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Sum rules and collective oscillations In
ultracold atomic gases: a few examples

Breathing mode of BECs
In 1D configurations:
from mean field to
Impenetrable bosons
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Measuring the angular
Momentum of a
guantized vortex:
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Quenching of the frequency
of center of mass motion
due to spin orbit coupling:

1
A~ = Q
> X\/1+ k2 x(c,)




Breathing mode of BEC’s
1 in 1D configurations:

from mean field to impenetrable bosons

1D configurations are
currently realized with 2 pairs of

counterpropagating lasers

tubes

&% i

1D regime u<<hw,

(corresponding to freezing of radial degrees of freedom)

IS achieved if condition |an, <<1

IS satisfied.

( a is 3D scattering length; n, is 1D density )

In opposite regime system behaves like a 3D configuration




In the presence of harmonic trapping a useful and accurate
estimate of axial breathing frequency is provided by the
sum rule formula

m(z%) <7°>
m,(z°) -20<z°>/0w’
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a)breathing o

Based on energy weighted and inverse energy weighted
sum rules.

Value of |- ;2 < | and its dependence on harmonic
oscillator frequency depends on density profile.

The density profile is fixed by equation of state

(1D chemical potential) in local density approximation
according to:

1
(N (2)) = 1y 5 ma)zzzz




Different regimes are achievable in 1D. They are fixed

by the value of the dimensionless parameter n,a,,
Where ap = a /a s effective 1D scattering length

- 1D mean field [N, >>1 U=2hw an W= \/éwz

Tonks-Girardeau nNa <<1 1= 2 h_2n12 w=20,
(impenetrable bosons) 2m
For intermediate value of na,,
Lieb-Liniger theory (1963) provides 2
exact value for equation of state e 2— n, f(na,)
that can be used to evaluate m

density profiles and the
breathing frequency (Menotti and Stringari (2002)




Beyond the mean field regime in 1D:
Innsbruck 2009
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Tonks-Girardeau gas :

10 107 10°_\

K=Nd /4 Sum rule prediction
(Menotti and S.S., 2002)




Measuring the angular momentum
2 of a quantized vortex:

In the presence of a vortical configuration
guadrupole oscillations with opposite
angular momentum m=4+2
are no longer degenerate.

Resulting splitting of quadrupole
frequencies is at the origin of
precession effect (Zambelliand S.S 1998)
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Q. .=(0,-0,)=
prec 4 ( +2 —2)
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2
2m<r’ >

(analog of Foucault’s pendulum)

Vortices at ENS
Chevy, 2001




Result for frequency splitting (@, —®.,)
was derived using exact sum rules relative to the

guadrupole choice Q.,, = (x£iy)?
+2 —

for the excitation operators
rn(J)r _ma =< [Q_’Q+] >=0
2
m +m, =<[Q_,[H,Q.]]>=8N L >
m

m, —m, =<[[Q_,H],[H,Q,]]>=16N z—ib




Precession of quadrupole shape
and quantization of angular momentum

1 I
Q =(w,.,—w,)= :
Pree 4( 2= @) 2m<r; >
2 Q) Measurement of
Cal / angular momentum
z° in BEC's
= (Chevy et al., 2000)

(42
o

° ﬁnlgo(ms)zoo T one multiple )
—_ o vortices— I_n.-m'tex-”_ x-orti':es_”_ turbulent ——
4/ L/
B ¢ w w0 LA sty
A (b) 2 4 IEEE
B - o H
1.0 - {:T_-E ﬁ
{}.n: h;.!ﬂi {

107 115 120 125 130 135 140 145
stirring frequency (Hz)




3 Quenching of center of mass frequency
In the presence of spin orbit coupling

- Experimental realization of synthetic gauge fields is
providing new challenging many-body configurations in

ultra-cold atomic gases

- New quantum phases (stripes, magnetism, vortices)
and new phase transitions in both Bose and Fermi gases.
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Two detuned and polarized laser
beams + non linear Zeeman field
provide Raman transitions
between two spin states, giving
rise to new gauge terms in the
Hamitonian




Different strategies (both pursued by lan Spielman’s team at Nist)

- Spatially dependent laser detuning A, (z) with strong Raman
coupling Q (proportional to laser power) gives rise to effective
Lorentz force in neutral systems . - e e
Generation of vortices and possible : n

= 80 nn

d &=0.31kHz unr e &=0.34 kHz um! f &=0.40kHzpm"

route to quantum Hall regime. P s
(Lin et al., Nature 2009) n

-80 0 80 -80 0 80

- Working with vanishing effective Zeeman field and small
Raman coupling QQ gives rise to the
appearence of two minima which

can host a Bose-Einstein condensate.
(Lin et al., Nature 2011)

Energy E(qQ)/E;

Quasimomentum g/k;




The

unitary transformation i(2kox—Aw t) o

€

brings the system into spin rotated frame where

the

spin-orbit form

Hamiltonian takes the translationally invariant

H

_{ Spin up-up, up-down and

Z h (I) 4 Z jdrg‘/ down-down coupling constants

a,Ba,B

with

h, =

1 1 1
E[(px _kOGz)Z + pJZ_]+EQO-x +5502

New ingredients of the Hamiltonian:

2k,
QO
5

IS wave vector difference between the two laser fields
IS Raman coupling (fixed by laser intensity)
IS effective Zeeman field




Experimental implementation of the :'_é; — ]
SO hamiltonian with BECs by I ”}g_
the Spielman team at NIST £ 4k o Jo .
(Nature 2011) 3 af Seer ]
E L Q .
Y § }qﬂ .
Theory of the new quantum phases: o 05 00 05 1o
Ho and Zhang (PRL 2011), ...... Minima location in units of k,

Yun Li, Pitaevskii, S., PRL 2012




Nature of phase transitions

The transition between the

ﬂ_p T T T (P_
plane wave and the k=0 CRR -
- E +
phase is second order. a o © o -
E L O‘n JD i
It has been observed at s 3 X 0
. L - Oro..*" i
the predicted value of the c "‘5‘ 5
. E - =
Raman coupling g | zjqﬂ ]
O = 2k? "% 05 00 {llﬁ 1Iu
0 Lin et al.,

Nature 2011

ilnlma location in units of k

E, =k2/2

Near the transition the spin polarizability (o))
exhibits divergent behavior

Plane wave phase Zero momentum phase

Qz
kS (4ks — Q%)

x(0,)=

x(o

)=

2
Q- 2k;




Center of mass oscillation

Dipole mode in the presence of spin-orbit coupling
Yun Li, G. Martone and S.S, EPL 2012)

Coupling between center of mass and spin degrees of
freedom Is explicitly revealed by commutation rule

[H , X] :_i(Px _koo-z)

Reflects change in equation of continuity and
violation of Galilean invariance

Implies new dynamic behavior of center of mass motion

Commutation rule |[H,P,]=ia?X

IS Instead unaffected by spin-orbit coupling




Sum rules for the dipole operator

Energy weigthed sum rule

ml(X)=%<[X,[H,X]] >=%

and inverse energy weighted sum rule

N
20°

m—l(x) —

are unaffected by spin-orbit coupling.

The inverse cubic sum rule instead depends on spin
polarizability x(o,)

m,(X) =%[1+k§z(az)]

X




Ratio between the lowest energy weighted sum rules then

provides the result

@

1
0 wx\/1+ k2x(o,)

(Yun Li et al., EPL 2012)

Spin polarizability and dipole frequency
theory vs exp (Zhang et al. PRL 2012)

@

Finite values caused

by nonlinear effect
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- Divergent behavior of spin polarizability results in strong
guenching of center of mass oscillation !




Main conclusion

Sum rule approach continues to prove an
efficient tool to understand
the dynamic behavior of many-body systems.

Efficient alternative to model calculations
and to exact numerical approaches
(very difficult to implement for dynamics)

Another precious lesson from Oriol !
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Historically, = iant ' onopole esonances have been observed
In large systems and interpreted as an harmonic
collective motion of compression (“breathing mode™).

The degree of collectivity of a is judged from the percent of
exhaustion of sum rules (purely collective: 100%):

eg.EWSR: m_ = 2N [ M (Ferrel 1957)

“Sum rules for nuclear collective excitations”
0. Bohigas, A.M Lane, ). Martorell, Phys. Rep. 51 (1979) 267

m l= 2N | K (defines the compressibility K)

Recent surprise in a small nucleus:
Results of an ab initio calculation of the 0+ state
of “He with modern realistic 2+3-body potential:

the resonance exhausts only 34% of m_, but
53% of m_and 64% of m_ (K=30 MeV)

Shide: courtesy of G. Orlandini




