been used as models to build pseudorandom operators
which can be efficiently implemented on quantum computers
�12�.

The models envisioned so far correspond mostly to cha-
otic maps, where the most complex behavior is expected to
manifest itself, and eigenvalue statistics are close to those of
the Wigner-Dyson ensembles of random matrix theory
�RMT�. Some integrable maps, which are expected to follow
Poissonian statistics, have been also studied. However, it has
been observed recently that some systems obey intermediate
statistics, characterized by a level repulsion and a Poisson-
like behavior at long distance in energy spacings. They can
be modeled by the so-called semi-Poisson statistics �14� for
which correlation functions can be explicitly calculated, giv-
ing energy level spacing distributions P��s��s�e−��+1�s. Such
distributions have been first observed at the Anderson metal-
insulator transition for electrons in disordered systems �13�,
and later in pseudointegrable systems �14� or in certain dif-
fractive billiards �15�. They are usually associated with frac-
tal properties of eigenstates.

In this paper, we study from the viewpoint of quantum
computation a one-parameter family of quantum maps re-
cently introduced �16�. They can be expressed in a particu-
larly simple way, yet the spectral statistics display a wide
range of semi-Poisson distributions depending on the value
of the parameter. We first show that such maps can be simu-
lated efficiently on a quantum computer and can be imple-
mented with a remarkably small number of qubits and quan-
tum gates. They are therefore good candidates for simulation
on small-size quantum computers that will be built in the
near future. In particular, they represent an ideal test ground
for algorithms proposed in recent years which aim at mea-
suring the form factor or the fidelity decay using only one
qubit of quantum information. Indeed, the maps we study
present a natural example where such algorithms can give
results richer than in standard quantum chaotic systems for
which random matrix theory applies. The properties of these
maps being intermediate between chaos and integrability, we
study how this translates in the matrix element distributions
and the entangling power. At last, we show that a certain
generalization of these maps which corresponds to a new
ensemble of random matrices with semi-Poisson statistics
recently proposed in �17� can be implemented even more
efficiently on a quantum computer. They can be used as a
way to produce a family of pseudorandom operators with
new properties related to fractal behavior. We note that dif-
ferent distributions interpolating between Poisson and
Wigner-Dyson, built from a partial randomization procedure,
were studied in �18�. In our case, the intermediate distribu-
tions are of a completely different nature and furthermore
have a more physical basis since they arise naturally in vari-
ous quantum systems.

We start with the classical map defined by p̄= p+� �mod
1�; q̄=q+2p̄ �mod 1� where �p ,q� is the pair of conjugated
momentum �action� and angle variables, and the bars denote
the resulting variables after one iteration of the map. This
map covers a wide range of dynamical behaviors depending
on the value of the parameter �. When � is irrational, it is
uniquely ergodic but not mixing, while for rational � it re-
duces to an interval-exchange map �pseudointegrable dy-
namics� and for �=0 it is trivially integrable �see �16� and
references therein�. The quantization of this map yields a
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unitary evolution operator which can be expressed in mo-
mentum space by the N�N matrix

Upp� =
exp�− 2i�p�2/N��1 − exp�2i�N���

1 − exp�2i��p − p� + N��/N�

�16�, or alternatively in operator notation Û=e−2i�p̂2/Ne2i��q̂.

For generic irrational �, the spectral statistics of Û are ex-
pected to follow RMT �in this case COE�. For rational �
=a /b, a variety of different behaviors are observed �16�. In
particular, it is conjectured from �17� that for aN= ±1 �mod
b� the statistics of eigenvalues is of the semi-Poisson type
P��s� with parameter �=b /2−1. This can be checked in Fig.
1 where the statistics of eigenvalues is plotted for different
values of � �for N=0 �mod 4� there is an additional symme-
try US=SU, where Sqq�= �−1�q�qq�; each half of the spectrum

should be considered separately �16��. Thus Û gives a set of
quantum maps with statistics corresponding to natural inter-
mediate distributions between Poisson and RMT, in a con-
trollable manner.

The map Û can be implemented efficiently on a quantum
computer. Indeed, the use of the quantum Fourier transform
�QFT� allows one to switch from position to momentum rep-

resentation. More precisely, for one iteration of Û on an
N-dimensional Hilbert space with N=2nq, one first imple-
ments exp�2i��q̂�, which is diagonal in the q-representation.
This can be done efficiently using the binary decomposition
of q: if q=� j=0

nq−1qj2
j, then exp�2i��q̂� corresponds to the

application of the nq one-qubit gates �0�→ �0�, �1�
→exp�2i��2 j��1�. Then by using a QFT one can shift from
q to p representation, using nq�nq+1� /2 gates. In

this representation, the second operator e−2i�p̂2/N is
diagonal. If p=� j=0

nq−1pj2
j, then exp�−2i�p2 /N�

=� j1,j2
exp�−2i�pj1

pj2
2 j1+j2 /N�. To simulate it, one needs nq

2

two-qubit gates applied to each qubit pair �j1 , j2�, keeping
the states �00� , �01� , �10� unchanged while �11�

→exp�−2i�2 j1+j2 /N��11�. Then a QFT brings back the wave
function to the q representation. In total, the evolution re-
quires 2nq

2+2nq gates to be implemented, of which 2nq
2−nq

are two-qubit gates. This is less than any other map proposed
to date �including the sawtooth map �5��, except the quantum
baker’s map, which has already been implemented �6�.

The algorithm above can be used as a subroutine of other
algorithms which aim at measuring quantum-mechanical
quantities, with the attractive feature that it makes them very
economical since the map evolution needs remarkably little
quantum gates. One can, for example, probe Wigner and Hu-
simi phase space distribution functions �7�, or investigate
fidelity decay in the presence of perturbation �8�; the fact that
these maps correspond to spectral statistics intermediate be-
tween Wigner-Dyson and Poisson should translate into spe-
cific properties for these quantities. It has also been proposed
to use a quantum computer to differentiate between quantum
chaos and integrability by evaluating the form factor at short
times �9�. In our case, the same algorithm can give much
more information. The method in �9� adds one probe qubit to
the system, performs Un, and uses two additional one-qubit
gates to transfer the trace of Un to the probe qubit. Using
such scattering circuits, real and imaginary parts of Tr Un /N
correspond to expectation values of Pauli operators for the
probe qubit. For COE or CUE, this quantity is of order 1 /N
for small n. In the case of intermediate statistics ��=a /b�,
one expects 	Tr Un�n
��N, where the average is taken over
the first iterates of U. The form factor at short times is then
given by ���2. In order to get the value of � with enough
precision, one needs a number of quantum measurements of
order N �the number of values of n to average over depends
only on b �16� and does not vary with N�. This implies a
quadratic gain over classical computation. For N=0 �mod 4�,
in order to dissymmetrize the spectrum, one additionally has
to perform the evolution of SUn �this only requires one extra
controlled-phase gate�, and the difference between the traces
of Un and SUn gives the required quantity. Using this algo-
rithm for large N enables one to probe the form factor at
increasingly short times and check the semiclassical conjec-
tures �16�. The value of ���2 also yields the level compress-
ibility, which controls the behavior of the spectral number
variance at infinity. It is possible that an exponential gain can
be obtained through investigation of the fidelity decay �8�.
We note that the fidelity decay can be explicitly related to the
form factor �19�. Both quantities can be probed using deter-
ministic quantum computation with one single pseudopure
bit �20�, which together with the small number of gates
needed should make these simulations very attractive for
NMR quantum computation.

It is instructive to study the entangling power of these
maps. Indeed, entanglement is a key resource for quantum
information �1�. Quantum chaotic evolutions have been
shown to generate entanglement distributions similar to the
predictions of RMT �11�. The entanglement can be measured
by the average bipartite entanglement between one qubit and
the rest of the system Q=2− �2/nq��k=1

nq Tr �k
2, where �k is the

density operator corresponding to the kth qubit after having
traced out the rest �21�. Figure 2 displays the distribution of
matrix elements and Q for the column vectors of Un for large

FIG. 1. Nearest-neighbor distribution of eigenvalues of Û for
N=212 and from left to right �=1/3, �=1/5, �= �1+�5� /2. Data
are taken from the dissymmetrized spectra of � and 1−�. Distribu-
tion corresponding to �=1/5 �respectively �= �1+�5� /2� is shifted
by 1 �respectively 2� along the s axis. The solid curves from left to
right correspond to semi-Poisson with �=1/2, �=3/2, and COE.
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n. It is compared with the RMT prediction computed numeri-
cally from the parametrization method of �22�. For irrational
�, the spectral statistics follow COE, but both matrix element
and Q distributions converge to CUE predictions. For values
of � with intermediate statistics, there is a convergence to a
distribution different from CUE predictions. This holds in p
representation: in q representation both quantities converge
to CUE predictions �data not shown�. In all cases the con-
vergence is faster for matrix elements than for Q; the con-
vergence rate is similar to what is obtained for chaotic maps
�11�.

In �12�, pseudorandom operators inspired by quantum
chaotic maps were built which efficiently create entangle-
ment and matrix element distributions close to RMT. In our
case, it is possible to construct ensembles of intermediate
statistics random matrices �ISRM� based on the quantum

map Û �17�. The procedure consists in replacing e−2i�p̂2/N in

Û by the diagonal matrix �in p representation� �ei	p�pp��,
where 	p are random variables either independent �“non-
symmetric case”� or verifying 	N−p=	p �“symmetric case”�.
General arguments �17� indicate that for � irrational eigen-
value statistics for ISRM follow COE �symmetric case� or
CUE �nonsymmetric case�. For rational �=a /b, and matrix
size N→
 obeying aN= ±1 �mod b�, eigenvalue statistics
follow the semi-Poisson prediction with �=b−1 �nonsym-
metric case� or �=b /2−1 �symmetric case�. These ISRM
can be implemented on a quantum computer, actually more

economically than Û. The only difference with the algorithm

simulating Û consists in the replacement of e−2i�p̂2/N by
�ei	p�pp��. This operator multiplies each basis state �p� by a
Gaussian random phase. It can be simulated by choosing
nq+ns independent and uniformly distributed random angles
�k, with 1�k�nq, and ��k, 1�k�ns, for some
integer ns. Applying the controlled NOT and rotation opera-

tors �k=ns

1 CNOTik,jk
�k=1

ns �Rjk
���k�CNOTik,jk

��k=1
nq Rk��k� multi-

plies each basis state by a random variable
±�1±�2± ¯ ±��ns−1±��ns

, which for large ns tends to a
Gaussian random variable. Here Rj���=exp�i�
 j

z /2� is the
rotation on the jth qubit by an angle � /2 ,CNOTi,j �controlled
NOT� is the bit-flip on the jth qubit conditioned by the ith
qubit, and the ik and jk are chosen randomly between 1 and
nq. This transformation requires �3ns+nq� gates instead of

the nq
2 gates needed for e−2i�p̂2/N. In practice, ns is taken pro-

portional to nq, and the simulation requires in total nq
2−nq

+2ns two-qubit gates and 4nq+ns one-qubit gates. This is
quite close to what is needed to simulate the quantum baker’s
map already implemented �6�, thus ISRM should be imple-
mentable as well in present-day quantum computers.

The latter algorithm can be used to generate pseudoran-
dom operators having original properties. Figure 3 shows

FIG. 2. �Color online� Distributions of matrix element �top� and

Q of column vectors �bottom� for iterates Ûn of Û for N=29, in p
representation. Matrix elements x are rescaled by y=N�x�2. Only
one symmetry class of S is taken. From lowest to topmost curve:
black is �=1/3, red is �=1/5, green is �= �1+�5� /2, and purple is
CUE. Full lines are averaged over 105�n�105+1000, dashed
lines are averaged over 1000�n�2000 �top� and 2000�n
�3000 �bottom�. Logarithms are decimal.

FIG. 3. �Color online� Same as Fig. 2 for iterates of ISRM, for
N=28 �nonsymmetric case�. Averages are made over 1000 disorder
realizations at n=105 �full lines�, n=1000 �dashed lines, top�, and
n=2000 �dashed lines, bottom�. Logarithms are decimal.

FIG. 4. IPR as a function of N=2nq for column vectors �circles�
and eigenvectors �triangles� of ISRM �nonsymmetric case�, for
�=1/3 ,1 /5 �top�, and �=1/7 , �1+�5� /2 �bottom�. Data
for column vectors are for 100 000th iterate. Straight
lines show ��N0.80 ,N0.93 ,N0.97 ,N1.00 �column vectors�, and
��N0.54 ,N0.69 ,N0.76 ,N1.00 �eigenvectors�. Logarithms are decimal.
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that for ISRM matrix element and Q distributions converge
to a limiting distribution which depends on �. For irrational
�, the distribution corresponds to CUE predictions �even in
the symmetric case where eigenvalue statistics follow COE,
data not shown�. For rational � where eigenvalue statistics
follow semi-Poisson predictions, the limiting distributions
are different from both COE and CUE distributions in p
representation �in q representation they converge to CUE
predictions, data not shown�. Intermediate eigenvalue statis-
tics are also usually associated with fractal properties of
eigenvectors. This was observed in the Anderson model at
the metal-insulator transition or in pseudointegrable systems.
As was seen in �17�, this is also the case for the ISRM. In a
quantum information setting, randomly chosen eigenvectors
of ISRM can be obtained by using the phase estimation al-
gorithm and measuring an eigenvalue: the wave function col-
lapses to the eigenvector associated to the eigenvalue mea-
sured. One can also easily obtain column vectors of ISRM by
iterating a basis vector. In Fig. 4 we display the inverse par-
ticipation ratio �IPR� for the eigenvectors and column vec-
tors. This quantity is given by �=�i��i�2 /�i��i�4 for a wave
function ���=�i�i�i�. It gives the number of basis states
supporting the wave function ��=1 for a state localized on a

single basis state, and �=N for a state uniformly spread over
N of them�. The results show that where intermediate statis-
tics are present, for both eigenvectors and column vectors of
ISRM one has ��N� with ��1, indicating fractal distribu-
tions of components. Such fractal properties may also de-
pend on number-theoretic properties of N �as is the case �23�
for the baker’s map�. The precise investigation of such de-
pendence requires more extensive studies.

In conclusion, we have shown that quantum maps dis-
playing intermediate statistics can be simulated with a re-
markable economy of resources on a quantum computer, es-
pecially in a NMR setting. We have also explored the link
between such intermediate statistics, entangling power of the
quantum evolution and matrix elements distribution. At last,
we have shown that a suitably randomized map can be used
as an efficient generator of pseudorandom operators display-
ing statistical properties different from RMT, and in particu-
lar producing fractal random vectors.
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