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Motivation

 Statistical properties of many-body quantum
systems

e RMT for many-body quantum systems with
finite interactions — c.f. the embedded
ensembles (French & Wong, Bohigas & Flores)

* New questions from quantum information
theory and quantum statistical mechanics/
thermodynamics
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Quantum Spin Chains

* nquantum spins

* Consider initially a 1-D chain with periodic
boundary conditions and nearest-neighbour
Interactions

e General Hamiltonian

(J) (J)
H = E Eaaba J+1+Eaaoa

j=1 \a,b=1



Quantum Spin Chains (cont)

 We will sometimes also consider
translationally invariant Hamiltonians

n 3 3 (
inv a
Hn = E aa,ba ]+1 + Eaa OO]
a=1

j=1 \ a,b=1

* Notation: o' = LV ® o' ® ;") where o

is the ath Pauli spin matrix.



Random Matrices

Take the coefficients a!) to be random
variables.

This gives 9n (no local term) or 12n (with local
term) random variables. (9/12 for H™)

E.g. the V) could be drawn from a normal
distribution with mean 0 and variance «1/n

Ensembles are not invariant and not Wigner
NB the size of the matrices is 2"x2"



Density of States

.
Density: du,(4)= <2LE§()L = )Lk)>d)L

i 1 y
Fourier transform: ?/J fe ’ld,u )L) <?Tre Hn>

Theorem 1: for &) =0, a) € N(0,1/9n)

w, (1) -exp(- 2/2)‘<t2\/_ (36J§+81)



Density of States (cont)

Proof:
e Separation into commuting subsets E E

j—odd j—even
* Use the identity

1
e 1(X+Y) 1tX ity ff X+Y i(1-r)stX [X Y] 1rstXeistYdrdS
0 0

* plus Cauchy-Schwartz to bound commutators
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Density of States (cont)

Theorem 2: the same CLT for the density of
states holds for fixed (i.e. non-random)
couplings when n tends to infinity with the

normalization TrH’ = 2" and provided a(’,l <C

(Proof uses a more efficient lattice splitting due
to Hartmann, Mahler & Hess)



Density of States (cont)

e.g., as conjectured by Atas & Bogomolny, if

H = +ya()+6a()

1
’ \/_\/1+y +6° 20 a

then (
« |0 k odd

lim, _, Tr(H,)" =
im, .. Tr(H,) |(2k=1)1t K even

but the theorem also holds for Hamiltonians that
are non-translationally invariant.




Density of States (cont)

Further generalizations: the CLT

* is universal for a wide class of probability
distributions;

* holds for all finite range interactions;

* extends to other geometries, e.g. all c-
colourable graphs



Density

Spectral Statistics
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Density

Spectral Statistics (cont)

local
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Spectral Statistics (cont)

In the absence of local terms, H, commutes with
the antiunitary operator

B=K (0(2))@9”

where K denotes complex conjugation. NB

B* =(-1)

So when n is odd we have a Kramers degeneracy



Spectral Statistics (cont)

Theorem 3: for odd prime values of n

n 3 3
inv_ (a) () (a)
H = E a,,0; 0+ Eaa’oaj
a=1

j=1 \ a,b=I1

generically has a non-degenerate spectrum
Proof uses two ingredients:



Spectral Statistics (cont)

Lemma: for odd prime values of n, there exists
some ¢ such that

H™= (5a§1)a§ﬂ +a§.3))
j=I1
has a non-degenerate spectrum

Proof — perturbation theory



Spectral Statistics (cont)

Then (a la Pastur): the Vandermonde matrix V
formed from the energy levels of H™

* satisfies detVV'=0 if any of the eigenvalues is
degenerate

* is a polynomial in the parameters «

The lemma implies that the Lebesgue measure
of the zeros of this polynomial is zero



Entanglement

Split the chain into subsystems A (m spins) and B
(n-m spins), and compute how these are
entangled via the eigenfunctions in the limit
when n — o,



Entanglement

Figenstate purity: if p, =|y.){(w,|and p\* = Tr,p,
2
then the purity is TrA(,oﬁf‘)) . This satisfies
1 2
o <Tr, (p,(cA)) <1
lower bound — maximally entangled state across

A and B; upper bound — product state across A
and B. So (1 — purity) measures entanglement.
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Entanglement (cont)

Theorem: for translation-invariant spin chains

Proof — expand the density matrix in the basis of
spin matrices and use translation invariance to
estimate the expansion coefficients



Entanglement (cont)

Corollary: for any fixed >0, the proportion of
eigenstates for which

tends to zero as n— x

l.e. almost all states are maximally mixed



Conclusions

e Gaussian density of states (as if components
are weakly interacting)

 Maximally entangled eigenstates (as if
components are strongly interacting)

 Random matrix model exhibits standard
(universal) RMT statistics, despite having
exponentially fewer free parameters.



