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Between Aspen and Utah near the Colorado river
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Sailing at Concarneau



Edge Thermopower Distributions

in Chaotic Quantum Dots and Disordered Nanowires

Low temperature elastic coherent regime

JEAN-LOUIS PICHARD 

DSM/IRAMIS/SPEC

20 MARS 2014

Edge =  Spectrum edge of a chaotic scatterer

Edge of a nanowire impurity band   



OUTLINE

1/ Delay-Time and Thermopower Distributions 

at the Spectrum Edges of a Chaotic Scatterer

A scattering approach : 

Energy independent distibution of the scattering matrix S

Adel Abbout, Geneviève Fleury, and Jean-Louis Pichard

DSM/IRAMIS,  Service de Physique de l’Etat Condensé,    CEA Saclay

Khandker Muttalib

Department of Physics, University of Florida, Gainesville

Phys. Rev. B. 87, 115147 (2013)

2/ Gate-modulated thermopower in disordered nanowires:                

I. Low temperature coherent regime

An Hamiltonian approach:

Energy independent distribution of the Hamiltonian H

Riccardo Bosisio, Geneviève Fleury and Jean-Louis Pichard

To appear in New Journal of Physics
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Linear Response (mesoscopic regime)  Imry and Sivan
Charge and heat currents induced by generalized forces



TT 

 

Electron Reservoir
Thermal equilibrium

« Lead »

Elastic
coherent
scatterer
Transmission 

T(E)

« Lead »



Thermo-electric coefficients

Seebeck and Peltier 

Conductances
(electrical and thermal)

(Kelvin-Onsager)
Importance to break 
particle-hole symmetry



Cutler-Mott Formula (à la Landauer)
(Sommerfeld Expansion)

• Thermopower in terms of the energy derivative of the system transmission  𝝉 𝑬

𝜎𝑘 = −
𝜋𝑘𝐵

2𝑇

3𝑒
 

𝜕log(𝜏 𝐸 )

𝜕𝐸
𝐸=𝐸𝐹

• Validity of Wiedemann-Franz law in the mesoscopic regime?    Vavilov – Stone 2005

Q(E)=-i ℏ 𝑺(𝑬)−𝟏 .
𝝏𝑺(𝑬)

𝝏𝑬



W(E)

W(E)

THE WIDE-BAND LIMIT

Two leads with N modes

Time-delay distribution : Brouwer, Frahm and Beenakker, PRL 78 4737 (1997) 
Seebeck distrib. for N=1 : Van Langen, Silvestrov & Beenakker, Superlatt. MicroStr. 23 691 (1998)

𝑆 𝐸 = 𝐼 − 2𝑖𝜋𝑊†
1

𝐸 − 𝐻𝑀 + 𝑖𝜋𝑊𝑊†
𝑊

Hypothesis : 𝑊 is energy-independent
Correct in the wide-band limit (ie in the bulk)

Derivation of delay-time distrib. P(1,2,…)  

where i = eigenvalues of 𝑄 = −𝑖ℏ𝑆† 𝑑𝑆

𝑑𝐸

 Laguerre ensemble for 1/i

N modes

Scattering approach
𝑆 𝐸𝐹 in the circular ensemble 

Hamiltonian approach
𝐻𝑀 in the gaussian ensemble 

𝑊(𝐸)
𝑀 → ∞

N = 1

Thermopower
distribution

Weidenmuller Formula



Thermopower of a chaotic conductor connected to 2 single channel leads
S. A. van Langen, P. G. Silvestrov and C. W. J. Beenakker (S  is a 2x2  COE matrix)

𝜎𝑘=
Δ

2𝜋
 

𝜕 log 𝜏 𝐸

𝜕𝐸 𝐸=𝐸𝐹

(𝑤ℎ𝑒𝑟𝑒 ∆ is the level spacing)

𝑃 𝜎𝑘 =  𝑑𝑐 𝑃 𝑐  𝑑𝜏1𝑑𝜏2𝑃 𝜏1, 𝜏2  𝑑𝑇𝑝 𝑇 𝜏1 + 𝜏2 𝛿 𝜎𝑘 − 𝑎 𝑐, 𝜏1, 𝜏2 , 𝑇 ,

𝑎 𝑐, 𝜏1, 𝜏2 , 𝑇 =
Δ

2𝜋ℏ
c 𝜏1 − 𝜏2  1 𝑇 − 1

• p (T)=1/(2√T)   and 𝑃 𝑐 ∝
1

1−𝑐2

• 𝑃 𝜏1, 𝜏2 ∝ 𝜏1 − 𝜏2
1

𝜏1𝜏2
𝑒
−

1

𝜏1
+

1

𝜏2

𝜋ℏ

Δ RMT  Laguerre ensemble

VOLUME 78, NUMBER 25 PHY S I CAL REV I EW LETTERS 23 JUNE 1997
Quantum Mechanical Time-Delay Matrix in Chaotic Scattering

P. W. Brouwer, K. M. Frahm,* and C. W. J. Beenakker
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 21 March 1997)
We calculate the probability distribution of the matrix Q 2i ¯ hS21SyE for a chaotic system with scattering matrix S at energy E. The eigenvalues tj of Q are the so-called 

proper delay times, introduced by Wigner and Smith to describe the time dependence of a scattering process. The distribution of the inverse delay times turns out to be 
given by the Laguerre ensemble from random matrix theory. 

Hartree   Correction    Factor        𝜏1 + 𝜏2



𝑷 𝝈𝒌 has a cusp at the origin

and asymtotes as 
𝒍𝒐𝒈 𝝈𝒌

𝝈𝒌
𝟐

Chaotic dot coupled to leads 
via 2 quantum point contacts 
having 1 opened channel



Chaotic quantum dot
(Experiment)



Quantum dot with 2 opened channels for each QPCs
(S is a 4x4 matrix)

Measure at 50 mK with a temperature difference of the same order
typical size  800 nm

• (a) Schematic top view of the measured sample. The
crosses denote the Ohmic contacts to the 2DEG; the 
hatched areas denote the gates. The heating current 
is applied between I1 and I2. The thermovoltage is 
measured between V1 and V2, 

• The QD is defined by applying a negative voltage to 
gates A, B, C, and D. 

• (b) Magnetoconductance of the QD, averaged over

• a large number of different QD configurations. The 
influence

• of short trajectories is characterized by the dashed 
line. Inset:

• Conductance distribution for jBj $ 50 mT



Thermovoltage

(a) The gate voltage is changed by a 

constant small amount of dVB 10 

mV for each magnetic field sweep.

The light areas denote a large 

(maximum 5.5 mV) positive

thermovoltage, and the dark areas a 

large (maximum 25.5 mV)negative 

thermovoltage. 

(b) Individual thermovoltage trace



• (a) Thermopower distribution in the 

presence of TRS (B < 40 mT). 

Experimental results (dots), 

simulation results(solid line), 

Gaussian fit (dashed line). 

• (b) Thermopower distribution for broken 

TRS (B > 50 mT). 

Experimental results (dots), 

simulation results (solid line), 

and Gaussian fit  (dashed line).



BULK  STATISTICS  vs  EDGE  STATISTICS

Tracy and Widom, Comm. Math. Phys 159, 151 (1994); Forrester, Nucl. Phys. B 402, 709 (1993) 

Closed
chaotic cavity

Hamiltonian HM in Gaussian ensemble : 

𝑃 𝐻𝑀 ∝ exp(−𝑡𝑟
𝑀𝐻𝑀

²

4𝑡2
)

Universal statistics of 
eigenvalues in the bulk

 Wigner nearest-neighbor spacing distrib.
 Sine-Kernel for the 2-points correlation fct

Different universality class at
the edges of the spectrum
 Tracy-Widom

 TW level spacing distribution              
 Airy-Kernel for the 2-points

correlation fct

Oriol Bohigas et al, 1983



MODEL FOR CHAOTIC SCATTERING BEYOND THE WIDE-BAND LIMIT

Chaotic cavity
made of M sites

(Hamiltonian HM)

Right lead 
(described by self-energy R)

Left lead
(described by self-energy L)

Relation between scattering matrix S and Hamiltonian HM (see Datta) :

𝑆 𝐸 = −𝕀2 + 𝑖𝜏† Γ
1

𝐸−𝐻𝑀−Σ𝐿−Σ𝑅
Γ 𝜏 with Γ = 𝐼𝑚 Σ𝐿 = 𝐼𝑚(Σ𝑅)

With energy-dependent self-energies L(E) and R(E) Beenakker and co-
workers (PRL 1997) 

neglected this
energy dependency

Chaotic scattering at EF  Hamiltonian HM sampled from
the  Cauchy ensemble C(EF)P(S)=constant

electron at EF  [-2t,2t]



1d-Lattice model embedding a chaotic scatterer
with M sites

𝐻11 𝐻12

𝐻12 𝐻22

-t

−𝑡

M=2



S-Matrix     𝒕 = 𝟏

• 2x2 Green’s function G=
𝟏

𝐄−𝐇−𝜮
E=

𝐸 0
0 𝐸

• Self Energy of the leads

𝐸 = −2 cos 𝑘; 𝜮 = −𝑒𝑖𝑘 0
0 −𝑒𝑖𝑘

• 2x2 Scattering Matrix 

S=-1+2isin 𝑘 𝑮 1=
1 0
0 1

H and S can be diagonized by the same energy independent orthogonal transformation 𝑅𝜃

(Big simplification!) 



Distribution for H which yields COE scattering
Cauchy Ensemble with adjusted center and width

• 𝑒𝑖𝜃1 0
0 𝑒𝑖𝜃2

=
−1 0
0 −1

+ 2𝑖𝑠𝑖𝑛𝑘

1

𝐸−𝐸1+𝑒𝑖𝑘 0

0
1

𝐸−𝐸2+𝑒𝑖𝑘

• P(𝐸1, 𝐸2)𝑑𝐸1𝑑𝐸2 ∝ 𝑒𝑖𝜃1 − 𝑒𝑖𝜃2 𝑑𝜃1𝑑𝜃2

• P(𝐸1, 𝐸2) ∝ 𝐸1 − 𝐸2  𝑖=1
2 1

1+
𝐸′−𝐸𝑖

Γ

2

 3 2

• 𝐸′ = 𝐸 − ℛ Σ =E+cos k           Γ = ℑ Σ = sin 𝑘

• E=𝐸𝐹 ; 𝑘 = 𝑘𝐹 (scattering at the Fermi energy)



Gaussian versus Cauchy ensemble:
Coulomb Gas Analogy

• 𝑝 𝐸1, 𝐸2 =exp-𝛽𝐻 𝐸1, 𝐸2

• 𝛽 = 1

• H 𝐸1, 𝐸2 =-log 𝐸1 − 𝐸2 +  𝑖=1
2 𝑉 𝐸𝑖

• Gaussian 𝑉 𝐸𝑖 =
3

2

𝐸′−𝐸𝑖

Γ

2

• Cauchy 𝑉 𝐸𝑖 =
3

2
log 1 +

𝐸′−𝐸𝑖

Γ

2

Previous works by P. A. Mello (Poisson Kernel) and P. Brouwer (Ph-D thesis)

𝑯𝒊𝒋

Independent matrix elements

Correlated matrix elements



Cauchy Ensemble

Notation 𝐻𝑀 ∈ C(𝑀, 𝜀, Γ)

• 𝑃 𝐻𝑀 ∝ det  ( 𝐻𝑀 − 𝜖1𝑀
2 − [Γ21𝑀])−

𝑀+1

2

Center  𝜖 and Width Γ

• For   𝑴 = 𝟐

𝑆 ∈ 𝐶𝑂𝐸 ↔ 𝐻2 ∈ 𝐶(2,
𝐸𝐹

2
, Γ𝐹)



More Theorems

• 𝐻𝑀 ∈ C(M,
𝐸𝐹

2
, Γ𝐹) → S(𝐸𝐹) ∈ COE

•
𝜕𝑆(𝐸)

𝜕𝐸
= 2𝑖

𝜕(Γ(𝐸)𝐴2(𝐸))

𝜕𝐸

The time delay matrix has the 
M=2 distribution if Γ 𝐸 → 0. This occurs at the 
edges of the conduction band of the leads.  



PROBING THE SPECTRUM TAILS

When Ef goes to +-2t, we
explore the spectrum
tails

When Ef goes from the 
band center to the band 
edge (+-2t) , the center 
of the density of states 
per site is shifted and its
width is reduced

EF = 0
EF = t
EF = 1,9t



𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒕 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒍𝒆𝒔𝒔 𝒔𝒄𝒂𝒍𝒆

𝜶 𝑬𝑭,𝑴 =
𝜞𝑭

²

𝜟𝑭𝒕
?

1.   Thermopower Distribution 

2.  Eigenvalue Density of the Time-Delay matrix Q

P(𝜏′)=
4𝛼

1−(4𝜋𝛼𝜏′)2

𝜏′ =
𝜏 −

ℏ
Γ𝐹

𝜏𝐻

Analytical results obtained when M=2



USING THE PARAMETER  FOR EXPLORING THE (EF-M) DIAGRAM

(EF ,M)

𝜂 =
 𝑑𝜎 𝑃 𝜎 − 𝑃𝑏𝑢𝑙𝑘(𝜎)

 𝑑𝜎 𝑃𝑀=2 𝜎, 𝛼 − 𝑃𝑏𝑢𝑙𝑘(𝜎)

𝜶 𝑬𝑭,𝑴 =
𝜞𝑭

²

𝜟𝑭𝒕
=

𝟏

𝟖𝝅

𝑬𝑭 − 𝟐𝒕

𝒕𝑴−𝟏/𝟑

𝟐/𝟑 𝑬𝑭 + 𝟐𝒕

𝒕𝑴−𝟏/𝟑

𝟐/𝟑

Measures the energy distance to the band 

edge in unit of 𝑡𝑀−1/3

TRACY-WIDOM SCALING ?



Gaussian ensemble 

WHY  ?                   CONNEXION TO TRACY-WIDOM

Lorentzian ensemble

Lorentzian ensemble 
[ HM inL(EF) ]

Gaussian ensemble 
[ HM in G ]

Bulk                                            
(if 𝑀 → ∞, ∆𝐹 → 0)

Circular ensemble                  
[ S chaotic at EF ]

If 𝑀 → ∞ with the same ∆𝐹

for the two ensembles
Tracy-Widom rescaling
with the parameter 

𝜌(𝛼) ∝
1

𝛼1/6 exp(−𝐾𝛼)

Brouwer, PhD Thesis (1997); Vavilov et al, PRL 86, 874 (2001) 



DO THE CALCULATION …

Hamiltonian HM in Cauchy ensemble C(EF)

Scattering matrix S (chaotic at EF)

Time-delay matrix 𝑄 = −𝑖ℏ𝑆† 𝑑𝑆

𝑑𝐸

Distribution of thermopower SiDistribution of delay times i

(EF ,M)

Distribution of rescaled thermopower

𝜎𝑖 =
Δ𝐹

2𝜋
Si



RECOVERING THE BULK THERMOPOWER DISTRIBUTION 

At fixed energy EF and large size M, we recover previous result valid in the bulk

Limit  𝜶 → ∞



AND CLOSE TO THE BAND EDGE ?              Lim 𝜶 → 𝟎

Close to the band edge, the thermopower distribution is very different from the 
one in the bulk. It is given by the analytical result derived for a 2-sites cavity 

EF 2t (band edge)
at fixed M

P σ =
𝛼

2
ln

1 + 1 −  𝜋𝛼𝜎 2

 𝜋𝛼 𝜎 2



USING THE PARAMETER  FOR EXPLORING THE (EF-M) DIAGRAM

(EF ,M)

𝜂 =
 𝑑𝜎 𝑃 𝜎 − 𝑃𝑏𝑢𝑙𝑘(𝜎)

 𝑑𝜎 𝑃𝑀=2 𝜎, 𝛼 − 𝑃𝑏𝑢𝑙𝑘(𝜎)

𝛼 𝐸𝐹 , 𝑀 =
Γ𝐹

²

Δ𝐹𝑡
=

1

8𝜋

𝐸𝐹 − 2𝑡

𝑡𝑀−1/3

2/3 𝐸𝐹 + 2𝑡

𝑡𝑀−1/3

2/3

Measures the energy distance to the band 

edge in unit of 𝑡𝑀−1/3

TRACY-WIDOM SCALING



NEW ASYMPTOTIC THERMOPOWER DISTRIBUTIONS

Infinite number of                                           
asymptotic thermopower distributions

in-between

Bulk distribution 

Edge distribution 



DESCRIPTION OF THE BULK-EDGE CROSSOVER

 Infinity of asympotic thermopower
distributions, indexed by   [0,]

 The parameter  appears to be
the Tracy-Widom parameter

 Same conclusions for the delay-time distribution

 The two extreme limits are analytically
understood :  (bulk)

 0  (2-sites cavity)



Left lead
(self-energy Σ𝐿)

Right lead 
(self-energy Σ𝑅) 

𝐻1𝑑 = −𝒕. Σ𝑖𝑗 𝑐𝑗
+ 𝑐𝑖 + 𝐻. 𝐶 + Σ𝑖 𝜺𝑖𝑛𝑖

𝐻𝑔𝑎𝑡𝑒 = Σ𝑖𝑽𝑮 𝑛𝑖

𝜺𝒊 Box distribution of width W and center 0

1d  lattice of length L (N sites) with nearest hopping terms t, random on-site potentials 
and gate potential  𝑉𝐺

Anderson Localization with localization length ξ(E) 

Thermopower distribution of a disordered nanowire 
in the field effect transistor device configuration: 

R. Bosisio, G. Fleury and JLP 

New Journal of Physics, arXiv:1310.4923v2 [cond-mat.mes-hall]

Related work for the delay time by C. Texier and A. Comtet, Phys. Rev. Lett. 82, 4220 (1999)

http://arxiv.org/abs/1310.4923v2


Typical thermopower

Study of the localized limit 𝑵 > 𝝃

Elastic coherent transport,               Linear Response,                 Sommerfeld expansions             

“Mott    Formula “

In physical units

To predict the typical behavior of S, one just need to know how the localization
length 𝜉 depends on the energy E.



Weak Disorder expansions of the 1d density of states ν=ρ/N 
and  of the localization length ξ  (assuming  𝑉𝐺 = 0)

BULK

EDGE

--------------------------------------------------------

Numerical check with 𝑾 = 𝟏

B. Derrida & E. Gardner, J. Physique 45, 1283 (1984)



TYPICAL THERMOPOWER AT LOW T:

WEAK DISORDER THEORY & NUMERICAL CHECK WITH W=1

Bulk:

Edge:

Tunnel Barrier:

Large Enhancement of the Thermopower
near the band edge of the nanowire

band edge

R. Bosisio, G. Fleury and J-L. Pichard,  (2013)

Using Sommerfeld expansions for having Mott formula 



MESOSCOPIC FLUCTUATIONS: THERMOPOWER DISTRIBUTIONS

[1]  S. A. van Langen, P. G. Silvestrov, and C.W. J. Beenakker, Supperlattices Microstruct. 23, 691 (1998).
[2] R.Bosisio, G. Fleury and J-L. Pichard,  (2013)

Near the Edge Gauss distribution (characterized numerically)   

In the Bulk Cauchy distribution (demonstrated in [1] for the case S0=0) 

S0 = typical thermopower
∆F = mean level spacing near EF

1D nanowire with disorder W=1  Spectrum edge at E=2.5t

Vg = 0.0 Vg = 2.0

Vg = 2.35 Vg = 2.45



MESOSCOPIC FLUCTUATIONS: CHARACTERIZING THE TRANSITION

[1] R.Bosisio, G. Fleury and J-L. Pichard,  

Parameter which measures the "distance" between
the observed numerical distribution and the best 
Lorentzian (PL) and Gaussian (PG) fits

  = 1  if Cauchy distribution

  = 0  if Gauss distribution

Cauchy

Gauss

W=1

Cauchy

Gauss

Edge: 𝑉𝐺 = 2,5

arXiv:1310.4923v2 [cond-mat.mes-hall]

http://arxiv.org/abs/1310.4923v2


The thermopower (delay time) distribution of a 
disordered chain has a universal Cauchy 
distribution in the bulk of its spectrum which
becomes Gaussian as the spectrum edges edge
of the impurity band) are approached. 

Both for the chaotic cavity and the disordered
chain, the fluctuations at the edges differ from
those in the bulk of the spectrum,



“SOMMERFELD"  TEMPERATURE

Validity of Sommerfeld Expansion

Validity of  the Sommerfeld expansion 
leading to Mott formula for S

Wiedemann-Franz (WF)  law, Mott formula 

Range of validity of W-F law for 𝑾 = 𝟏 and  𝑬𝑭 = 𝟎 as a function of 𝑽𝑮

Sommerfeld temperature is
proportional to the mean energy

level spacing in the system:

Proportionality constant depends
on required precision

Result for the tunnel barrier:

Estimation for Si nanowire:   ̴ 100 mK



ENHANCED TEP NEAR THE BAND EDGE OF

SEMICONDUCTING NWS AT ROOM TEMPERATURE

Electric Field Effect Thermoelectric Transport in Individual Silicon and

Germanium/Silicon Nanowires

Yuri M. Brovman1, Joshua P. Small1, Yongjie Hu2, Ying Fang2, Charles M. Lieber2, and Philip Kim1

1 Department of Applied Physics and Applied Mathematics and Department of Physics,

Columbia University, New York, New York, 10027, USA and

2 Department of Chemistry and Chemical Biology,

Harvard University, Cambridge, MA 02139, USA

We have simultaneously measured conductance and  thermoelectric power (TEP) of 

individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device 

configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors 

while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes 

respectively.  At room temperature, peak TEP value of ∼300μ V/K is observed in the subthreshold

regime of the Si devices.

Substantially large peak TEP values are observed in the subthreshold regime of the Si and Ge/Si 

devices, indicating largely enhanced TEP near the band edge of semiconducting NWs.

http://arxiv.org/pdf/1307.0249v1.pdf 



FIELD EFFECT TRANSISTOR  DEVICE CONFIGURATION 

Schematic diagram of the simultaneous measurement technique of conductance and thermopower

on individual nanowires. The finite element simulation shows a temperature profile, with red being 

the hottest and blue being the bath temperature, of the cross section of the substrate.



GE/SI NANOWIRE AT ROOM TEMPERATURE

Conductance (a) and thermopower (b) of a Ge/Si nanowire as a 

function of gate voltage taken at T = 300 K. The inset in (b) shows 

a typical SEM image of a 12 nm Ge/Si device. Large input 

impedance becomes important when measuring TEP near the 

band edge of a semiconductor, as the FET device turns off.
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Variable Range Hopping (VRH) Transport in gated disordered NWS 

Hopping between pairs of localized states mediated by phonons
Conductance: competition between tunneling and activated processes

Maximization of the conductance yields the scale of typical hop:

Mott’s Hopping length

[1] J-H. Jiang, O. Entin-Wohlman and Y. Imry, Phys. Rev. B 87, 205420 (2013).
[2] R.Bosisio, G. Fleury and J-L. Pichard,  (2013)

ξ = localization length
ν = density of states / volume



TEMPERATURE SCALES

Low T: LM >> L   elastic transport

What about the thermopower?

Increasing T:  LM    ̴ L  onset of inelastic processes

Increasing T: LM ̴ ξ simple activated transportT

VRH Typical Conductance :
(Mott’s picture) 

d=1 (dimensionality)

Conductance: Kurkijärvi (1973), Lee (1984), Fogler (2005)
Thermopower: Zvyagin ( ̴80’s)



MILLER-ABRAHAMS RESISTOR NETWORK

Between localized states   

[Inelastic transition rates (Fermi Golden Rule)]

Γ𝑖𝑗 = 𝛾𝑖𝑗 𝑓𝑖 1 − 𝑓𝑗 𝑁𝐵𝐸 𝜀𝑖 − 𝜀𝑗 + 𝜃 𝜖𝑖 − 𝜖𝑗

𝛾𝑖𝑗 = 𝛼𝑒−𝑝ℎ. 𝑒
−|𝑥𝑖−𝑥𝑗|/𝜉

Between lead and localized states

[Elastic tunneling rates]

Γ𝐿𝑖 = 𝛾𝐿𝑖 𝑓𝑖 1 − 𝑓𝑗 𝛾𝑖𝑗 = 𝑒−|𝑥𝑖−𝑥𝑗|/𝜉

1.  Transition rates

2. Conductances 𝑮𝒊𝒋 =
𝒆𝟐

𝒌𝑩𝑻
𝜞𝒊𝒋

3. Local chemical potential (out of equilibrium transport)

𝒇𝒊 𝝁 → 𝒇𝒊 𝝁 + 𝜹𝝁𝒊

4. Current 𝐼𝑖𝑗 = 𝐺𝑖𝑗

𝛿𝜇𝑖 − 𝛿𝜇𝑗

𝑒



RANDOM RESISTOR NETWORK [1,2]

Iij: hopping current between sites i and j

[1] A. Miller and  E. Abrahams, Phys. Rev. 120, 745 (1960)

IiL(R): tunneling current between site i and leads

Current conservation at node i : 

"local" FD distribution

energy levels localized at (random) positions xi

Electric current: 

Heat current: 

Thermopower:
(from Onsager relations) 

[2] J-H. Jiang, O. Entin-Wohlman and Y. Imry, Phys. Rev. B 87, 205420 (2013).

Peltier:



EFFECT OF Vg ON TYPICAL THERMOPOWER IN VRH

[1] R.Bosisio, G. Fleury and J-L. Pichard,  (2013)

Bulk Edge

W=5 W=1



THANK YOU 



LOW TEMPERATURE COHERENT ELASTIC TRANSPORT 

VALIDITY OF MOTT FORMULA FOR THE  THERMOPOWER

FIG. 1. Schematic of the device and measurement 

circuit. The etched mesa, shown in grey, consists 

of a heating channel and two voltage probes, 

where the two 1D constrictions are defined. The 

four-terminal resistance R is measured 

simultaneously with the thermopower S, but at a 

different frequency. Magnified view: The two 

pairs of split gatesdefining the constrictions A and 

B are shown in solid black.

S =  
∆𝑽

𝑻𝒆−𝑻𝒍 𝑰=𝟎
=  

𝝅𝒌𝑩
𝟐

𝟑𝒆
𝑻𝒆 + 𝑻𝒍

𝝏 𝐥𝐧 𝑮

𝝏𝝁

FIG. 2. Experimental traces of the conductance G and the 

thermopower voltage from constriction A, using a heating current of

1.5 mA at a lattice temperature of 305 mK, so that Te ~ 600 mK.

The dashed line shows the predicted thermopower signal from the 

Mott relation [Eq. (1)].

VOLUME 81, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OCTOBER 1998

Thermometer for the 2D Electron Gas using 1D Thermopower

N. J. Appleyard, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, and M. Pepper

Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom



OUTLINE
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 I . Elastic Coherent Regime (Low temperatures)

A - 1d localized systems:

• Measure of the conductance of disordered nanowires in the field effect transistor device configuration (Sanquer et al) and 

the Mott formula for the thermopower.

• Theory using an Anderson model for a 1d disordered chain Thermoelectric transport  (i) the bulk; (ii) the edge and (iii) 

eventually the outside of the impurity band  - Typical behavior and fluctuations of the thermopower

B  - 0d chaotic systems

• Measure of the thermopower of a chaotic cavity (Molenkamp et al).

• Random matrix theory of the thermopower of a chaotic cavity: 

Universal thermopower distribution in the bulk (Wigner-Dyson) and at the edge (Tracy-Widom) of the spectrum.

 II. Inelastic Activated Regime (Intermediate temperatures) in 1d.

Mott variable range hopping and Miller-Abrahams resistor network, Seebeck and Peltier coefficients in the bulk

and near the edges of the impurity band.

 III. Thermoelectric transport at room temperature (Kim et al). 



TUNNELING AND INTERFERENCES IN VERY SMALL GA AS 

METAL-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS

FIG. 1. SEM picture of the GaAs:Si submicronic MESFET. The 0.5-mm-thick aluminum Schottky gate is visible on the bottom. The gate does not cover the whole 

constriction width, but covers entirely the conducting channel if one considers the depletion width. The GaAs is doped at 𝟏𝟎𝟐𝟑 Si 𝒎−𝟑) 300-nm-thick layer is etched 

toform four large contact pads to the active region under the gate.AuxGe12xNi Ohmic contacts are visible on the right and the left. The volume of the active region is 

estimated to be 0.2 x 0.2 x 0.5 𝝁𝒎𝟑 (taking into account depletion layers for 𝑉𝑔𝑎𝑡𝑒= 0 V, about 120 nm).

PHYSICAL REVIEW B VOLUME 59, NUMBER 16 15 APRIL 1999-II

W. Poirier

CEA-DSM-DRECAM-SPEC, C.E. Saclay, 91191 Gif sur Yvette Cedex, France

D. Mailly

CNRS-LMM, 196 Avenue Henri Ravera, 92220 Bagneux, France

M. Sanquer

CEA-DSM-DRFMC-SPSMS, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble, France

We study the transport through gated GaAs:Si wires of 0.5 𝝁m length in the insulating 

regime and observe transport via tunneling at very low temperature. We describe the mean 

positive magnetoconductance and the mesoscopic fluctuations of the conductance ~versus 

energy or magnetic field! purely within one-electron interference model. 

Quantum coherent elastic transport  in the 

field effect transistor device configuration 

at very low temperature



GATE MODULATED CARRIER DENSITY

ln G(V gate) at three temperatures in a large gate voltage range

(details of the conductance pattern are not seen for this gate voltage sampling)

Inset: the same curve in a linear scale. Note the linearity at voltages above the transition.

ConductorAnderson Insulator

Edge of the impurity band = -2,5 V  

(Complete depletion of the disordered nanowire)



REPRODUCIBLE CONDUCTANCE  FLUCTUATIONS  INDUCED BY 

A VARIATION OF THE GATE VOLTAGE  IN THE  INSULATING REGIME

ln G(V gate) at T =100 𝒎K in the 0.5-𝝁m-long sample for two successive 

experiments without thermal cycling, showing the excellent reproducibility of the 

conductance pattern (curves are shifted for clarity).



CONDUCTANCE FLUCTUATION S INDUCED 

BY VARYING THE GATE VOLTAGE
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Bulk of the impurity band Edge of the impurity band 

Mott Formula :

Larger thermopower at the band edges

𝑺 ≈
𝝏 𝐥𝐧(𝑮)

𝝏𝑽𝒈



PRINCIPLE OF A MEASURE OF THE THERMOPOWER

(O.  BOURGEOIS) 



EFFECT OF GATE VOLTAGE ON THE IMPURITY BAND

EF

E
Bulk

EF

VG

E
Bulk

EF

VG

E
Edge

EF

VG

E
Tunnel Barrier

What matters is the relative position of EF inside the impurity band

VG=0


