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Today’s Thread of Logic

1) General considerations and experiments
– The ocean

wave guide with disorder
– Long range acoustic experiments

acoustic timefronts
2) Long range propagation models1

Wave equation
One way approximations
Paraxial optical approximations
Confinement and internal waves

3) Introducing Random Matrix Theory
Modes and mixing
Unitary propagation
Constructing acoustic time fronts

4) Concluding remarks
1

Reviews: M. G. Brown et al., J. Acoust. Soc. Amer. 113 (5), 2533 (2003); F. J. Beron-Vera et al.,
J. Acoust. Soc. Amer. 114 (3), 1226 (2003); M. G. Brown and S. Tomsovic, in M. Wright and R. Weaver, editors, New
directions in linear acoustics and vibration: quantum chaos, random matrix theory, and complexity, CUP, 2010
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Ocean depth: 0-10 km (maximum)
Ocean acoustics: RMT
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Considerations

1) Short range ocean acoustics
On continental shelves or inland seas
Typical ranges of tens of km at most
Frequencies up to a few kHz (c0 = 1.5 km/s)
Surface reflections
Dissipation quite important, especially bottom interactions

2) Long range ocean acoustics
Align with abyssal plain
Up to thousands of kilometers
Lower frequencies - 25 Hz to 250 Hz

& Wave guide
Warm surface waters
Constant cold, high pressure waters at depths
Surface reflections, dissipation and bottom interactions
largely avoided

Ocean acoustics: RMT
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Measurements
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P. F. Worcester et al., J. Acoust. Soc. Amer. 105 , 3185 (1999)
J. A. Colosi et al., J. Acoust. Soc. Amer. 105 , 3202 (1999)
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Some quantities of interest

Mean ocean temperature
Time front bias, wander, and spread - frequency
dependence, range-dependence
Intensity statistics
Power distribution and infill
Questions that have been asked:

are ray methods applicable? if so where?
how do they relate to mode methods of analysis?

Ocean acoustics: RMT
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Wave equation

1) A standard approach consists of beginning with the
Helmholtz equation:

0 = ∇2u(r;ω) + ω2c−2(r)u(r;ω)

ω = angular frequency
c(r) = position-dependent sound speed

2) The time-dependent wave equation solutions

1
c2(r)

∂2φ(r; t)
∂t2 = ∇2φ(r; t)

are built as weighted superpositions of eigenstates

φ(r; t) =

∫ ∞
−∞

dω ρ(ω)e−iωtu(r;ω)

3) Boundary conditions:
determined by ocean surface, bottom, and acoustic source

Ocean acoustics: RMT
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Wave guide
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Buoyancy and temperature: internal waves

Vertically displaced water
undergoes restoring force
Strongest force where
temperature gradient is
strongest
In mid-latitudes, effect
concentrated near surface
Fluctuation scales range
from meters to 100 km
Vary on minutes to hours
time scale
Responsible for multiple
scattering or wave chaos

c_{iw}

Ocean acoustics: RMT
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Internal waves

Buoyancy modes:

δciw

c0
=

Jmax∑
j=1

∑
kr

ej,kr exp
(
− 3z

2B

)
sin(jπξ(z))
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One way approximations

Range can be used as the time-like variable if there is no
backscattering
In a semiclassical analysis, this leads to a Hamiltonian with
a square root
The quantized version is analogous to a Klein-Gordon
equation
Not a sufficient simplification, consider that the internal
waves also can only scatter with small angle changes

Ocean acoustics: RMT
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Paraxial approximations - Tappert 1974

A good ansatz for forward-motion and small angle scattering is

u(r;ω) = Ψ(z, ρ;ω)
eik0(ω)ρ

√
ρ

Using Helmholtz and dropping small terms gives the parabolic
equation

i
k0

∂

∂ρ
Ψ(z, ρ;ω) = − 1

2k2
0

∂2

∂z2 Ψ(z, ρ;ω) + V(z, ρ)Ψ(z, ρ;ω)

with c(z, ρ) = c0 + δc(z, ρ) and δc(z, ρ) << c0, the potential is

V(z, ρ) =
1
2

(
1−

(
c0

c(z, ρ)

)2
)
≈ δc(z, ρ)

c0

Notes:
ρ→ t and k0 → ~−1 gives the Schrödinger equation
refraction naturally both range and depth dependent

Ocean acoustics: RMT
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Introducing random matrix theory for propagation

& So how does one go about constructing a random matrix
theory for the propagation of ocean acoustic waves?

Let’s only consider the simplest problem, i.e. that of long
range propagation

low, fixed frequency (Helmholtz to begin) - will use 75 Hz
ahead
no losses or dissipation
no surface or bottom interactions or absorption
no horizontal, out-of-vertical plane scattering

There is a great deal of deterministic propagation that must
be taken into account
The internal waves create multiple scattering, but have
non-zero correlation lengths and are a weak perturbation
The time-dependent Schrödinger equation leads to unitary
propagation

Ocean acoustics: RMT
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Modes

Mode picture of propagation (Dozier,Tappert, 1978)

– Modes ψm, energies Em of unperturbed waveguide V0

Can also be defined
adiabatically to account for
mesoscale structure
Somewhere around the 60th

mode, they begin to hit the
surface - will ignore that
They give a complete
representation for the full
propagation of the waves
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Mixing

Unitary propagator coupling coefficients

Um,n(ρ; 0) =

∫
dz ψ∗m(z)U(ρ; 0)ψn(z)

gives probability amplitude of mode transition n→ m
Unperturbed propagation: Umn(ρ; 0) = Λmn = e−ik0Enρδnm

Perturbed propagation: amplitude/phase deviations

U′ = Λ−1/2UΛ−1/2 plotted
Phasen n

Propagation to 1 km Propagation to 50 km

Phase
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Mixing

Unitary propagator coupling coefficients

Um,n(ρ; 0) =

∫
dz ψ∗m(z)U(ρ; 0)ψn(z)

gives probability amplitude of mode transition n→ m
Unperturbed propagation: Umn(ρ; 0) = Λmn = e−ik0Enρδnm

Perturbed propagation: amplitude/phase deviations

n

Propagation to 50 km Propagation to 1000 km

|Um,n| |Um,n|
n
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Unitary propagation with random matrices

Using building blocks for ρ = 50 km (similar to Perez et al, 2007, for
quasi-1D electronic conductors) and a Cayley transformation (the
matrix A Hermitian) for unitarity

U = Λ1/2(I + iεA)−1(I − iεA)Λ1/2

Unperturbed result: Λmn = e−ik0Enρδmn

Internal wave effects:

Amn(k) =
σAmn(k)

2
zmn i.e. zmn(k) perfectly correlated

zm,n =

{
G(0,1)+iG(0,1)√

2
for n 6= m

G(0, 1) for n = m

Long range propagation for ρ = 50 x N km

U(ρ; 0) =

N∏
i=1

Ui(ρ = 50)

Ocean acoustics: RMT
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Perturbation theory

Using range-dependent (time-dependent) perturbation
theory

A =
k0

2

∫ ρ=50 km

0
dρ V̂I

where V̂I is the operator corresponding to δc(r)/co in the
interaction picture
The expectation value of squares of A matrix elements
(variance) can be derived with internal wave formulation of
Brown and Colosi, 1998
They depend almost exclusively on the index difference
|n− m|, i.e. A is banded with a width depending on |n− m|

Ocean acoustics: RMT
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Variance at 75 Hz for 50 km
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σ2
Um,n
≈ |n− m|−2.6

– Non-unitary, but
similar ensemble
exhibits localization
and superdiffusion
(Mirlin et al.,1996)

(line=pert. theory, plusses=simulations, dotted line=approx fit)
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Paraxial propagation vs random matrix propagation

Samples at 75 Hz

(b) RMT model to 1000 km

ln |Umn|ln |Umn| nn

(a) wave eqn to 1000 km
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Acoustic time fronts

A sample timefront (k = ω/c0)

φ(z, ρ, t) =
1√

2πσ2
k

∫
eikc0(t−ρ/c0)uk(z, ρ) exp

[
−(k − k0)2

2σ2
k

]
dk

(a) wave eqn to 250 km (b) RMT model to 250 km

| φ | (dB)| φ | (dB)
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Averaged timefronts

Average timefront intensity

〈I〉 =
1
N

N∑
i=1

|φ(z, ρ, t)|2

< I > (dB) < I > (dB)

(a) wave eqn to 50 km (b) RMT model for 50 km
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Averaged timefronts

Average timefront intensity

〈I〉 =
1
N

N∑
i=1

|φ(z, ρ, t)|2

< I > (dB) < I > (dB)

(a) wave eqn to 1000 km (b) RMT model for 1000 km
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The branches are there

Decay in time of 〈I〉 along sound axis
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The branches are just enough slightly weaker that in our RMT
they are not seen as clearly on the previous slide
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Summary

The minimum information which must be captured by
random matrix ensembles is: i) unitarity; ii) a mean
traveling phase for each mode; and iii) a variance decay
rate with |n− m| and k
Items left out: i) neighboring matrix element correlations; ii)
building block correlations; iii) k-dependence of A matrix
elements; and iv) other ???
Nevertheless, the ensemble goes a long way to capturing
the statistical properties of experimental data
It would be interesting to: i) investigate the general
properties of power-law banded random unitary matrices;
ii) understand what other information might yield more
faithful RMT propagation (especially k-dependence of z
matrix element correlations); and iii) learn how to apply
RMT to a much broader class of ocean acoustic problems

Ocean acoustics: RMT
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