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We investigate coherent multiple scattering effects in the random quantum kicked rotor model. By changing
the starting time of the Floquet period, two classes of models can be introduced that exhibit similar interference
structures. For one of the two classes, these structures appear on top of a nontrivial background, which we
describe in detail. Its origin is identified and an approximate analytical formula is proposed. The asymptotic
contrast profile, as well as the height of the coherent backscattering and the coherent forward scattering peaks,
are also analyzed. Our findings are relevant to provide an interpretation of cold atom experiments aimed at
observing such interference effects with matter waves.
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I. INTRODUCTION

Coherent backscattering (CBS) is arguably the emblematic
signature interference effect associated with coherent linear
wave propagation in disordered media. As it is a ubiquitous
effect, it has been observed using very different classical
waves and very different disordered media in the weak (semi-
classical) localization regime: optical, acoustic, and seismic
[1–7]. As a matter of fact, CBS can be demonstrated with quite
simple optical setups [8]. Its physical origin can be traced back
to disorder-immune constructive two-wave interference terms
involving scattered waves contrapropagating along the same
scattering paths [9].

CBS has also been observed with spinless atomic mat-
ter waves [10,11]. In this setting, atoms are prepared and
launched with an initial momentum p0 within a spatially
disordered potential, usually produced with a speckle light
field. Because successive scattering events randomize wave
propagation, the disorder-averaged momentum distribution at
large-enough times is expected to become isotropic and to
fully spread over the available energy shells. This momentum
distribution is called the (incoherent) diffusive background.
For time reversal invariant systems however, a CBS in-
terference peak appears atop this diffusive background at
momentum −p0 after a time of the order of the scattering
mean free time [12].

In the weak localization regime, wave transport is only
weakly affected by interference. Anderson understood that
disorder could, in fact, impact wave transport even more dra-
matically [13] with profound consequences, as described by
the scaling theory of localization [14]. In this strong localiza-
tion regime, destructive quantum interferences simply bring

diffusion to a complete stop and the medium behaves like an
insulator. Since then, Anderson localization has been observed
and studied in several systems [15–21], but remained elusive
for light in three dimensions [22].

Recently, in the context of matter waves, it has been dis-
covered that Anderson localization triggers the emergence
of an interference peak twinning the CBS peak in the long
time limit [23–25]. The appearance of this novel interference
peak, dubbed the coherent forward scattering (CFS) effect, is
a marker of localization, even embodying profound features of
the three-dimensional (3D) Anderson transitions like critical
exponents and multifractal dimensions [26–28]. It appears at
a time of the order of the localization time (Heisenberg time
associated to a localization volume) τH usually larger than the
timescale associated to the emergence of the CBS peak.

Noticeably, similar phenomena can be observed and stud-
ied using deterministic systems subject to time-periodic
driving. In this context, disorder is produced dynamically, and
the time evolution is described stroboscopically by iterating a
unitary quantum (Floquet) map at discrete time steps. As the
quantum map incorporates the effect of dynamical disorder
over one time step, such systems provide simple yet powerful
models to investigate properties of dynamically disordered
quantum systems at large times. This is the reason why they
have been extensively studied in the context of quantum chaos
[29]. A paradigmatic Floquet model is the quantum kicked
rotor (QKR). Here, the system is periodically kicked with a
position-dependent strength and evolves freely between two
consecutive kicks [30,31]. This system exhibits dynamical
localization, a phenomenon akin to Anderson localization in
one dimension [32,33]. Dynamical localization was observed
with cold atoms [34–36], and, using incommensurate driving
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FIG. 1. RQKR dynamics. Stroboscopic Floquet evolution of the spatial probability density n(x, t ) at different times obtained under U0 =
UxUp (left panel) and U1/2 = √

UpUx

√
Up (right panel) for an initial condition peaked at x0 = −π/2. The parameters are N = 1024, K =

20, h̄e = 2.89 and the random (uncorrelated) phases αp are drawn uniformly over [0, 2π [. The average is done over 20 000 phase-isorder
configurations. In the right panel, the point at x = x0 for t = 1, which is of order N , has been removed for clarity. The evolution under the
operator V1/2 is not shown here as it gives the same spatial distribution as U0.

frequencies [37], used to tackle experimentally the 3D Ander-
son localization transition, its critical state [38–40], and the
so-called quantum boomerang effect [41–44].

Such Floquet systems turn out to be convenient exper-
imental platforms to observe and study the CBS and CFS
interference phenomena as well. However, since disorder is
imprinted in momentum space by the (quasi)random free
evolution phases, the CBS and CFS peaks emerge now in
the disorder-averaged spatial distribution of the system [45].
An advantage of the QKR model is that it can be adapted
easily to explore different symmetry classes (orthogonal, uni-
tary, and symplectic) and regimes (localized, critical, and
delocalized) [46–49].

At the heart of the present paper is the following ob-
servation. In periodically kicked systems, the stroboscopic
approach describes the state of the system at each period of
time by repeated action of the corresponding Floquet operator
U on an initial state. One would intuitively expect that the
universal signatures of localization discussed above would be
insensitive to the initial time of the stroboscopic observations:
whether we start the dynamic evolution by a kick or by a free
evolution should lead to similar results. Quite unexpectedly,
this is not the case. We illustrate this in Fig. 1, which displays
the disorder-averaged spatial probability density n(x, x0, t ) =
|ψ (x, t )|2 = |〈x|Ut |x0〉|2 obtained at several discrete times t
when the system is prepared initially in some position state
|x0〉. The CBS and CFS peak structures appear at positions
−x0 and x0, respectively. While CBS has fully developed after
a few kicks, the CFS takes a longer time to fully emerge. The
left panel of Fig. 1 shows the results obtained with the usual
QKR Floquet protocol, where during each period of time the
system evolves freely, and is subjected to a kick at the end of
the period. However, the right panel shows the results obtained
when the system first evolves freely over half a period of time,
then is kicked, and finally completes another free evolution
over half a period of time. As one can see, the resulting

spatial profiles of the density are totally different, with high
spatial oscillations in the second case, and seemingly differ-
ent heights and contrasts of the CBS and CFS peaks at −x0

and x0.
The goal of the present paper is to analyze and clarify

the origin of these different behaviors. One may think that
these additional oscillations are due to interference effects
beyond CBS and CFS. On the contrary, we show that the
oscillations that manifest themselves for different choices of
the starting time of the Floquet sequence are due to an os-
cillatory noninterferential background; after subtracting this
contribution, we get spatial peak structures which closely
match one another. To experimentally observe interferometric
signatures such as CBS or CFS it is necessary to know in
detail the background from which they emerge. Our work is
thus important to characterize such signatures in cold atom
experimental realizations of the QKR.

After defining our models in Sec. II, we calculate in Sec. III
the density profile of an iterated quantum state at large time
and find analytic formulas for the background. A discussion
is given in Sec. IV.

II. MODELS

In this section, we introduce the random quantum kicked
rotor (RQKR) model and two of its variants. For each of
them, we analyze in detail the behavior of a wave function
in position space under Floquet iteration.

A. Definition of the RQKR models

1. Hamiltonian and Floquet evolution operators

In dimensionless units, the QKR Hamiltonian takes the
form

H (t ) = p̂2

2
− K cos x̂

∞∑
n=−∞

δ(t − n), (2.1)
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where [x̂, p̂] = ih̄e. Here, K and h̄e are the dimensionless kick
strength and effective Planck’s constant, respectively. The
evolution of a system subjected to this Hamiltonian consists of
a free evolution interrupted at regular intervals tn = nT (n ∈ Z
and T = 1 here) by position-dependent kicks of amplitude K .
Following the Floquet approach, the dynamics can be studied
stroboscopically at each multiple of the time period T = 1.
This leaves open the choice of the start time t0 ∈ [0, 1] of
the periodic sequence used for the stroboscopic description,
that is, how to distribute the free evolutions around the kick.
This choice leads to a continuous family of unitary Floquet
operators parametrized by t0. For a given choice of t0, we have
U (t0 + n, t0) = U n

t0 where Ut0 = U (t0 + 1, t0). Using the time
evolution chain rule for Hamiltonian (2.1), we have

Ut0 = Ut0
p Ux U 1−t0

p = Ut0
p (UxUp)U −t0

p , (2.2)

where Up = e−i p̂2

2h̄e describes the free evolution over one pe-

riod and Ux = ei K
h̄e

cos x̂ describes the instant evolution under
the δ-kick.

Trivially, Eq. (2.2) shows that all Floquet operators Ut0
are unitarily related to UxUp and thus have the same Floquet
quasienergy spectrum than UxUp. However, their respective
corresponding eigenkets are unitarily related to those of UxUp

by Ut0
p . Since disorder in QKR systems is imprinted through

free dynamical phases, the difference in free evolutions, cap-
tured by Ut0

p , will impact wave function amplitudes and thus,
possibly, their statistical properties. As a direct consequence,
physical observables computed with them should be affected
too, as will be seen below. Note that the dependency of the
time evolution of QKR to the initial state was also investigated
in [50,51].

2. Usual QKR and its RQKR variant

The QKR model is obtained for t0 = 0, that is, by having
the full free evolution during a time T before a kick [see
Fig. 2(a)]. The QKR Floquet evolution operator over one
period is thus

U0 = Ux Up = ei K
h̄e

cos x̂ e−i p̂2

2h̄e . (2.3)

Since the potential is periodic in space, Bloch theorem im-
plies that eigenfunctions satisfy φn(x + 2π ) = exp(iβx) φn(x)
where the quasimomentum β ∈ [0, 1]. This also means that
the convenient representation of momenta states is |p〉 =
|(l + β )h̄e〉 ≡ |l, β〉, with l ∈ Z. The case β = 0 describes a
kicked pendulum for which the space variable identifies with
an angle. The matrix elements of U0 in momentum space are
given by

〈l ′, β ′|U0|l, β〉 = e−iεp il ′−l Jl ′−l (K/h̄e)δ(β ′ − β ), (2.4)

where Jn(x) is the nth Bessel function and εp = (l + β )2h̄e/2
is the dynamical phase induced by the free evolution operator
over one period, Up, in momentum space. A consequence
of Eq. (2.4) is that the evolution operator U0 conserves the
pseudomomentum β, which is thus a constant of motion. In
numerical computations, one generally truncates the possible
l values to |l| � N , where N plays the role of the system size
in momentum space and is chosen large enough to capture
the relevant physical behavior being targeted. Equation (2.4)

FIG. 2. Evolution operators. Three different Floquet evolution
operators are considered. Their schematic representation is given
above on a time line where the ticks represent the kicks that occur
at integer times. (a) The evolution operator U0 = UxUp corresponds
to a free evolution Up during one period of time T = 1, followed
by a full kick Ux of strength K . (b) The evolution operator U1/2 =√

Up Ux

√
Up corresponds to two free evolutions

√
Up lasting half a

period of time and separated by a full kick Ux . (c) The evolution
operator V1/2 corresponds to a free evolution Up during one period of
time boxed by two kicks

√
Ux of half strength K/2.

also shows that the kick operator Ux induces a hopping in the
l lattice which is restricted to a range of order K/h̄e by the
exponential decrease of the Bessel function [52]. As a con-
sequence, 
s = K/h̄e plays the role of an effective scattering
mean free path in momentum space.

The dynamical phases εp in Eq. (2.4), though completely
deterministic, turn out to be pseudorandom numbers uni-
formly distributed over [0, 2π ] when p varies, as soon as h̄e is
incommensurate with 2π . A practical drawback of the QKR
is that disorder averaging is, however, not available, as the
model is completely deterministic. To unveil its quasirandom
nature, one would have to resort to averaging physical observ-
ables over well-chosen initial states. This also comes with
some drawback when discussing symmetries, in particular,
time reversal invariance (see Sec. II B), as it flips the sign of
momentum and thus the sign of β. Since the QKR evolution
preserves β, one would mix evolutions with different sym-
metry properties. To circumvent these practical drawbacks,
following [32,53,54], one defines the random quantum kicked
rotor (RQKR) model by replacing the deterministic kinetic
operator p̂2/(2h̄e) by a random one α( p̂) = ∑

p αp |p〉〈p|,
diagonal in momentum state. Equivalently, this amounts to
replacing the dynamical phases εp in Eq. (2.4) by truly random
phases αp. Disorder average is then an average over these
random phases αp. Another advantage of this approach is that
now different types of phase disorder can be considered, like
an Anderson-like partial phase disorder, for example [55].
For the rest of this paper, we consider the RQKR and Up =
exp[−iα( p̂)]. Since Ux still conserves β, and without any real
loss of generality, we stick here to the case β = 0. From now
on, p takes on integer values. Note that disorder is introduced
in momentum space, and therefore, the physical behaviors in
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position and momentum space are interchanged compared to
the standard Anderson picture described in the introduction.
This means, in particular, that the CBS and CFS peaks will
emerge in position space.

The model U0 corresponds to a stroboscopic evolution
starting at t0 = 0. We now consider two different choices
for the starting point of the evolution, which will yield two
different evolution operators.

3. Time-symmetrized QKR and RQKR

For this model, we equally distribute the free evolutions
around the kick (be it for the QKR or the RQKR). This is
achieved by choosing t0 = 1/2 [see Fig. 2(b)] and we have

U1/2 = √
Up Ux

√
Up . (2.5)

The unitary equivalence between U1/2 and U0 is given by the
random operator

√
Up ≡ e−iα( p̂)/2.

4. Kick-symmetrized QKR and RQKR

For this model, we introduce a new evolution scenario
where two δ kicks of amplitude Kr and K (1 − r) are bundled
together and we look at the wave function “in between them.”
The corresponding evolution operator reads

Vr = U r
x Up U 1−r

x = U r−1
x (UxUp)U 1−r

x . (2.6)

In analogy with Eq. (2.2), it is as if the kick was distributed
around the full free evolution. This prescription introduces
a continuous family of evolution operators parametrized by
r. Being unitarily equivalent to U0, all Vr and Ut0 have the
same Floquet quasienergy spectrum irrespective of the actual
value of r and t0. Furthermore, the eigenkets of Vr are unitarily
related to those of U0 by U r−1

x . There is, however, a huge dif-
ference here as Ux does not contribute any randomness to the
evolution. This has dramatic consequences when comparing
the physical properties of the system evolving under Ut0 or
under Vr .

In full analogy with Eq. (2.5), the kick-symmetrized case
is obtained for r = 1/2 [see Fig. 2(c)] and reads

V1/2 = √
Ux Up

√
Ux, (2.7)

where
√

Ux ≡ ei K
2h̄e

cos x̂. The unitary equivalence between V1/2

and U0 is given by the random operator
√

U †
x ≡ e−i K

2h̄e
cos x̂.

In the rest of the paper, we mainly focus on the dy-
namical properties of the system evolving under either the
time-symmetric U1/2 or the kick-symmetric V1/2 evolution
operators.

B. Discrete symmetries

The discrete symmetries relevant to the RQKR and its
variants are parity P , time reversal T , and their combination
PT . Importantly, T is antiunitary [56] and, as a consequence,
PT as well. Both realize time reversal operators in appropri-
ate bases of the Hilbert space, see Appendix A. For spinless
systems like here, T is simply the complex conjugation oper-
ator K̂x defined in position space, while PT is the complex
conjugation operator K̂p defined in momentum space, see
Appendix A.

It turns out that both models U1/2 and V1/2 are PT -
symmetric and are thus time reversal invariant in the
momentum basis. Indeed, it is easy to check that

K̂pU1/2K̂p = K̂pe−iα( p̂)/2 ei K
h̄e

cos x̂ e−iα( p̂)/2K̂p

= eiα( p̂)/2 e−i K
h̄e

cos x̂ eiα( p̂)/2

= U †
1/2 .

(2.8)

Similarly, we have K̂pV1/2K̂p = V †
1/2. As discussed in Ap-

pendix A, this PT -symmetry entails that eigenstates |ϕa〉 of
U1/2 can be chosen such that ϕa(p) is real and ϕ∗

a (−x) =
ϕa(x). The same type of conclusion holds for eigenstates
of V1/2.

One can easily check that the initial RQKR model U0 is not
PT -symmetric since K̂p U0 K̂p = U †

x U †
p 
= U †

0 . However, it is
important to note that U0 still retains time reversal invariance.
Indeed, introducing the anti-linear operator � = U †

x K̂p, we
see that �U0 � = U †

0 . Thus, it is �, rather than K̂p alone,
which plays the role of a time reversal operator for U0. In this
case, one can show that ϕ∗

a (−x) = eiK cos x/h̄eϕa(x).
In view of the above, it can appear more natural, when

investigating the role of symmetries in the quantum kicked
rotor, to consider U1/2 and V1/2 rather than U0 for which time
reversal acts through a less trivial operator. In the next section,
we explore the consequences of such a choice.

III. COHERENT SCATTERING EFFECTS

We now compare the different stroboscopic evolutions ob-
tained when U0, U1/2, or V1/2 repeatedly act on a given initial
state |ψ0〉. For the QKR model, Floquet eigenstates of U0 are
exponentially localized in momentum space with a localiza-
tion length ξ scaling like [45]

ξ ∼ K2

4h̄2
e

. (3.1)

When ξ is of the order of the system size N (that is, when
the kick amplitude K is large enough), the eigenstates extend
almost over the entire momentum space and the system retains
metallic features. However, when ξ � N (that is, when K is
small enough), the eigenstates are well localized and the sys-
tem is truly insulating. It is this latter regime that we consider
in the following.

A. Spatial probability density

As localization takes place in momentum space, the CBS
and CFS interference peaks appear in position space. We
thus compute the spatial probability density associated with
a state initially localized in position space, |ψ0〉 = |x0〉 with
x0 ∈ [−π, π ].

After t ∈ N kicks, the state is |ψ (t )〉 = Ut |x0〉, where
U is the Floquet operator under consideration. We want to
describe the behavior of the disorder-averaged probability
density n(x, x0, t ) = |ψ (x, t )|2, where ψ (x, t ) = 〈x|ψ (t )〉 are
the components of |ψ (t )〉 in position basis. The density is
normalized over the unit cell x ∈ [−π, π ] by

1

N

∑
x

n(x, x0, t ) = 1 −→
N→∞

∫ π

−π

dx

2π
n(x, x0, t ) = 1 (3.2)
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(see Appendix B for the normalization conditions and limiting
behavior N → ∞). We have

〈x|V t
1/2|x0〉 = ei K

2h̄e
(cos x0−cos x)〈x|Ut

0 |x0〉 , (3.3)

and thus the matrix elements of V t
1/2 and Ut

0 in position space
are equal up to a space-dependent phase factor. Therefore, the
probability densities at time t , n(x, x0, t ) = |〈x|Ut |x0〉|2, are
exactly the same for the two models.

In stark contrast, we have 〈x|Ut
1/2|x0〉 = 〈x|√Up Ut

0√
Up

†|x0〉. Since Up is not diagonal in position space, the
matrix elements 〈x|Ut

1/2|x0〉 and 〈x|Ut
0 |x0〉 are no longer sim-

ply proportional. As a consequence, the spatial probabilities
computed for U1/2 and for U0 are no longer the same and
display striking differences, as shown in Fig. 1. Because the
dynamics is time reversal invariant (see Sec. II B), a fully
contrasted CBS peak appears at position x0 for both models,
right after the first kick for U0 and after a few kicks for U1/2.
For both models, a CFS peak gradually appears at position x0

and fully develops over identical and much longer timescales
than CBS. Noticeably, both models present oscillations in
the steady-state profile reached at large time. However, the
standard model U0 has a uniform profile at t = 1 while the
first iteration of U1/2 reveals important oscillations in space.
Additionally, these large oscillations survive at later times.
Our aim is now to explain these features.

B. Modal decomposition of the spatial density

To understand the differences observed in Fig. 1 between
the two disorder-averaged spatial densities, let us decompose
each of them over the Floquet eigenbasis {|ϕn〉}n and eigen-
phases {ωn}n associated with their respective unitary Floquet
operator U = U0 or U = U1/2. Using U |ϕn〉 = e−iωn |ϕn〉, we
find

n(x, x0, t ) =
∑
n,m

e−i(ωn−ωm )tϕn(x)ϕ∗
m(x)ϕm(x0)ϕ∗

n (x0) . (3.4)

The density n(x, x0, t ) can be further decomposed as

n(x, x0, t ) = nB(x, x0, t ) + nI (x, x0, t ) , (3.5)

where nB(x, x0, t ) denotes the background and nI (x, x0, t )
contains all interference contributions. In the long-time limit
the diagonal approximation (n = m) can be performed in
Eq. (3.4) and the density converges to a steady-state spatial
distribution nS (x, x0) = limt→∞ n(x, x0, t ) that reads

nS (x, x0) =
∑

n

|ϕn(x)|2|ϕn(x0)|2 (3.6)

= N
∫ π

−π

dω
A(x, ω)A(x0, ω)

ν(ω)
, (3.7)

where the density of states ν(ω) and the spectral function
A(x, ω) are defined by

ν(ω) = 1

N

∑
n

δ(ω − ωn) , (3.8)

A(x, ω) = 1

N

∑
n

δ(ω − ωn)|ϕn(x)|2 . (3.9)

At this point, we remind the reader that U0 and U1/2 have
the same quasienergy spectrum but different eigenfunction
amplitudes in position space. This is because their eigenkets
are unitarily related by

√
Up, which is not diagonal in posi-

tion space. As a consequence the density of states ν(ω) is
the same for both U0 and U1/2 models while their respective
spectral functions in position space do differ, entailing dif-
ferent steady-state spatial distributions. Note, however, that
their spectral functions in momentum space would be exactly
the same as

√
Up is diagonal in p-space, leading to identical

steady-state momentum distributions. Finally, we remark that
nS (x, x0) is even in x and x0. This is because U0 is �-invariant
and U1/2 PT -invariant, from which we can easily show, for
both models, that |ϕn(−x)|2 = |ϕn(x)|2.

As shown by the normalization conditions (B10) and
(B11), the disorder-averaged spectral function Ā(x, ω) can
be interpreted as the classical probability distribution for the
system to have energy ω when it is at position x. By the same
token, Ā(x, ω)/(2πν(ω)) is interpreted as the classical proba-
bility for the system to be at position x when it has energy ω.
Using probability chain rules, the classical probability for the
system to be at position x when it started at position x0 reads

nB(x, x0) = N
∫ π

−π

dω
Ā(x, ω)Ā(x0, ω)

ν(ω)
, (3.10)

which corresponds to a summation over all (classical) ways of
going from x0 to x at different energies. Comparing Eqs. (3.7)
and (3.10), we see that the classical background corresponds
to the contributions to nS (x, x0) for which the components
of the spectral function corresponding to different positions
are decoupled. Note that nB(x, x0), like nS (x, x0), is even in x
and x0.

Importantly, in the N → ∞ limit, both nS (x, x0) and
nB(x, x0) obey Eq. (3.2) and are normalized to unity. The
steady state nS (x, x0) in Eq. (3.7) can then be decomposed as

nS (x, x0) = nB(x, x0) + nI (x, x0), (3.11)

where nB(x, x0) defines the interference-free classical back-
ground and nI (x, x0) encapsulates the interference contribu-
tions. The latter is normalized to zero

1

N

∑
x

nI (x, x0) = 0 −→
N→∞

∫ π

−π

dx

2π
nI (x, x0) = 0 , (3.12)

and is even in x and x0.
The disorder-averaged spectral function Ā(x, ω) can be

calculated as follows. Using the Floquet eigenbasis of U , we
have

〈x|Ut |x〉 =
∑

n

e−iωnt |ϕn(x)|2 (3.13)

= N
∫ π

−π

dω e−iωt Ā(x, ω). (3.14)

By inverse Fourier transform, we find

Ā(x, ω) = 1

2πN

∞∑
t=−∞

eiωt 〈x|Ut |x〉 . (3.15)

Note that 〈x|U −t |x〉 = 〈x|Ut |x〉∗, where the star denotes com-
plex conjugation. This implies that Ā(x, ω) is indeed real as
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FIG. 3. Integer moments. (a) Even moments. The kth moment
of e−iαp/2 for even k is zero since it corresponds to the barycen-
ter of k/2 superposed unit circles. (b) Odd moments. The kth
moment of e−iαp/2 with k odd is nonzero, as it corresponds to the
barycenter of (k − 1)/2 unit circles and one semi-circle (in red).

it should. The background is then numerically obtained via
Eq. (3.10), as we show below.

C. Background for U0 and V1/2

The quantity 〈x|Ut
0 |x〉 = 〈x|(Ux Up)t |x〉 can be expanded

explicitly as a sum over paths by introducing a closure relation
1 = ∑

p |p〉〈p| for each step t ′ ∈ {1, . . . , t}. Since only Up is
random, it can be expressed in terms of correlators of the
evolution operator Up as

〈x|Ut
0 |x〉 =

∑
p0,...pt

〈x|pt 〉
t∏

j=1

〈p j |Ux|p j−1〉
t−1∏
j=0

Upj 〈p0|x〉 . (3.16)

Since the phases αp are uncorrelated and uniformly distributed
in [0, 2π ] the quantities e−iαp are uniformly distributed over
the unit circle and all the moments of Up are zero [see
Fig. 3(a)]. The overlap (3.16) then reduces to 〈x|Ut

0 |x〉 = δt,0.
The spectral function (3.15) is, therefore, constant with re-
spect to the position, and so is the background Eq. (3.10). The
same goes for the half-kick model with evolution operator
V1/2 because of Eq. (3.3). The oscillations seen in Fig. 1(a),
therefore, correspond to interference effects. By contrast, for
the U1/2 model illustrated in Fig. 1(b), the background itself is
oscillatory, as we shall now see.

D. Background for U1/2

In this case, the computation is a bit more tricky since
U1/2 contains terms e−iα( p̂)/2 contributing diagonal random
phases e−ikαp/2 in momentum space with k odd, which do
not average to zero but to −2i/(kπ ) [see Fig. 3(b)]. The
calculation steps are detailed in the Appendix C. Writing
〈x|Ut

1/2|x〉 = ∑
q∈Z eiqx aq(t ), the Fourier series components

are given by a0(t ) = 0 and

aq(t ) = −4Niq

π2

� t−1
2 �∑

m=0

g(m, t )Jt−2m−1
0 (−1)qmJ2m+1

q , (3.17)

for q 
= 0, with

g(m, t ) =
t−1−m∑

k=m

(k
m

) (t−k−1
m

)
(2k + 1)(2t − 2k − 1)

, (3.18)

and Bessel functions J0 and Jq evaluated at K/h̄e.

FIG. 4. Ballistic decay time. Numerically computed ballistic
density nb(x0, t ) = | 1

N 〈x0|U t
1/2|x0〉|2 for the U1/2 model (full lines)

in logarithmic scale. The parameters are N = 800, h̄e = 2.89, x0 =
− π

2 , and K ∈ {5, 10, 20, 40, 80}. The disorder average is done over
106 realizations. The black dots are obtained from the theoretical
predictions at time t = 1, Eq. (3.19), and at time t = 2, Eq. (3.20).
Inset: Same as the main panel but in linear scale.

For t = 1 and t = 2, this gives
1

N
〈x|U1/2|x〉 = 4

π2
[J0(K/h̄e) − ei(K/h̄e ) cos x], (3.19)

1

N
〈x|U 2

1/2|x〉 = 2

3
J0(K/h̄e) 〈x|U1/2|x〉. (3.20)

Both expressions are in very good agreement with numerical
simulations, as illustrated by the black dots in Fig. 4.

Truncating the sum in Eq. (3.15) to the first values of t
provides a fairly good approximation of the average spectral
function Ā(x, ω). A simple approximate expression for the
spectral function can be obtained if we keep only the terms
|t | � 1 in Eq. (3.15). Using the explicit expression (3.19), it
reads

Ā(x, ω) ≈ 1 + 8

π2

[
cos(ω)J0

(
K

h̄e

)
− cos

(
ω − K

h̄e
cos x

)]
.

(3.21)

Using this expression for the spectral function, we can derive
approximate analytical formulas for the density of states ν(ω)
using Eq. (B11) and for the background using Eq. (3.10). We
obtain a flat density of states, and a background given by

nB(x, x0) ≈ 1 + 32

π4

{
J2

0

(
K

h̄e

)

− J0

(
K

h̄e

)[
cos

(
K

h̄e
cos x0

)
+ cos

(
K

h̄e
cos x

)]

+ cos

(
K

h̄e
(cos x0 − cos x)

)}
. (3.22)

This formula shows that we expect the amplitudes of spa-
tial oscillations to be governed by J0(K/h̄e) and the typical
scale of oscillations to be controlled by π/
s ∼ π h̄e/K . The
numerical results displayed in Fig. 5 show that this approx-
imate formula is very accurate despite keeping only terms
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FIG. 5. Spatial oscillations of the background. Numerical plot of
the background (solid blue line) for the U1/2 model with parameters
N = 200, h̄e = 2.89, K taking the values of 10 for panels (1a) and
(1b), 20 for panels (2a) and (2b), and 40 for panels (3a) and (3b). The
initial position is x0 = − π

2 for panels (a) and x0 = − π

3 for panels
(b). The vertical dashed line mark the positions ±x0. The disorder
average is done over 10 000 realizations. The approximate theoretical
background given by Eq. (3.22) is displayed as an orange dashed line
and is barely distinguishable from the numerical calculations.

|t | � 1 in Eq. (3.15). Adding more terms slightly improves
the approximation, but because of the exponential decay (see
Fig. 4) of their amplitude with a characteristic time τC ∼ 1
for our range of parameters K ∈ [5, 200] and h̄e = 2.89, there
is no need to go beyond the first term here. However, for
small values of K , the characteristic time τC increases, and
deviations are visible [see e.g. Fig. 5, panel (1a)]. When con-
sidering the terms associated with next values of t we recover
the agreement with the numerical simulations.

Note that the expressions we derived are obtained in the
large-N limit. As the plots in Fig. 5 show, already at N = 200
the agreement of Eq. (3.22) with numerics is very good.

E. CBS and CFS peaks

As defined in Eq. (3.5), the probability density n(x, x0, t )
is a sum of a time-independent interference-free classical
background component nB(x, x0) and a purely time-dependent
interferential component nI (x, x0, t ). The interference part of
the contrast for the spatial profile is defined as

C(x, x0, t ) = nI (x, x0, t )

nB(x, x0)
= n(x, x0, t )

nB(x, x0)
− 1. (3.23)

The CFS and CBS peak contrasts at time t are defined as
CCFS(x0, t ) = C(x0, x0, t ) and CCBS(−x0, t ) = C(−x0, x0, t ),
respectively, and were investigated in [45] for the RQKR
model U0. Whereas the CBS peak develops fully over a

FIG. 6. Contrast profile at large time. The contrast profile at large
time C(x, x0 ) is given for the U0 model (solid blue line) and for
the U1/2 model (solid orange line). Both models being time reversal
invariant, their profiles are even in x. The curves are obtained by
looking at the density profile at t = 1000 and then using Eq. (3.23)
with nB the theoretical background. The parameters used are N =
800, K = 20, h̄e = 2.89 and the disorder average is taken over 10
000 realizations. As a reference, the contrast obtained from exact
diagonalization of 5000 matrices of size 100 and using Eq. (3.6) is
also shown (black dashed lines).

timescale of the order of a few scattering mean free times,
the CFS peak develops over a longer timescale related
to the localization time. Its infinite-time limit, CCFS(x0) =
CCFS(x0, t → ∞), can be expressed in terms of the Floquet
eigenvectors as

CCFS(x0) =
∑

n |ϕn(x0)|4∑
n |ϕn(x0)|22 − 1. (3.24)

In Fig. 6, we plot the contrast at infinite time C(x, x0) for the
U0 and U1/2 models. Despite the large differences in the back-
ground observed in Fig. 1, the interference patterns displayed
in Fig. 6 are very similar. In particular, both the CFS and CBS
peaks coincide in width and height. Remaining discrepancies
can be observed outside the peak regions. This is because the
phase terms eiαp/2 with a nonzero average not only contribute
to the background, they also slightly modify the interferential
part of the density.

Equation (3.24) can be rewritten as CCFS(x0) =∑
n γn(x0) pn(x0) − 1 where we introduce the quantities

γn(x0) = |ϕn(x0)|4
|ϕn(x0)|22 pn(x0) = |ϕn(x0)|22

∑
n |ϕn(x0)|22 . (3.25)

Writing the complex eigenfunction as ϕn(x) = Rn(x) + iIn(x)
and assuming identical statistical properties and zero mean
for the independent random variables Rn and In, we arrive at

γn = (1 + �n)/2 where �n = R4
n/R2

n

2
. Further assuming that

the statistical properties of the eigenfunctions do not depend
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on n, we find

CCFS(x0) = �(x0) − 1

2
. (3.26)

For eigenfunctions obeying random matrix statistics [57], the
random variable Rn obeys the Porter-Thomas distribution [58]
and we have, for N → ∞, �(x0) = 3. This leads to the predic-
tion CCFS(x0) = 1, in good agreement with Fig. 6. The slight
deviation observed could be explained by the strong localiza-
tion of eigenfunctions [24]. Indeed, with the parameters used,
we have ξ/
s = K/(4h̄e) ∼ 2, and thus the localization length
ξ is of the order of a few scattering mean free paths only, so
that microscopic details become relevant.

IV. DISCUSSION

First implemented with a dilute sample of ultracold sodium
atoms in a periodic standing wave [34–36], the QKR model
has become an effective experimental and theoretical tool to
explore quantum transport phenomena in disordered media
[59–61]. Among such effects stand the CBS and CFS peaks
which are subtle interference effects resisting disorder av-
erage. Both peaks can provide experimental signatures for
Anderson transitions or criticality [26,48,49,62]. If the CBS
effect has been recently observed with cold atoms [10,11],
a direct observation of the CFS peak is still unpublished.
However, as the present work illustrates, accessing the CBS
or CFS contrast requires a careful handling of the background
on top of which these interference patterns emerge. Indeed,
we showed that simple modifications of the paradigmatic
quantum kicked rotor protocol can lead to highly nontrivial
and strong spatial oscillations in the spatial density. We fur-
ther clarified that these oscillatory features mainly come from
dramatic changes of the disorder-averaged spectral functions,
thereby profoundly affecting the classical background itself
at a spatial scale controlled by the inverse mean free path

−1

s ∼ h̄e/K . We obtained an analytical description for this
background that perfectly matches numerical calculations.
For all models considered, we found that the interference
component of the spatial density also exhibits some residual
oscillations, albeit to a much lesser extent than the background
itself.

So far we were not able to fully understand the remaining
discrepancy between the interference part of the two mod-
els. Since the eigenstates of U0 and U1/2 are related by the
disorder-dependent unitary

√
Up, we suspect that they relate

to subtle and nontrivial correlations between these eigenstates,
yet to be uncovered.

The value of the CFS contrast is directly affected by
symmetries through eigenvector statistics. For the models
considered here, the only relevant symmetry is time reversal,
implying a theoretical CFS contrast equal to unity. However, if
one considers symmetric phase disorder α−p = αp, the models
becomes P , T , and PT symmetric. In this case, the CFS
contrast reaches first a maximal value of 3 over the timescale
of the localization while the CBS contrast remains at unity. At
very large times compared to the localization time, the CFS
and CBS contrast finally equalize and reach the stationary
value 2. We will detail these results in a forthcoming publi-
cation. It is also possible to break the time reversal invariance

by changing the potential [45,63]. In this case, the CBS peak
disappears but not the CFS peak. This was also observed for
the Ruijsenaars-Schneider model [49].

Our results easily generalize to arbitrary initial times t0 of
the kicking sequence as well as other kick strength ratios r.
Because of Eq. (2.6), the spatial density for Vr and for U0

remain identical and nothing special happens. For t0 
= 1/2,
analytical calculations can be performed along the same lines
as for t0 = 1/2. The spectral functions and backgrounds re-
main nontrivial for reasons similar to the case t0 = 1/2 that
are finally essentially encompassed by Fig. 3.
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APPENDIX A: PARITY AND TIME
REVERSAL SYMMETRIES

We introduce the parity P , time reversal T , and PT sym-
metries for spinless systems as

P

⎧⎪⎪⎨
⎪⎪⎩

x → −x

p → −p

t → t

, T

⎧⎪⎪⎨
⎪⎪⎩

x → x

p → −p

t → −t

, PT

⎧⎪⎪⎨
⎪⎪⎩

x → −x

p → p

t → −t

, (A1)

where P is linear while T and PT are antilinear. It is interest-
ing to note that PT is a time reversal operator where the role
of position and momentum are exchanged.

Let us now consider a Hilbert space H and a basis B
spanning H. The complex conjugation operator KB is defined
by KB|a〉 = |a〉, ∀a ∈ B, and its antilinear action on kets ex-
panded on B is

|ϕ〉 =
∑
a∈B

ca |a〉 , KB|ϕ〉 =
∑
a∈B

c∗
a |a〉. (A2)

Using the position basis |x〉 and momentum basis |p〉, it is then
easy to show that K̂x realizes T while K̂p realizes PT since

K̂x|x〉 = |x〉 , K̂x|p〉 = |−p〉, (A3)

K̂p|p〉 = |p〉 , K̂p|x〉 = |−x〉. (A4)
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An operator Ĥ acting on H can be expressed in the |p〉 or |x〉
bases as

Ĥ =
∑
p,p′

HP
pp′ |p〉〈p′| =

∑
x,x′

HX
xx′ |x〉〈x′| , (A5)

where HP and HX are the Hermitian matrices representing Ĥ
in the momentum and position basis, respectively. The system
described by Ĥ is time reversal invariant if there exists a
time reversal operator commuting with Ĥ . Using Eq. (A5),
we readily have

K̂xĤK̂x = Ĥ ⇔ HX real and JHPJ = (HP )∗ , (A6)

K̂pĤK̂p = Ĥ ⇔ HP real and JHX J = (HX )∗ , (A7)

where J is the matrix with unit entries on the antidiagonal and
zeros everywhere else (it represents the action of the parity
operator P).

In the present paper, as shown by Eq. (2.8), the system
under consideration is PT -symmetric. It implies that, if |ϕa〉
is an eigenstate of Ĥ with real eigenvalue λa (Ĥ is Hermitian),
then K̂p|ϕa〉 is also an eigenstate of Ĥ with same eigenvalue
λa. If λa is nondegenerate and eigenstates are normalized
then K̂p|ϕa〉 = eiαa |ϕa〉 where αa is some eigenstate-dependent
phase. This phase can always be swept out by introducing
the eigenstate |φa〉 = eiαa/2|ϕa〉. With this eigenstate redefini-
tion, one has K̂p|φa〉 = |φa〉 and thus φa(p) = 〈p|φa〉 real. By
Fourier transform this also gives φ∗

a (−x) = φa(x). Through-
out this paper, we assume that this eigenket gauge-fixing
procedure is implemented when discussing time reversal sym-
metric Hamiltonians.

APPENDIX B: NORMALIZATION CONVENTIONS

We take the convention that p is integer and x ∈ [−π, π [
discretized by steps of size 2π/N . We choose normalization
and Fourier transform conventions in such a way that in the
N → ∞ limit all sums over x go to well-defined integrals.
Orthonormalization relations read

〈p|p′〉 = δp,p′ , 〈x|x′〉 = Nδx,x′ −→
N→∞

2πδ(x − x′). (B1)

Closure relations are given by

1 =
∑

p

|p〉〈p| , 1 = 1

N

∑
x

|x〉〈x| −→
N→∞

∫
dx

2π
|x〉〈x| .

(B2)

The Fourier transform between the two bases is defined as

|x〉 =
∑

p

e−ixp|p〉, (B3)

|p〉 = 1

N

∑
x

eixp|x〉 −→
N→∞

∫
dx

2π
eixp|x〉, (B4)

which corresponds to the overlap

〈p|x〉 = e−ixp. (B5)

We choose eigenfunction normalization as∑
p

|φn(p)|2 = 1 (B6)

and (note the prefactor 1/N)

1 = 1

N

∑
x

|φn(x)|2 −→
N→∞

∫
dx

2π
|φn(x)|2. (B7)

Eigenkets are normalized by 〈φn|φn′ 〉 = δn,n′ , and thus∑
n

|φn(x)|2 = 1 ∀x . (B8)

The density and spectral function defined in Eqs. (3.8) and
(3.9) are normalized by∫ π

−π

dω ν(ω) = 1, (B9)∫ π

−π

dω Ā(x, ω) = 1. (B10)

Normalization in x gives

ν(ω) = 1

N

∑
x

Ā(x, ω) −→
N→∞

∫
dx

2π
Ā(x, ω). (B11)

Finally, in going from discrete summations over eigenstates to
integrals over quasienergies, we use the prescription

δn,m → δ(ωn − ωm)

Nν(ωn)
(B12)

to establish Eq. (3.6). It is valid in the bulk limit N → ∞ and
after disorder average [24].

APPENDIX C: ANALYTIC COMPUTATION
OF THE BACKGROUND

We consider the disorder-averaged propagation amplitude
from initial position state |x0〉 to position state |x〉:

〈x|Ut
1/2|x0〉 = 〈x|(e− iα( p̂)

2 ei K
h̄e

cos x̂ e− iα( p̂)
2 )t |x0

〉
, (C1)

which, inserting closure relations (B2) at each time step, be-
comes

〈x|Ut
1/2|x0〉 =

∑
p0,...pt

〈x|pt 〉
t∏

j=1

〈p j |ei K
h̄e

cos x̂|p j−1〉

× e− iαpt
2

(
t−1∏
j=1

e−iαp j

)
e− iαp0

2 〈p0|x0〉 . (C2)

In Eq. (C2), the only paths (p0, . . . , pt ) which do not average
to zero are the ones for which the set {p1, . . . , pt−1} contains k
momenta equal to pt and (t − 1 − k) equal to p0 (see Fig. 3),
with p0 
= pt . Integer moments of order k of e−iαp/2 for k odd
are given by e−ikαp/2 = −2i/(kπ ), and thus Eq. (C2) becomes

〈x|Ut
1/2|x0〉 = − 4

π2

∑
pt 
=p0

t−1∑
k=0

f (k, t )

×
∑

(p1,...,pt−1 )

〈x|pt 〉
t∏

j=1

〈p j |ei K
h̄e

cos x̂|p j−1〉〈p0|x0〉 ,

(C3)

f (k, t ) = 1

(2k + 1)(2t − 2k − 1)
, (C4)
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where the sum
∑

(p1,...,pt−1 ) is restricted to momenta
(pi )1�i�t−1 such that k of them are equal to pt and the re-
maining (t − 1 − k) ones to p0.

Setting q j = p j − p j−1 the momentum transfer at each

step, we have 〈pj |ei K
h̄e

cos x̂|p j−1〉 = iq j Jq j (K/h̄e). Since mo-
menta (pi )1�i�t−1 only take values pt or p0, the q j can only
take the values qj = 0,±q, where q = pt − p0. As a conse-
quence, Eq. (C3) reduces to

〈x|Ut
1/2|x0〉 = − 4

π2

∑
pt 
=p0

t−1∑
k=0

f (k, t )ei(pt x−p0x0 )

×
∑

N0,N1,N2

∑
q

iq(−1)qN2 JN0
0 JN1+N2

q

× Nk (N0, N1, N2)δq,pt −p0 (C5)

[we used the fact that J−q = (−1)qJq for integer q]. Here N0

(or N1 and N2) is the number of occurrences of zero (or q and
−q) momentum transfers, and Nk (N0, N1, N2) is the number
of configurations (p1, . . . , pt−1) of entries with k times p0 and
t − 1 − k times pt giving the momentum transfer occurrences
N0, N1, N2. Bessel functions J0 and Jq are evaluated at K/h̄e.
In Eq. (C5) one can perform the summation over p0 and pt ;
one gets ∑

pt 
=p0

ei(pt x−p0x0 )δq,pt −p0 = Neixqδx,x0 (C6)

for q 
= 0, and 0 if q = 0, so that Eq. (C5) becomes

〈x|Ut
1/2|x0〉 = −4N

π2

t−1∑
k=0

f (k, t )
∑

N0,N1,N2

JN0
0 Nk (N0, N1, N2)

×
∑
q 
=0

iq(−1)qN2 JN1+N2
q eixqδx,x0 . (C7)

This shows, in particular, that 〈x|Ut
1/2|x0〉 = 〈x|Ut

1/2|x〉 δx,x0 :
the ballistic contribution vanishes outside the forward peak.

To find the combinatorial coefficient Nk (N0, N1, N2),
we note the formal analogy of the problem with a one-
dimensional A − B binary alloy model. By associating symbol
A to momenta pt and symbol B to momenta p0, the combina-
torics amounts to determining the number of configurations
N (N1, N2, t, k) of a finite chain A − L − B where the sub-
chain L has length (t − 1) with k symbols A, and contains
N1 bonds A − B and N2 bonds B − A. Since the extremities
of the chain are different, M = N1 + N2 must be odd, with
1 � M � t ; we set M = 2m + 1. Moreover, since the chain
starts with A and ends with B, one must have N1 − 1 = N2 =
m, with 0 � m � � t−1

2 �, and of course, N0 = t − 2m − 1. The
number of configurations reads

Nk (N0, N1, N2) =
(

k

m

)(
t − 1 − k

m

)
(C8)

and Eq. (C7) yields

〈x|Ut
1/2|x0〉 = −4N

π2

t−1∑
k=0

f (k, t )

� t−1
2 �∑

m=0

Jt−2m−1
0

(
k

m

)(
t − 1 − k

m

)

×
∑
q 
=0

iq(−1)qmJ2m+1
q eixqδx,x0 . (C9)

A straightforward calculation then leads to Eq. (3.17) supple-
mented by Eq. (3.18). For t = 1, only the term (m, k) = (0, 0)
contributes to the sums; using the identity∑

q

iqJq(z)eiqθ = eizθ , (C10)

we get Eq. (3.19). For t = 2, the terms (m, k) = (0, 0) and
(0,1) contribute, leading to Eq. (3.20). Subsequent terms are
easily computed as well but we find that the background
computed with Eqs. (3.10) and (3.15) restricted to |t | � 1 is
already a good approximation.
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