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SCUOLA  INTERNAZIONALE  DI  FISICA  “ENRICO FERMI"

Varenna sul lago di Como - 1965
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INSTITUTE FOR NUCLEAR THEORY (INT) Seattle 1994
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Bestowal of an Honarary Doctorate Degree Upon Oriol

Bohigas by the TU Darmstadt in 2001
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Some Inspired by and Jointly Published Works with

Oriol Bohigas and his Colleagues at the LPTMS and the

Quantum Chaos Group at the TUD
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The BGS Conjecture
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Quantum Billiards and Microwave Billiards
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Quantum Schrödinger Billiards and Microwave Billiards
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Measurement Principle
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• Measurement of scattering matrix element S21



S-DALINAC
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Nearest Neighbor Spacing Distribution

Stadium billiard

• Scale: 10-1 m

Nuclear Data Ensemble
Bohigas, Haq + Pandey (1983)

• Scale: 10-15m

• Universal (generic) behaviour of the two systems
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Universality in Microscopic and Mesoscopic Systems: 

Quantum Chaos in Hadrons
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• Combined data from measured baryon and meson mass spectra up to

2.5 GeV (from PDG)

• Spectra can be organized into multiplets characterized by a set of

definite quantum numbers: isospin, spin, parity, strangeness, baryon

number, ...

• Scale: 10-16 m

Pascalutsa (2003)



Universality in Microscopic and Mesoscopic Systems: 

Quantum Chaos in Atoms
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• 8 sets of atomic spectra of highly excited neutral and ionized rare 

earth atoms combined into a data ensemble

• States of same total angular momentum and parity

• Scale: 10-10 m

Camarda + Georgopoulos

(1983)



Universality in Microscopic and Mesoscopic Systems: 

Quantum Chaos in Molecules
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• Vibronic levels of NO2

• States of same quantum numbers

• Scale: 10-9 m

Zimmermann et al. 

(1988)



Universality in Microscopic and Mesoscopic Systems: 

Quantum Chaos in Ultracold Collisions of 168Er Atoms
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A. Frisch et al. (2013)

• High-resolution trap-loss spectroscopy of Fano-Feshbach resonances in 

an optically-trapped ultracold sample of 168Er atoms

• Scattered atoms as a function of  an external magnetic field



Universality in Microscopic and Mesoscopic Systems: 

Quantum Chaos in Ultracold Collisions of 168Er Atoms

• 190 Fano-Feshbach resonances

• GOE

• Brody
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A. Frisch et al. (2013)

• Scale: 10-6 m



How is the Behavior of the Classical System Transferred

to the Quantum System?

• Non-relativistic Schrödinger billiards:

• There is a one-to-one correspondence between billiards, microscopic and

mesoscopic systems.

 BGS conjecture: 

”The spectral properties of a generic chaotic system coincide with those of

random matrices from the GOE“.

• Semiclassical proof of this conjecture has been given by

S.Heusler et al. PRL 98, 044103 (2007) + New J. Phys. 11, 103025 (2009)

• Next: Relativistic Dirac billiards  Graphene and photonic crystals
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Nobel Prize in Physics 2010
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• Free electron: wavelength 𝜆 = ℎ/𝑝 and energy 𝐸 = 𝑝2/2𝑚

• E(𝑝) is a continuous function of momentum 𝑝

• Solid: electron moves within the periodic potential of the crystal lattice

 E(𝑞) is not anymore a continuous function of quasimomentum 𝑞
 band structure

Reminder: Dispersion Relation of a Free Electron

and of an Electron in a Solid

band gap
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Graphene

• Two triangular sublattices of carbon atoms

• Near each corner of the first hexagonal Brillouin zone the electron energy E has a conical 

dependence on the quasimomentum and the bands touch each other at the Dirac points

• 𝐸 = ℏ 𝑣𝐹𝑞 with 𝑣𝐹 = 𝑐/300 → at the Dirac point electrons behave like relativistic fermions 𝐸 = 𝑐𝑝

• 𝛼 = 𝑒2/ℏ𝑐 → 𝛼𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 = 300 ∙ 1/137 ≈ 2 → strongly interacting system (QCD)

• Experimental realization of graphene in analog experiments of microwave photonic crystals

• “What makes graphene so attractive for research is that the spectrum 

closely resembles the Dirac spectrum for massless fermions.”
(M. Katsnelson, Materials Today, (2007))

conduction

band

valence

band
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Photonic Crystal in an

Open Flat Microwave Billiard

• A photonic crystal is a structure, whose electromagnetic properties vary 

periodically in space, e.g. an array of metallic cylinders

• Flat “crystal” (resonator) → E-field is perpendicular to the plates (TM0 mode)

• Propagating modes are solutions of the scalar Helmholtz equation 

→ Schrödinger equation for a quantum multiple-scattering  problem

→ Numerical solution yields the band structure
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Calculated Photonic Band Structure

• Dispersion relation 𝜔(𝑞) of a photonic crystal exhibits a band structure 

analogous to the electronic band structure in a solid 

• The triangular photonic crystal possesses a conical dispersion relation

 Dirac spectrum with a Dirac point where bands touch each other 

• The voids form a honeycomb lattice like atoms in graphene

first

band

second

band
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Effective Hamiltonian around the

Dirac Point 

• Close to Dirac point the effective Hamiltonian is a 2x2 matrix

• Substitution and leads to the Dirac equation

• Experimental observation of a Dirac spectrum in open photonic crystal

(S. Bittner et al., PRB 82, 014301 (2010))

• Microwave Dirac billiards
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Microwave Dirac Billard: 

Photonic Crystal in a Box→ “Artificial Graphene“

• Graphene flake: the electron cannot escape → Graphene Dirac billiard

• Photonic crystal: electromagnetic waves can escape from it

→ microwave Dirac billiard: “Artificial Graphene“

• Serves as a model system for graphene Dirac billiards

(J. Wurm et al., PRB 84, 075468 (2011))

• Boundaries sustain the translational symmetry

→ the whole plane can be covered with a perfect crystal lattice
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Superconducting Dirac Billiard

• 888 cylinders (scatterers) milled out of a brass plate

• Height d =  3 mm  = 50 GHz for 2D system

• Lead plated  superconducting below 7.2 K  high Q value 

• Boundary does not violate the translation symmetry  no edge states
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• Pronounced stop bands and Dirac points

• Quality factors > 5∙105

•  complete spectrum

• Altogether 5000 resonances observed

Transmission Spectrum at 4 K

2014 | SFB 634 | Achim Richter | 30



Density of States of the Measured Spectrum and the 

Band Structure

• Positions of stop bands are in 

agreement with calculation

• DOS related to slope of a band

• Dips correspond to Dirac points

• Flat band has very high DOS

• High DOS at van Hove 

singularities  ESQPT?

• Qualitatively in good agreement 

with prediction for graphene

(Castro Neto et al., RMP 81,109 (2009))

• Oscilations around the mean

density  finite size effect

stop band

stop band

stop band

Dirac point

Dirac point

2014 | SFB 634 | Achim Richter | 31



• Each frequency f in the experimental DOS r ( f ) is related to an isofrequency line of

band structure in q space

• Close to band edges isofrequency lines form circles around the G point

• At the saddle point the isofrequency lines become straight lines which cross each 

other and lead to the van Hove singularities

• Parabolically shaped surface merges into the 6 Dirac cones around Dirac frequency

→ topological phase transition (“Neck Disrupting Lifschitz Transition“) from non-

relativistic to relativistic regime (B. Dietz et al., PRB 88, 1098 (2013))

Experimental DOS and 

Topology of Band Structure

saddle point

saddle point
r ( f )

neck
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G point

G point

K point

M point



Schrödinger and Dirac Dispersion Relation in the

Photonic Crystal

Dirac regime

Schrödinger regime

• Dispersion relation along irreducible Brillouin zone GG

• Quadratic dispersion around the G point  Schrödinger regime 𝑓 = 𝑞2/2𝑚𝑒𝑓𝑓

• Linear dispersion around the  point  Dirac regime 𝑓 = 𝑞𝑣𝐷
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• First ~250 states counted from lower (upper) band edge coincide with 

those of empty rectangular billiard with  Dirichlet / Dirichlet (Dirichlet / 

Neumann) boundary conditions

Computed Intensity Distributions 𝐸𝑧(𝑥, 𝑦) 2 in the 

Schrödinger Regime

# 1651

# 1627

# 1646

# 1573

# 3

# 23

# 7

# 94
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Periodic Orbit Theory (POT)

Gutzwiller‘s Trace Formula

• Description of quantum spectra in terms of classical periodic orbits

Periodic orbits

spectrum spectral density

Peaks at the lengths l of PO’s

wave
numbers length spectrum

FT

Dirac billiard

D: 𝑓 = 𝑞𝑣𝐷

S: 𝑓 = 𝑞2/2𝑚𝑒𝑓𝑓

Effective description
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Experimental Length Spectrum:

Schrödinger Regime

• Effective description (𝑓 = 𝑞2/2𝑚𝑒𝑓𝑓) has a relative error of 5% at the 

frequency of the highest eigenvalue in the regime

• Very good agreement

• Next: Dirac regime
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• Intensity is spread over the whole billiard area 

• A long wave structure is barely seen

Computed Intensity Distributions around the Dirac 

Frequency

# 817 # 819 # 820
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# 813 # 814 # 816



Experimental Length Spectrum:

Dirac Regime

Above Dirac point (f>fD) Below Dirac point (f<fD)

• Some peak positions deviate from the lengths of POs

• Comparison with semiclassical predictions for a Dirac billiard

(J. Wurm et al., PRB 84, 075468 (2011))

• Effective description (𝑓 = 𝑞𝑣𝐷) has a relative error of 20% at the 

frequency of the highest eigenvalue in the regime
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Spectral Properties of a Rectangular Dirac Billiard: 

Nearest Neighbour Spacing Distribution

• Spacing between adjacent levels depends on DOS

• 130 levels in the Schrödinger regime

• 159 levels in the Dirac regime

PoissonPoisson
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Regular and Chaotic Dirac Billards 
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Berry and

Mondragon

(1987)



Spectral Properties Around the van Hove Singularities

Ratio Distribution of Adjacent Spacings

• DOS is unknown around Van Hove singularities

• Ratio of two consecutive spacings

• Ratios are independent of the DOS  no unfolding necessary

• Analytical prediction for Gaussian RMT ensembles 

(Y.Y. Atas, E. Bogomolny, O. Giraud and G. Roux, PRL, 110, 084101 (2013) )
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Ratio Distributions for Dirac Billiard

• Poisson:                         ;  GOE: 

• Poisson statistics in the Schrödinger and Dirac regime

• GOE statistics to the left of first van Hove singularity

• Origin ?  𝑣 = 𝛻 𝜔  𝑞 = 𝑀 = 0; 𝜆𝑒𝑓𝑓 → 0  e.m. waves “see the scatterers“
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• Some wave function patterns coincide with those of rectangular billiard

with Dirichlet / Neumann (#607, 608, 609, 610, 613), Neumann / Dirichlet

(#600, 605, 606) or Neumann / Neumann (#602, 611) BCs 

• Complexity at the van Hove singularity is due to the fact that the isofrequency

line separates different regions in the quasimomentum plane (qx,qy) 

Computed Intensity Distributions around the Lower van 

Hove Singularity

# 608 # 610 # 611# 609 # 613
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# 600 # 605 # 607# 602 # 606



Graphene is the “Mother of all Graphitic Forms“

(Geim and Novoselov (2007))
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• ”Artificial” Fullerene 

• Electronic structure of C60 can be described by the Dirac equation on the 

sphere with a gauge potential → index theorem which connects the 

topology to the number of zero modes

• Test of quantum chaotic scattering predictions for graphs

(Gnutzmann, Schanz and Smilansky; Pluhař + Weidenmüller 2013) 5
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Outlook
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