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Abstract. We propose a complex network approach to the harmonic structure underpinning western tonal
music. From a database of Beethoven’s string quartets, we construct a directed network whose nodes are
musical chords and edges connect chords following each other. We show that the network is scale-free
and has specific properties when ranking algorithms are applied. We explore the community structure and
its musical interpretation, and propose statistical measures stemming from network theory allowing to
distinguish stylistically between periods of composition. Our work opens the way to a network approach
of structural properties of tonal harmony.

1 Introduction

In the recent past, network theory has been developed
as a new tool enabling to uncover structural properties,
dynamics and evolution of a variety of systems, from
natural ones, such as biological networks, to human pro-
duced ones such as the World Wide Web or social net-
works [1]. Interestingly enough, it has also been shown
that this theory can give new insights on systems which
are not obviously organized as networks, such as lan-
guages [2–5] or board games [6–9].

Music shares features from both languages and
games. Connections between music and natural sciences
are numerous, be it physiology, physics of waves, or
group theory [10]. The improvement of computer capa-
bilities has recently opened several lines of research
at the interface between musicology, mathematics and
computer science, from automatic harmonic analysis
[11,12], statistical analysis of music [13], creation of
databases [14,15], computer-assisted Schenkerian anal-
ysis [16], to recent applications from machine learning
[17,18]. A huge corpus of musical pieces exists with
many musicological studies analyzing their history and
evolution (see e.g. [19,20] for a historical account).
Importantly, musical syntax is not so much about the
perception of isolated chords as about the relationship
between a chord and the ones that surround it. An
important aspect of musical analysis is thus to under-
stand how chords are interrelated, both at a global and
at a local scale, the latter corresponding to the neigh-
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bourhood of a chord in a given musical segment. In this
paper, our aim is to apply network theory to musical
pieces.

In 2018, a database of all chords of Beethoven string
quartets was established [14], based on harmonic anal-
yses made by human experts from the musical scores of
the quartets. This database was analysed in [21], where
the authors investigated the frequency distribution of
chords, pairs of chords, and higher-order n-grams.

In the present paper we go a step further by
constructing a network based on temporal relations
between chords within musical segments, following
ideas borrowed from text analysis [2–5]. In the follow-
ing, we build the network, discuss its properties and
their relationship with musical features, and investigate
its community structure. The string quartets are par-
ticularly interesting in that their composition stretches
over a period of 28 years of Beethoven’s life, allowing
to follow the stylistic evolution throughout his lifetime
[22–24]. Here we show that tools from network theory
allow to statistically differentiate between the different
periods of the Beethoven quartets.

The present network approach bears some analogy
with the Euler Tonnetz, the geometry of musical chords
[25], or a network approach of atonal music in [26]. A
network of chord progressions, similar in spirit to ours,
was proposed very recently in [27], based on chords
taken as vertical arrangements of pitch classes and a
small-scale analysis of data. By contrast, our approach
considers chords in a functional relationship with a local
key, as determined by human experts, and over the
scale of a whole corpus. Our work shows that a network
approach provides some insight into structural proper-
ties of tonal harmony.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-022-00368-z&domain=pdf
http://orcid.org/0000-0002-7784-8777
mailto:theo.frottier@insa-toulouse.fr
mailto:georgeot@irsamc.ups-tlse.fr
mailto:olivier.giraud@universite-paris-saclay.fr


  103 Page 2 of 8 Eur. Phys. J. B          (2022) 95:103 

2 The database

The annotated database of all chords from the com-
plete set of Beethoven string quartets (16 quartets, a
total of 70 movements) is available online at [28]. It has
28,095 entries, each of which provides information on a
chord : the global and local key with respect to which
it appears, as well as possible changes in the chord, rel-
ative root, or pedals. It also contains information on
the chord duration, movement and measure in which it
appears, and whether or not it is at the end of a musical
segment.

Each chord is characterized by a Latin numeral (from
I to VII) indicating its relation with the local key, and
a figure (6, 64, 7, 65, 43, 2) indicating whether the
chord is in root position or appears as an inversion.
It may also contain an indication of its form (major
seventh, half-diminished, diminished and augmented,
respectively denoted M, %, ◦, and +), various figures
between brackets indicating changes in the inversion,
and/or additional Latin numbers indicating the rela-
tive root. For some of the chords (107 of them in the
database), no harmonic value could be determined by
the experts, and a label “none” was assigned; such
chords are most frequent in the late quartets (with
58 undetermined chords), which are known to be more
innovative.

The whole corpus is divided into 929 musical seg-
ments. Each has a specific local key, which indicates
whether the segment is major or minor. We split the
database into two parts, one for chords in segments
with major local key and one for chords in minor local
key. Among the 929 musical segments there are 551
major and 378 minor ones, yielding a database of 20,276
chords in major segments and 7819 chords in minor seg-
ments. Among these 20,276 entries in major segments
we found NM = 871 distinct ones. The minor segments
involve Nm = 599 distinct entries.

Individual chords can be ranked by their number of
occurrences in the database. We found that the fre-
quency f of occurences as a function of the rank r has
a power–law tail f ∝ 1/rγ . This is characteristic of
the Zipf law, which was first observed in the analysis of
languages [29] and since then in many contexts. For our
database, a similar power–law tail was already obtained
in [21]. Here we find an exponent γ ≈ 1.6, not so far
from the exponent ≈ 2 found in natural languages.

3 Network theory

To go beyond mere statistics of chords, we now intro-
duce the basic tools of network theory.

3.1 The networks

A graph is a set of vertices connected by edges. In our
case, we construct a graph M based on chords from
major segments. Its vertices are the NM distinct chords

Fig. 1 First segment of Beethoven’s Op. 18 No. 1 in F
major (first movement) and its associated graph. The score
was generated from the data of [28] using MuseScore [30]

appearing in the database. We also construct a graph
m with chords from minor segments, yielding a graph
with Nm vertices.

Our networks are built in the following way: We add
a directed edge between two vertices i and j each time
chord j immediately follows chord i in the same seg-
ment. There are as many edges between i and j as
occurrences of the pair i, j in the database, which makes
our graph a weighted directed graph. As an illustra-
tion, in Fig. 1 we show the first 8 bars of Beethoven’s
Op. 18 No. 1, which correspond to the first segment of
the database. It consists of 10 labeled chords (7 distinct
ones). The corresponding graph, with 7 vertices and 9
edges, is given below the score.

3.2 The PageRank algorithm

One of the tools developed for investigating the net-
work structure is the PageRank algorithm, which gave
the original impulse to the development of the Google
search engine [31]. The PageRank algorithm is built to
hierarchize the nodes of a network in a relevant way,
by constructing a vector (the PageRank vector) whose
entries are used to rank the vertices by order of impor-
tance. This vector is the eigenvector associated with the
largest eigenvalue of a matrix G constructed from the
N × N adjacency matrix of the network.

This Google matrix G is defined, for some param-
eter α in [0, 1], as Gij = αSij + (1 − α)/N , where
S is obtained from the weighted adjacency matrix by
replacing any column containing only 0 by a column
of 1/N and normalizing the sum of entries of each col-
umn to 1. In the case of the quartet database, we did
not encounter any such column of zeros, as segments
end up with chords which are frequent in the database.
Adding the constant part proportional to 1 − α to that
matrix S avoids numerical results being dominated by
dangling groups (that is, groups of vertices with no out-
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going edges), as those tend to dominate the PageRank
when α → 1.

By construction, G is a stochastic matrix. Perron–
Frobenius theorem ensures that G has an eigenvector
with eigenvalue 1 and real positive entries. The PageR-
ank vector p is defined as the vector such that Gp = p
and

∑
i pi = 1. The value pi can be interpreted as the

probability for a random surfer following the edges of
the network for an infinite time to be found on vertex i,
if at each step the outgoing edges are chosen at random
with equal probability. Properties of the Google matrix
shed light on the structure of the network; this approach
was successfully applied in a number of contexts [32].

3.3 Network communities

The most basic structure that underlies the topology of
a graph is its partition into communities, that is, sub-
sets that have more connections within themselves than
between one another. A way of determining whether a
given partition of the set of vertices properly describes
its community structure is to compute the modular-
ity of that partition. This quantity measures how far
a given graph is from a graph with the same con-
nectivity but with edges taken at random within and
between subsets of the partition. For a given parti-
tion into communities {C}, the modularity is given by
μ =

∑
C

∑
i,j∈C [aij − didj/(2m)], where aij is equal

to the number of undirected edges connecting vertices
i and j, di is the total number of edges from i, m is
the total number of edges in the undirected graph, and
the sum runs over all communities C. The partition
that yields the highest modularity provides a possible
decomposition of the graph into communities [33,34].

4 The musical network

We now apply the above tools to our musical networks.
In Fig. 2 (top left panel) we display the cumulative dis-
tribution of incoming and outgoing edges, that is, the
number of vertices that have more than k ingoing (or
outgoing) edges, with k normalized by its maximum
value. It follows a power–law Pin,out ∼ 1/kν with expo-
nent ν ≈ 0.7. Similar power–law distributions of vertex
connectivities were found in many real-world complex
networks, known as scale-free networks [35,36]. Here
the exponent 1 + ν of the (non-integrated) distribution
roughly corresponds to the exponent γ = 1.6 found for
the Zipf law. Typically in scale-free networks the expo-
nent 1+ν ranges from 2 to 3, but lower exponents have
been found, for example ≈ 1.5 for e-mail networks [37].

4.1 PageRank vector

In the top right panel of Fig. 2 we show the ranking of
chords as given by the PageRank vector. As shown in
the lower panels of Fig. 2, this ranking is quite different
from that given by the mere frequency of chords in the

Fig. 2 Top left: Cumulative distribution of ingoing edges
Pin (major blue, minor orange) and outgoing edges Pout

(major violet, minor red, almost indistinguishable from Pin).
A linear fit over the 30 leftmost points yields slopes −0.68
for major Pin,out and −0.70 for minor Pin,out. Dotted black
line has a slope −0.69. Top right: PageRank vector pi (sorted
in descending order) for graphs M (blue) and m (orange).
Dotted lines are linear fit, with slope −0.93 (major) and
−0.94 (minor). Bottom: PageRank vs frequency rank for
the major (left, blue) and minor (right, orange). Each point
represents a specific chord. Dashed line is the line y = x

database. Some chords, although rare in the database,
have a high PageRank; they can correspond to rare fol-
lowers of much more common patterns. This is the case,
for instance, for the chord labeled bIII, which generally
follows the high-rank chord I. The PageRank vector fol-
lows a power–law pi ∼ 1/iβ with β ≈ 0.93, very close
to the exponent 0.9 found for networks describing parts
of the World Wide Web [38–41].

4.2 Spectrum of the Google matrix

The spectrum of G gives some insight into the struc-
ture of the network. For a symmetric matrix the spec-
trum is real. For directed networks the matrix G is in
general non-symmetric, and the complex spectrum is
all the more flattened onto the real axis as there exist
pairs of edges of opposite directions between pairs of
vertices. For example, this happens for dictionary net-
works, where many words are symmetrically related
[41]. The spectrum of G, displayed in Fig. 3, shows
that there is no such phenomenon, consistently with
the temporal directionality of music. For instance, in
major segments there are in total 40 occurences of the
pair ii→V, but only 7 of the pair V→ii. This aspect of
music, referred to as directedness, is also discussed in
[21].

From Perron–Frobenius theorem, the spectrum of G
is by construction bounded by the circle of radius α,
except for the lone eigenvalue corresponding to the
PageRank. However, it is clear from Fig. 3 that the
spectrum is concentrated much closer to the center than
the theoretical bound, almost entirely within a circle
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Fig. 3 Spectrum of G in the complex plane (left major,
right minor) for α = 0.85. Dashed circle of radius 1

2
is an

eyeguide

of radius 1
2 . This reflects the fact that the network is

highly connected, with many edges between different
parts. Indeed, eigenvalues with large modulus corre-
spond to long-lived eigenstates located on parts of the
network which are less connected with the rest. For a
dense graph, isolated regions are rarer, which tends to
suppress such outlying eigenvalues. In the present case,
the smaller radius of the spectrum can be interpreted as
a reflection of the fact that the same chords can appear
in many different contexts, which homogeneizes the
graph. The spectrum of m is less concentrated, indicat-
ing that this phenomenon is less pronounced in minor.
Lastly, we can notice in Fig. 3 the presence of isolated
eigenvalues separated from the main cluster of eigenval-
ues. As will be illustrated below on the spectra of Fig. 5,
this reflects zones of the graph where groups of nodes
are weakly coupled to other parts (for example, pat-
terns of chords that appear only in specific contexts).
Such features correspond to the notion of communities
in a graph, to which we now turn.

4.3 Communities

As mentioned earlier, communities can be obtained by
computing the modularity of partitions of the undi-
rected graph and identifying the partition of maximal
modularity. There is a variety of ways of computing the
partition with highest modularity. We use the Louvain
algorithm [42], implemented in the NetworkX package
of Python. The output of the algorithm depends on a
random seed, and for a given graph the resulting max-
imal modularity changes (mildly) from one run of the
program to the other, as well as the partition itself.
Nevertheless, the main features of the communities are
robust.

In Fig. 4 we show the community partition for our
graphs. We illustrate our results with the outcome with
the highest modularity, namely 0.2252 for the graph
M and 0.2572 for the graph m. For the graph M,
we find 5 main communities, each of which revolves
around an elementary chord: I, IV, V, I6 and ii6. Within
these communities one finds closely related chords. For
instance, the community “IV” localizes on the subdom-
inant IV but also on chords which have a close har-
monic function with respect to the subdominant (such
as V2/IV, V7/IV). The small outlying communities,
very weakly connected with the rest of the graph, cor-

Fig. 4 Community partition of the networks (top major,
bottom minor). At the centre of each cloud (in orange) is the
chord with largest pi (highest PageRank) in the community;
the next four chords in PageRank order are labeled in blue
around each community. Symbol size reflects value of pi.
Inset: zoom on the community I of M

respond to sequences of rare chords (such as chords
appearing only once in the corpus).

This community structure reflects the presence of
poles of attraction, a dimension of music referred to
as centricity in [21]. As can be expected from a musical
perspective, these poles include (in major) the fourth
degree IV, dominant V, and tonic I. But interestingly,
inversions of V belong to the same community as I.
Moreover the other poles of attraction are also sur-
rounded by inversions of their relative dominant, which
shows that they locally behave as the tonic. Similar fea-
tures are found in the graph m in Fig. 4 bottom. The
partition into communities thus yields a mesoscopic pic-
ture and allows to assess the role of chords within a
community.

5 Comparison between the different periods

We now analyze how network properties depend on
the period of composition of the quartets. It is well-
known that Beethoven underwent a strong stylistic evo-
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Fig. 5 From left to right: spectrum of G in the complex
plane for the early, middle and late periods for the major
dataset

lution during his lifetime, the last quartets in particu-
lar being more akin to romantic music that the pre-
vious ones. It is usually recognized that three tem-
porally well-separated periods can be identified. The
early period corresponds to the first six quartets (1798–
1800), the middle period to the five next (1806–1814),
and the late quartets are the last five (1824–1826), the
Große Fuge being the last movement of Op. 130. In
order to assess how this evolution reflects in the musi-
cal networks, for each period (early/middle/late) and
each mode (major/minor) we constructed a network by
only taking into account the corresponding musical seg-
ments. For major segments, the number of chords is
6496 for the early period, 4794 for the middle period,
and 8986 for the late period. This results in graphs of
size 379, 442 and 574, corresponding to the respective
number of distinct chords.

5.1 Spectrum

In Fig. 5 we display the spectra of G associated with
each period for major segments. As in Fig. 3 for the
global network, the spectrum is concentrated near the
origin, all the more so for the last period. As this con-
centration is linked with a strong connectivity between
different parts of the network, this latter feature can
be associated with the fact that the last period of
Beethoven’s quartets is associated with more musi-
cal originalities and formal innovation, leading to the

appearance of new edges between previously uncon-
nected chords. Some isolated eigenvalues can be found
outside the region where most eigenvalues concentrate.
In particular one can observe the presence of families
of eigenvalues located at the same radius. For instance,
near the dashed circle in Fig. 5 left are 5 eigenval-
ues separated by 2π/5; these eigenvalues are associated
with closely related eigenvectors, which are essentially
located on the same chords (here, by order of amplitude,
bIII, V65/bIII, iv, V6/bIII). They correspond to groups
of chords usually played together, and are relatively well
separated from the rest of the network. These groups
play the role of small communities. This type of eigen-
states is clearly less prominent in the third network,
indicating again that the last period of Beethoven’s
quartets contains more musical innovations, connecting
isolated groups of chords in the network.

5.2 Communities

The partition of the network into communities also
presents different characteristics from one period to
another. The community partition yielding the high-
est modularity over different trials of the Louvain algo-
rithm corresponds to modularities 0.2651, 0.2607, and
0.2290, respectively. This is to be compared with the
(maximal) modularity for graphs with same vertex
degree distribution but random edges: for the corre-
sponding sizes, modularity is respectively 0.091±0.0034
for N = 379, 0.126 ± 0.0036 for N = 442, and 0.094 ±
0.0028 for N = 574 (the standard deviation is obtained
from 1000 realizations). The decrease of modularity
from early to late is therefore significant. As already
pointed out above for the spectrum, this result is in
line with the greater homogeneity of the late graph,
due to the presence of new edges between chords not
previously connected.

The community partition for the three graphs in
major is displayed in Fig. 6. The weaker modularity
of the late period is a manifestation of the larger con-
nectivity between communities.

Fig. 6 Left to right: community structure of early, middle and late graphs of the major dataset, same conventions as in
Fig. 4
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5.3 Statistical analysis of the evolution
of Beethoven’s quartets

We now assess whether the stylistic evolution of the
quartets also reflects in statistically significant differ-
ences in the networks, using the PageRank vectors. The
fidelity is defined as the square of the scalar product
between the two vectors (normalized in such a way
that

∑
i |ψi|2 = 1), namely F (ψ, φ) = |∑i ψ∗

i φi|2. In
Fig. 7 we display fidelities between different PageRanks.
In order to assess their statistical significance, we con-
struct several networks for each period: namely, for any
pair of quartets a, b of a given period and mode, we
construct the graph Gab based on chords from quartets
a and b only, and the corresponding PageRank vector
p. For early major, which has 6 quartets, we get 15 dif-
ferent PageRank vectors, while middle and late major

Fig. 7 Top: distribution of the fidelity F for different
periods. Each point at line i/j corresponds to the fidelity
between a pair of distinct PageRank vectors from periods
i and j (see text for detail). The color represents the den-
sity of points, calculated by counting the number of values
within a distance of 0.002 from the actual point. Bottom:
same for similarity S (note that the discreteness of S makes
the values highly degenerate)

(with 5 quartets) have 10 PageRank vectors each. The
points in Fig. 7 top correspond to all possible fidelities
between these vectors, with the restriction that pairs
of vectors from the same period should not contain
any quartet in common (for instance there are 45 such
pairs when comparing the early period with itself, and
150 when comparing the early period with the middle
one). The vertical line and parses [·|·] indicate the mean
and standard deviation of the values. As appears in the
plot, the mean values of fidelities within a period (first
three lines) are centered around 0.955. By contrast, the
fidelities of pageranks from different periods are statis-
tically weaker. The largest difference is between periods
1 and 3.

In order to compare more precisely the rankings
between the different periods, we introduce the ’sim-
ilarity’ S between vectors, which we define as the mean
number of identical indices within the m = 30 first
indices when they are ordered by decreasing pi. The
results are plotted at Fig. 7 bottom. Although the
results are less statistically significant than for the
fidelity, there is a clear difference between the late
period and the first two, and the first and second period
are much more similar.

Our results are thus compatible with the opinion of
musical scholars, showing a marked difference between
the late period and the early and middle ones. This
indicates that such tools from network theory are able
to capture stylistic differences in music.

6 Conclusion

The present work shows that the complex network
approach can be fruitfully applied to the harmonic
structure of musical works. Based on the example of
Beethoven string quartets, we specified the properties
of this new type of networks, and in particular we dis-
cussed the relationship between the spectrum of the
Google matrix, the community structures, and musical
specificities of the scores. We have also shown that the
tools of complex networks allow to distinguish between
the different periods and styles of Beethoven string
quartets.

Our work opens the way to similar statistical anal-
yses for different composers. In 1815 the Allgemeine
musikalische Zeitung wrote that “Beethoven is with-
out question the boldest sailor on the tide of harmony”
(cited by [22]); similar harmonic analyses of pieces by
Palestrina [43], Bach [13], Mozart [15] or Schubert [44]
from a network approach would thus give an interesting
perspective. Other aspects of music, such as history of
harmonic patterns [45], or rhythm [46], could benefit
from the network approach. Another possible fruitful
direction could be to apply this approach to uncover
hierarchical structures in music, in the spirit of Schenke-
rian analysis [47], by performing some coarse-graining
to the network.
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Appendix A Cleaning the database

We found several issues in the database, such as missing data
or faulty labels, most of which are listed at the database
website [28]. We made the following corrections to the file
all_annotations.tsv available at [28]. Global keys labeled
‘nothing’ or ‘false’ have been replaced by their correct value,
given in the first column of the database. For some entries,
the local key was labeled ‘Ab’ instead of ‘VI’: they were
restored to their correct value. The local keys labeled ‘I’ at
the beginning of some minor segments were relabeled ‘i’.

We also chose to consider chords within a pedal segment
to be treated without reference to the pedal (although the
first chord of a pedal segment is treated as distinct). As for
entries labeled ’none’, i.e. chords for which no consensual
harmonic analysis could be extracted from the score, we
chose to treat them as a chord on its own.

In order to check the consistency of the corrections we
made to the database, we compared our results with the ones
obtained in [21]. In particular, for both major and minor
segments, we calculated the list of frequencies of each chord
type and the heatmaps (frequency of each sequence of pairs
of chords), following [21]; the numerical outcomes we obtain
is close to the ones obtained in [21]. The main difference
is the frequency of ’I’ in minor segments, which ranks 14
in frequency order in our database but 2 in Ref. [21]. It
is very likely that the corrections listed in [28] have been
performed after [21] was published, which would explain this
discrepancy.
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