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Abstract. We review recent works that relate entanglement of random vectors to their
localization properties. In particular, the linear entropy is related by a simple expression
to the inverse participation ratio, while next orders of the entropy of entanglement contain
information about e.g. the multifractal exponents. Numerical simulations show that these
results can account for the entanglement present in wavefunctions of physical systems.
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1. Introduction

Quantum mechanics has always seemed puzzling since its first construction
in the first half of the twentieth century. Many properties are different from
the world of classical physics in which our intuition is built. The develop-
ment of quantum information science in the last decades has exemplified this
aspect. Indeed, it was realized that it is in principle possible to exploit the
features of quantum mechanics to treat information in a different way from
what a classical computer would do. In this context, the specific properties of
quantum mechanics are put forward as new resources which enable to treat
information in completely new ways.

One of the most peculiar properties of quantum mechanics is entangle-
ment, that is the possibility to construct quantum states of several subsystems
that cannot be factorized into a product of individual states of each subsys-
tem. Such entangled states are the most common in quantum mechanics,
and they display correlations which cannot be seen in a classical world, ex-
emplified by e.g. the Einstein–Podolsky–Rosen “paradox.” Entanglement is
also a resource for quantum information (see Nielsen and Chuang 2000 and
references therein), and has been widely studied as such in the past few years.

Despite intensive work, entanglement remains a somewhat mysterious
property of physical systems. The structure of entanglement of systems even
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with small numbers of particles is hard to characterize. Even properly mea-
suring the entanglement present in a system is difficult for mixed states. This
is all the more important since recent results have shown that (at least for
pure states) if a process creates a sufficiently low level of entanglement, it
can be simulated efficiently by a classical computer (Jozsa and Linden 2003;
Vidal 2003). This gives a limit on the speedup over classical computation a
quantum computer can achieve, and also gives rise to interesting proposals for
building classical algorithms simulating weakly entangled quantum systems
(Verstraete et al. 2004).

In this paper, we review recent results we obtained (details can be found
in Giraud et al. 2007, 2009), which concern the relationship of entanglement
to localization properties of a quantum state. Our strategy is to consider
n-qubit systems, and to study entanglement of quantum states relative to their
localization properties in the 2n-dimensional Hilbert space in the computa-
tional basis. We obtain analytical results for random states, that is ensemble
of quantum states sharing some properties. Such random states have been
recently studied in the literature. They are interesting in themselves, since it
has been shown for example in quantum information that they are useful in
various quantum protocols (Harrow et al. 2004; Hayden et al. 2004; Bennett
et al. 2005; Cappellaro et al. 2005). This motivated a recent activity in the
quantum information community to try and produce efficiently such random
vectors or random operators through quantum algorithms (Emerson et al.
2003; Weinstein and Hellberg 2005), and to characterize their entanglement
properties (Scott 2004; Sommers and Zyczkowski 2004; Giraud 2007a, b;
Zindaric 2007; Zindaric et al. 2007; Facchi et al. 2008). In addition to their
intrinsic usefulness, random states are important since they can describe typ-
ical states of a “complex” system. For example, it has been known for some
times now that random vectors built from Random Matrix Theory (RMT)
can describe faithfully the properties of quantum Hamiltonian systems whose
classical limit is chaotic, and more generally of many complex quantum
systems (Giannoni et al. 1991). Such random vectors are ergodic, and the
entanglement they contain has been calculated some time ago (Lubkin 1978;
Page 1993). However, in many quantum systems, the wavefunctions are not
ergodic but localized. This can correspond to electrons in a disordered po-
tential, which are exponentially localized due to Anderson localization. It
can also be seen in many-body interacting systems, where the presence of
a moderate interaction can lead to states partially localized in energy. Some
systems are in a well-defined sense neither ergodic neither localized: they
correspond to e.g. states at the Anderson transition between localized and
delocalized states, and can show multifractal properties (Mirlin 2000; Evers
and Mirlin 2007).
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In this paper, we calculate the amount of entanglement present in en-
sembles of random vectors displaying these various degrees of localization.
Besides generalizing the result for RMT-type random vectors, this gives the
entanglement present in a “typical state” of such localized or partially lo-
calized systems. This enables to estimate the complexity of simulating such
systems on classical computers, but also sheds light on the entanglement it-
self, since in these cases it is related through simple formulas to quantities
characterizing the degree of localization of the system.

Our results show that for random vectors which are localized on the
computational basis, the linear entropy which approximates the amount of
entanglement in the vector is simply related to the Inverse Participation Ratio
(IPR), a popular measure of localization. The next term in the approximation
is related to higher moments, and in particular to the multifractal exponents
for multifractal systems. In order to assess the usefulness of these results to
physical systems, we compare them to the entanglement numerically com-
puted for several models. After a general discussion on entanglement of ran-
dom vectors (Sect. 2), we consider the entanglement of one qubit with the
others (Sect. 3), and give explicitly the first and second order of the expansion
of the entropy of entanglement around its maximum. Section 4 generalizes
these results to other bipartitions, and Sect. 5 compares the formula obtained
with the numerical results for two physical systems. Section 6 considers the
physically important case of vectors localized not on a random subset of the
basis vectors, but on a subset composed of adjacent basis vectors (that is
the states are localized on computational basis states which are adjacent when
the basis vectors are ordered according to the number which labels them).
showing that the results become profoundly different. Section 7 presents the
conclusions.

2. Entanglement of Random Vectors

Random vectors are ensembles of vectors whose components are distributed
according to some probability distribution. If for example the system con-
sidered is composed of n qubits, the Hilbert space is of dimension N = 2n,
and random vectors distributed according to the uniform measure on the
N-dimensional sphere describe typical quantum states of the n qubits.
Such states are ergodically distributed in the computational basis, and
their entanglement has been already studied in Lubkin (1978) and Page
(1993). In this paper, we are interested in random vectors which are not
ergodically distributed. Ensembles of such states will be characterized by
localization properties. The simplest example of such localized random
vectors can be constructed by taking M components (M < N) with equal
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amplitudes and uniformly distributed random phases, and setting all the
others to zero. The random vectors will all be exactly localized on M basis
states. A more physically relevant example consists in still choosing M < N
nonzero components, and giving them the distribution of column vectors of
M × M random unitary matrices drawn from the Circular Unitary Ensemble
of random matrices (CUE vectors). In general our result will be averaged
both over the distribution of the nonzero components and the position of
these nonzero components in the computational basis. This corresponds to
classes of random vectors sharing the same localization length. Our results
will in fact generalize to any such distribution of random vector whose
localization properties are fixed. In addition, we shall see that if we impose
that the distribution of the position of nonzero components is such that there
are always adjacent in the computational basis, the results change drastically.

The localization properties of the random vectors can be probed using the
moments of the distribution

pq =

N
∑

i=1

|ψi|2q (1)

The second moment is p2 = 1/ξ where ξ is the Inverse Participation Ratio
(IPR) which is often used in the mesoscopic physics literature to measure the
localization length. Indeed, for a state uniformly spread on exactly M basis
vectors, one has ξ = M. The scaling of p2 and higher moments with the size
also probes the multifractal properties of the wavefunction.

The random states we consider are built on the N-dimensional Hilbert
space of a n-qubit system with N = 2n. We are interested in bipartite entan-
glement between subsystems defined by different partitions of the n qubits
into two sets. In general, bipartite entanglement of a pure state belonging to
a Hilbert space HA ⊗ HB is measured through the entropy of entanglement,
which has been shown to be a unique entanglement measure (Popescu and
Rohrlich 1997). We consider pure states belonging to HA ⊗ HB where HA

is a set of ν qubits and HB a set of n − ν qubits. If ρA is the density matrix
obtained by tracing out subsystem B, then the entropy of entanglement of the
state ρ with respect to the bipartition (A, B) is the von Neumann entropy of
ρA, that is S = −tr(ρA log2 ρA).

3. Entanglement of One Qubit with All the Others

To obtain an approximation for the entropy, one can expand S around its
maximal value. In the case of the partition of the n qubits into 1 and n − 1
qubits, the entropy can be written as a function of τ, with

τ = 4 det ρA (2)
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(in the case of 2 qubits this quantity is called the tangle and corresponds to
the square of the generalized concurrence, Rungta and Caves 2003). One has

S (τ) = h

⎛

⎜

⎜

⎜

⎜

⎝

1 +
√

1 − τ
2

⎞

⎟

⎟

⎟

⎟

⎠
, (3)

where h(x) = −x log2 x− (1 − x) log2(1 − x). The series expansion of S (τ) up
to order m in (1 − τ) reads

S m(τ) = 1 − 1
ln 2

m
∑

n=1

(1 − τ)n

2n(2n − 1)
. (4)

The first order corresponds to τ itself up to constants and its average
over the choice of the (1, n − 1) partition is known as the linear entropy or
Meyer–Wallach entropy Q (Meyer and Wallach 2002; Brennen 2003). Our
results show that for our class of random vectors, the average linear entropy
is given by

〈τ〉 = N − 2
N − 1

(1 − 〈p2〉) = N − 2
N − 1

(1 − 〈1/ξ〉). (5)

This formula was obtained first by considering a random vector which
is nonzero only on M basis vectors among N, and summing explicitly the
combinatorial terms. It can also be obtained in a more general setting by
taking M = N and summing up all the localization properties of the vector in
the IPR ξ alone. For any (1, n−1) partition of the n qubits, the components of
the vector can be divided in two sets according to the value of the first qubit.
Assuming no correlation among these sets enables to get (5) (details on the
calculations can be found in Giraud et al. 2007).

It is interesting to compare this formula with a similar one obtained in
Viola and Brown (2007) and Brown et al. (2008) using different assumptions,
in particular without average over random phases. The formula obtained re-
lates entanglement to the mean inverse participation ratio calculated in three
different bases, a quantity that is often delicate to evaluate. In our case, the
additional assumption of random phases enables to obtain a formula which
involves only the IPR in one basis, a quantity that can be easily evaluated
in many cases. For example, it enables to compute readily the entanglement
for localized CUE vectors. However there are instances of systems (e.g. spin
systems) where these different formulas give the same results.

In particular, our formula (5) allows to compute 〈τ〉 e.g. for a CUE vector
localized on M basis vectors; in this case ξ = (M + 1)/2, and we get

〈τ〉 = M − 1
M + 1

N − 2
N − 1

. (6)
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In Lubkin (1978), 〈τ〉 was calculated for non-localized CUE vectors of length
N, giving 〈τ〉 = (N − 2)/(N + 1). Consistently, our formula yields the same
result if we take M = N. For a vector with constant amplitudes and random
phases on M basis vectors, ξ = M and

〈τ〉 = M − 1
M

N − 2
N − 1

. (7)

The next order in the expansion (4) can be obtained by similar methods
that we do not detail here (see Giraud et al. 2009 for details); summing up all
terms involved in τ2 we get

〈τ2〉 = N(N−2)(N2−6N+16)c1111+4N(N−2)(N−4)c211+4N(N−2)c22. (8)

with

c22 =
〈p2

2〉 − 〈p4〉
N(N − 1)

, c211 =
〈p2〉 − 〈p2

2〉 − 2〈p3〉 + 2〈p4〉
N(N − 1)(N − 2)

,

c1111 =
1 − 6〈p2〉 + 8〈p3〉 + 3〈p2

2〉 − 6〈p4〉
N(N − 1)(N − 2)(N − 3)

. (9)

This gives the next order of the entropy of entanglement in terms of the
moments up to order 4 of the vector. What this means is that at this order,
the average entanglement of random vectors with fixed moments will be re-
lated to them through (8). Although more complicated than (5), the formula
indicates that e.g. for states having multifractal properties, since moments
scale with system size according to quantities called multifractal exponents,
the behavior of the entanglement at this order will be also controlled by these
multifractal exponents.

The nth order of the expansion (4) can similarly be obtained and has been
derived in Giraud et al. (2009). It is interesting to note that in the case of
a CUE random vector of size N, resummation of the whole series for S (τ)
yields, after some algebra,

〈S (τ)〉 = 1
ln 2

N−1
∑

k=N/2+1

1
k
, (10)

which has been obtained earlier by a different method (Page 1993).
A general conclusion obtained from these formulas is that the entangle-

ment associated to such bipartition goes to the maximal value for large N and
large ξ, even if ξ remains smaller than N. For fixed ξ, it tends for large N to
a constant nonzero value which depends on ξ. We will see in Sect. 6 that this
result can change drastically if we impose a localisation on fixed locations in
Hilbert space.
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4. Entanglement of Random Vectors: Other Partitions

Up to now we have considered the entanglement of one qubit with all the
others, i.e. the (1, n − 1) partition of n qubits. What about bipartite entangle-
ment relative to other bipartitions (ν, n − ν), where ν is any number between
1 and n − 1? In this case, it is convenient to define the linear entropy as
S L =

d
d−1 (1 − trρ2

A), where d = dimHA ≤ dimHB. The scaling factor is such
that S L varies in [0, 1].

A similar calculation as above enables then to obtain the first order of the
mean von Neumann entropy, given by

〈S 〉 ≈ ν − 2ν − 1
2 ln 2

(

1 − N − 2ν

N − 1

〈1
ξ

〉

)

, (11)

with p2 = 1/ξ, which generalizes (5).
Higher-order terms can be obtained as well, although the calculations

become tedious. To this end, the entropy S = −tr(ρA log2 ρA) is expanded
around the maximally mixed state ρ0 = 1/2ν, as

S = ν +
1

ln 2

∞
∑

n=1

(−2ν)n

n(n + 1)
tr((ρA − ρ0)n+1). (12)

We remark that again the linear entropy 11 tends to the maximal possible
value when N and ξ become large, as for the (1, n − 1) partition.

5. Entanglement of Random Vectors: Application to Physical Systems

In order to test these results on physical systems, we compared them to
numerical results obtained from different models.

The first one corresponds to a diagonal Hamiltonian matrix to which a
two-body interaction is added.

H =
∑

i

Γiσ
z
i +

∑

i< j

Ji jσ
x
i σ

x
j (13)

This system can describe a quantum computer in presence of static disor-
der (Georgeot and Shepelyansky 2000a, b). Here the σi are the Pauli matrices
for the qubit i, energy spacing between the two states of qubit i is given by
Γi are randomly and uniformly distributed in the interval [Δ0 − δ/2,Δ0 +

δ/2], and Ji j uniformly distributed in the interval [−J, J] represent a random
static interaction. Entanglement of eigenvectors of this Hamiltonian was al-
ready considered in a different context in Mejia-Monasterio et al. (2005). It is
known (Georgeot and Shepelyansky 2000a) that in this model a transition to



58 O. GIRAUD ET AL.

quantum chaos takes place for sufficiently large coupling strength J. In this
regime, eigenvectors of (13) are spread among all noninteracting eigenstates,
which correspond to the computational basis, but in a certain window of
energy, and are distributed according to the Breit–Wigner (Lorentzian) dis-
tribution. Thus these wavefunctions are distributed among a certain subset
of the computational basis, although they are not strictly zero outside it, and
the distribution is not uniform, but rather Lorentzian. Nevertheless, our data
show (see Figs. 1 and 2) that the behavior of the bipartite entanglement of
eigenvectors of this model is well described by the results derived for random
vectors. The agreement becomes very accurate if the eigenvector components
are randomly shuffled to lower correlations.

We also considered another model, based on N × N matrices of the form

Ukl =
eiφk

N
1 − e2iπNγ

1 − e2iπ(k−l+Nγ)/N
, (14)

where φk are random variables independent and uniformly distributed in
[0, 2π[. This model introduced in Bogomolny and Schmit (2004) is the
randomized version of a simple quantum map introduced in Giraud et al.
(2004). The eigenvectors of (14) have multifractal properties in the momen-
tum representation (Martin et al. 2008) for rational γ, although again the
components are nonzero everywhere. The results of Figs. 2 and 3 shows that
again the results for random vectors describes very well the entanglement for
this system for randomly shuffled components, and that even the first order is
already a good approximation.
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Figure 1. Scaled mean linear entropy 〈τ〉(N − 2)/N = 〈Q〉(N − 2)/N of (13) vs. mean IPR
for δ = Δ0, n = 10 (blue circles) and n = 11 (green squares). Red line is the theory, crosses
the data for n = 10 with random shuffling of components. Inset: scaled correlator between
the two sets of components (see Sect. 3), with same parameters; red line is the result when no
correlations are present (from Giraud et al. 2007)
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Figure 2. Mean entropy of entanglement S for different bipartitions (ν, n − ν) as a function
of the mean IPR. Left: eigenvectors of (14) with γ = 1/3; the average is taken over 106

eigenvectors. Right: eigenvectors of (13) with δ = Δ0 and J/δ = 1.5; average over ≈ 3 × 105

vectors. Triangles correspond to ν = 1, squares to ν = 2 and circles to ν = n/2, with n = 4−10.
Black symbols are the theoretical predictions for the mean value of S (obtained from (11) and
green (gray) symbols are the computed mean values of the von Neumann entropy (from Giraud
et al. 2009)
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Figure 3. Relative difference of the entropy of entanglement (3) and its successive approxi-
mations S m (m = 1, 2) with respect to the number of qubits for eigenvectors of (14) for (left)
γ = 1/3 and (right) γ = 1/7. The average is taken over 107 eigenvectors, yielding an accuracy
� 10−6 on the computed mean values. Green triangles correspond to the first order expansion
S 1, blue squares and red circles to the second order expansion S 2. The difference between the
latter two is that for blue squares 〈p2

2〉 appearing in (9) has been replaced by 〈p2〉2 yielding
a less accurate approximation. Dashed line is a linear fit yielding 1 − 〈S 1〉/〈S 〉 ∼ N−0.84 for
γ = 1/3 and N−1.58 for γ = 1/7 (from Giraud et al. 2009)

6. Entanglement of Adjacent Random Vectors

In the preceding sections we discussed formulas for entanglement of ensem-
bles of random vectors where the components over each basis vector are
independent. If we relax this assumption, the result may change. A particular
important case corresponds e.g. to random vectors localized on M compu-
tational basis states which are adjacent when the basis vectors are ordered
according to the number which labels them (if the two states of a qubit are
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denoted |0〉 and |1〉, each state in the computational basis corresponds to a
sequence of 0 and 1 and thus can be labelled naturally by a number between
0 and 2n − 1). In this case, we had to use combinatorial methods; summing
all contributions together we get for the linear entropy of (1, n − 1) partitions

〈τ〉 =
[(

M − 2
M − 1

r0 +
2(2r0 − 1)
M(M − 1)

+
4
3

(M + 1)(2n − 2r0)
2n+r0

− 1
M(M − 1)

r0−1
∑

r=0

χr(mr)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

1 − 〈1
ξ
〉
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1
n
, (15)

where r0 is such that 2r0−1 < M ≤ 2r0 and χr(x) = χr(2r+1− x) = x2− 2
3 x(x2−

1)/2r for 0 ≤ x ≤ 2r. Equation (15) is an exact formula for M ≤ N/2. For
fixed M and n → ∞, n〈Q〉 converges to a constant C which is a function of
M and ξ. For M = 2r0 , r0 < n, (15) simplifies to

〈τ〉 =
⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(r0 +
4
3 )M2 − 2(r0 − 1)M − 10

3

M(M − 1)
− 4(M + 1)

3N

) (

1 − 〈1
ξ
〉
)]

1
n
. (16)

Numerically, this expression with r0 = log2 M gives a very good approxima-
tion to (15) for all M.

Equation (15) is exact for e.g. uniform and CUE vectors, and can be
applied even if the vector is not strictly zero outside a M-dimensional sub-
space. Indeed, for N-dimensional CUE vectors with exponential envelope
exp(−x/l), 〈Q〉 is in excellent agreement with (15) with ξ = l and M = 2ξ
(stars in inset of Fig. 4).

In order to compare these findings to those of a physical system with
such property of localization on adjacent basis vectors, Fig. 4 shows the the-
ory (15) together with the entropy for the one-dimensional Anderson model.
This model corresponds to a one-dimensional chain of vertices with nearest-
neighbour coupling and randomly distributed on-site disorder, described by
the Hamiltonian H0+V . Here H0 is a diagonal operator whose elements εi are
Gaussian random variables with variance w2, and V is a tridiagonal matrix
with non-zero elements only on the first diagonals, equal to the coupling
strength, set to 1. It is known that eigenstates of this system, which modelizes
electrons in a disordered potential, have envelopes of the form exp(−|x −
x0|/l), where l is the localization length. It was shown in Pomeransky and
Shepelyansky (2004) and Giraud et al. (2005) that this model can be simu-
lated efficiently on a quantum computer, and the wavefunction of the com-
puter during the algorithm will be localized on adjacent basis vectors, which
correspond to the position of vertices. Figure 4 shows that the asymptotic
behavior of the linear entropy of the eigenstates (with all correlations left
between components, i.e. no random shuffling) is well captured by (15).



ENTANGLEMENT OF LOCALIZED WAVEFUNCTIONS 61

〈1/ξ 〉−1

lim n
→

∞
n
〈Q

〉

6004002000

10

5

0

n

〈Q
〉

2019181716151413121110987

0.65

0.55

0.45

0.35

0.25

Figure 4. Mean linear entropy 〈τ〉 = 〈Q〉 of partitions (1, n − 1) vs. number of qubits for the
one-dimensional Anderson model with disorder from top to bottom w = 0.2 (blue), 0.5 (red),
1.0 (green), 1.5 (magenta), 2.0 (cyan), and 2.5 (orange). Average is over 10000 eigenstates.
Solid lines are the C/n fits of the tails. Inset: Value of C = limn→∞ n〈Q〉 as a function of IPR
ξ (green dots) for the values of w above and w = 0.4, together with analytical result of (15)
(red line, top) and by 26

9 − 4
M − 8(3r0+1)

9M2 for M = 2ξ (blue line, bottom). Stars are the C values
resulting from a C/n fit of the numerical data for CUE vectors of size N with exponential
envelope exp(−x/l) (from Giraud et al. 2007)

Thus random vectors localized on adjacent basis vectors correspond to a
drastically different behavior compared to the vectors of Sect. 3: indeed, for
fixed ξ the entanglement (at least the linear entropy) always tends to zero for
large N, even if it does it rather slowly (as ∼ 1/ ln N).

7. Conclusion

The results above indicate that the entanglement of random vectors can be
directly related to the fact that they are localized, multifractal or extended.
The numerical simulations for different physical systems show that these
results obtained for random vectors describe qualitatively the entanglement
present in several physical systems, and reproduce it accurately if correlations
are averaged out.

Thus the results are interesting to predict the amount of entanglement
present in random vectors, and also can be applied to physical systems
for which such random vectors describe typical states. This gives insight
on the difficulty to simulate classically such systems, since systems with
low amounts of entanglement can be simulated classically efficiently. This
also can be applied to estimate the changes in entanglement at a quantum
phase transition (Amico et al. 2008), in particular for the Anderson transition
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between localized and extended states (see Giraud et al. 2009 for more
details). Additionally, this gives also insight on the nature of entanglement
itself by relating it to simple physical properties of the system.
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