From an Experimental Test of the BGS
 Conjecture to Modeling Relativistic Effects in
 Microwave Billards

Oriol Bohigas Memorial Orsay 2014

- Some personal recollections
- Some experimental tests of the BGS conjecture
- Dirac billiards and Graphene
- Outlook

Supported by DFG within SFB 634
C. Bouazza, B. Dietz, T. Klaus, M. Miski-Oglu, A. R. , T. Skipa, M. Wunderle
W. Ackermann, F. lachello, N. Pietralla, L. von Smekal, J. Wambach

SCUOLA INTERNAZIONALE DI FISICA "ENRICO FERMI" TеснNISChe

 Varenna sul lago di Como - 1965

INSTITUTE FOR NUCLEAR THEORY (INT) Seattle 1994

TECHNISCHE
UNIVERSITATT
DARMSTADT

Bestowal of an Honarary Doctorate Degree Upon Oriol Bohigas by the TU Darmstadt in 2001

Bestowal of an Honarary Doctorate Degree Upon Oriol Bohigas by the TU Darmstadt in 2001

Bestowal of an Honarary Doctorate Degree Upon Oriol Bohigas by the TU Darmstadt in 2001

Some Inspired by and Jointly Published Works with Oriol Bohigas and his Colleagues at the LPTMS and the Quantum Chaos Group at the TUD

```
DISTRIBUTION OF EIGENMODES IN A SUPERCONDUCTING STADIUM BILLIARD }\longleftarrow< inspired
WITH CHAOTIC DYNAMICS
    H.D. Gräf, H.L. Harney, H. Lengeler, C.H. Lewenkopf, C. Rangarcharyulu,
    A. Richter, P. Schardt and H.A. Weidenmüller
        Phys. Rev. Letters 69, (1992)}129
    EXPERIMENTAL VS. NUMERICAL EIGENVALUES OF A BUNIMOVICH STADIUM }\longleftarrow< common
BILLIARD
    H. Alt, C. Dembowski, H.-D. Gräf, R. Hofferbert, H. Rehfeld, A. Richter,
    R. Schuhmann and C. Schmit
        Phys. Rev. E60, (1999)}285
FIRST EXPERIMENTAL EVIDENCE FOR CHAOS-ASSISTED TUNNELING IN A MI-
CROWAVE ANNULAR BILLIARD
    C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld and A. Richter
        Phys. Rev. Letters &4, (2000) }86
GAUSSIAN UNITARY ENSEMBLE STATISTICS IN A TIME-REVERSAL INVARIANT « < COMmON
MICROWAVE TRIANGULAR BILLIARD
    C. Dembowski, H.-D. Gräf, A. Heine, H. Rehfeld, A. Richter and C. Schmit
        Phys. Rev. E62, (2000) R4516
SPECTRAL STATISTICS IN AN OPEN PARAMETRIC BILLIARD SYSTEM
\longleftarrow c o m m o n
B. Dietz, A. Heine, A. Richter, O. Bohigas and P. Leboeuf
Phys. Rev. E73, (2006) 035201(R)

\section*{Some Inspired by and Jointly Published Works with Oriol Bohigas and his Colleagues at the LPTMS and the Quantum Chaos Group at the TUD}
```

FIRST EXPERIMENTAL OBSERVATION OF SUPERSCARS IN A PSEUDOINTE-
GRABLE BARRIER BILLIARD
E. Bogomolny, B. Dietz, T. Friedrich, M. Miski-Oglu, A. Richter, F. Schäfer
and C. Schmit
Phys. Rev. Letters 97, (2006) }25410
PROPERTIES OF NODAL DOMAINS IN A PSEUDOINTEGRABLE BARRIER BIL- }\longleftarrow< inspired
LIARD
B. Dietz, T. Friedrich, M. Miski-Oglu, A. Richter and F. Schäfer
Phys. Rev. E78, (2008) }04520
APPLICATION OF A TRACE FORMULA TO THE SPECTRA OF FLAT THREE-
DIMENSIONAL DIELECTRIC RESONATORS
S. Bittner, E. Bogomolny, B. Dietz, M. Miski-Oglu and A. Richter Phys. Rev. E85, (2012) 026203
TRACE FORMULA FOR CHAOTIC DIELECTRIC RESONATORS TESTED WITH MICROWAVE EXPERIMENTS
S. Bittner, B. Dietz, R. Dubertrand, J. Isensee, M. Miski-Oglu and A. Richter Phys. Rev. E85, (2012) 056203
EXPERIMENTAL OBSERVATION OF LOCALIZED MODES IN A DIELECTRIC
\longleftarrow common SQUARE RESONATOR
S. Bittner, E. Bogomolny, B. Dietz, M. Miski-Oglu, and A. Richter Phys. Rev. E88, (2013) 062906

```

\title{
PHYSICAL REVIEW LETTERS
}

2 JANUARY 1984
Number 1

\section*{Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws}

\author{
O. Bohigas, M. J. Giannoni, and C. Schmit \\ Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France \\ (Received 2 August 1983) \\ \begin{abstract}
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.
\end{abstract}
}
- . . . The purpose of this Letter is to use some of the systematic tools developed in RMT to make a detailed comparison of the level fluctuations of the quantum Sinai's billiard (SB) with GOE predictions. The choice of a two-dimensional billiard is convenient for our aim for several reasons: (i) Billiards have the lowest possible number of degrees of freedom allowing for chaotic motion; (ii) for billiards, it is possi-
ble to make a precise separation between global and local properties [cf. the Weyl formula, Eq. (1)] ; (iii) billiards have a discrete spectrum with an infinite number of eigenvalues and by computing a large number of them one can reach a high statistical significance of the results. Finally, SB is known to be strongly chaotic ( \(K\) system) and there exists an efficient method to compute its eigenvalues.

\section*{The BGS Conjecture}

summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are \(K\) systems show the same fluctuation properties as predicted by GOE (alternative stronger conjectures that cannot be excluded would apply to less chaotic systems, provided that they are ergodic). If the conjecture happens to be true, it will then have been established the universality of the laws of level fluctuations in quantal spectra already found in nuclei and to a lesser extent in atoms. Then, they should also be found in other quantal systems, such as molecules, hadrons, etc.

\section*{}


\section*{Measurement Principle}
- Measurement of scattering matrix element \(\mathrm{S}_{21}\)

\[
\longrightarrow \frac{\mathrm{P}_{o u t, 2}}{\mathrm{P}_{i n, 1}}=\left|\mathrm{S}_{21}\right|^{2}
\]

Resonance spectrum


Resonance density
Length spectrum (Gutzwiller)
\(\rightarrow \rho(f)=\rho_{\text {Wevl }}(f)+\rho_{f l u c}(f) \xrightarrow{\mathrm{FT}} \quad \tilde{\rho}(l)\)

\section*{S-DALINAC}

TECHNISCHE UNIVERSITATT
DARMSTADT


\section*{Distribution of Eigenmodes in a Superconducting Stadium Billiard with Chaotic Dynamics}

\author{
H.-D. Gräf, \({ }^{(1)}\) H. L. Harney, \({ }^{(2)}\) H. Lengeler, \({ }^{(3)}\) C. H. Lewenkopf, \({ }^{(2)}\) C. Rangacharyulu, \({ }^{(4)}\) A. Richter, \({ }^{(1)}\) P. Schardt, \({ }^{(1)}\) and H. A. Weidenmüller \({ }^{(2)}\) \\ \({ }^{(1)}\) Institut für Kernphysik, Technische Hochschule Darmstadt, W-6100 Darmstadt, Germany \\ \({ }^{(2)}\) Max-Planck-Institut für Kernphysik, W-6900 Heidelberg, Germany \\ \({ }^{(3)}\) AT-Division, CERN, CH-1211 Geneva 23, Switzerland \\ \({ }^{(4)}\) Department of Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO \\ (Received 8 June 1992)
}

The complete sequence of 1060 eigenmodes with frequencies between 0.75 and 17.5 GHz of a quasi-two-dimensional superconducting microwave resonator shaped like a quarter of a stadium billiard with a \(Q\) value of \(Q \approx 10^{5}-10^{7}\) was measured for the first time. The semiclassical analysis is in good agreement with the experimental data, and provides a new scheme for the statistical analysis and comparison with predictions based on the Gaussian orthogonal ensemble.


\section*{Nearest Neighbor Spacing Distribution}

Stadium billiard
- Scale: \(10^{-1} \mathrm{~m}\)


Nuclear Data Ensemble Bohigas, Haq + Pandey (1983)
- Scale: \(10^{-15} \mathrm{~m}\)

- Universal (generic) behaviour of the two systems

\section*{Universality in Microscopic and Mesoscopic Systems: Quantum Chaos in Hadrons}
- Combined data from measured baryon and meson mass spectra up to 2.5 GeV (from PDG)
- Spectra can be organized into multiplets characterized by a set of definite quantum numbers: isospin, spin, parity, strangeness, baryon number, ...

- Scale: \(10^{-16} \mathrm{~m}\)

Pascalutsa (2003)

\section*{Universality in Microscopic and Mesoscopic Systems: Quantum Chaos in Atoms}
- 8 sets of atomic spectra of highly excited neutral and ionized rare earth atoms combined into a data ensemble
- States of same total angular momentum and parity

- Scale: \(10^{-10} \mathrm{~m}\)

Camarda + Georgopoulos (1983)

\section*{Universality in Microscopic and Mesoscopic Systems: Quantum Chaos in Molecules}
- Vibronic levels of \(\mathrm{NO}_{2}\)
- States of same quantum numbers

- Scale: \(10^{-9} \mathrm{~m}\)

Zimmermann et al. (1988)

\section*{Universality in Microscopic and Mesoscopic Systems: Quantum Chaos in Ultracold Collisions of \({ }^{168} \mathrm{Er}\) Atoms}
- High-resolution trap-loss spectroscopy of Fano-Feshbach resonances in an optically-trapped ultracold sample of \({ }^{168} \mathrm{Er}\) atoms
- Scattered atoms as a function of an external magnetic field

A. Frisch et al. (2013)

\section*{Universality in Microscopic and Mesoscopic Systems: Quantum Chaos in Ultracold Collisions of \({ }^{168} \mathrm{Er}\) Atoms}
- 190 Fano-Feshbach resonances
- GOE -.-..
- Brody --- -

- Scale: \(10^{-6} \mathrm{~m}\)
A. Frisch et al. (2013)

How is the Behavior of the Classical System Transferred to the Quantum System?
- Non-relativistic Schrödinger billiards:
- There is a one-to-one correspondence between billiards, microscopic and mesoscopic systems.
\(\rightarrow\) BGS conjecture:
"The spectral properties of a generic chaotic system coincide with those of random matrices from the GOE".
- Semiclassical proof of this conjecture has been given by S.Heusler et al. PRL 98, 044103 (2007) + New J. Phys. 11, 103025 (2009)
- Next: Relativistic Dirac billiards \(\rightarrow\) Graphene and photonic crystals

\section*{Nobel Prize in Physics 2010}

TECHNISCHE UNIVERSITAT
DARMSTADT


Photo: Sergeom, Wikimedia Commons
Photo: University of Manchester, UK
Andre Geim
Konstantin Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

\section*{Reminder: Dispersion Relation of a Free Electron and of an Electron in a Solid}
- Free electron: wavelength \(\lambda=h / p\) and energy \(E=p^{2} / 2 m\)
- \(\mathrm{E}(p)\) is a continuous function of momentum \(p\)

- Solid: electron moves within the periodic potential of the crystal lattice
\(\rightarrow \mathrm{E}(q)\) is not anymore a continuous function of quasimomentum \(q\)
\(\rightarrow\) band structure


\section*{Graphene}
- "What makes graphene so attractive for research is that the spectrum closely resembles the Dirac spectrum for massless fermions."
(M. Katsnelson, Materials Today, (2007))

- Two triangular sublattices of carbon atoms

- Near each corner of the first hexagonal Brillouin zone the electron energy \(E\) has a conical dependence on the quasimomentum and the bands touch each other at the Dirac points
- \(E=\hbar v_{F} q\) with \(v_{F}=c / 300 \rightarrow\) at the Dirac point electrons behave like relativistic fermions \(E=c p\)
- \(\alpha=e^{2} / \hbar c \rightarrow \alpha_{\text {Graphene }}=300 \cdot 1 / 137 \approx 2 \rightarrow\) strongly interacting system (QCD)
- Experimental realization of graphene in analog experiments of microwave photonic crystals

\section*{Photonic Crystal in an Open Flat Microwave Billiard}
- A photonic crystal is a structure, whose electromagnetic properties vary periodically in space, e.g. an array of metallic cylinders

- Flat "crystal" (resonator) \(\rightarrow\) E-field is perpendicular to the plates ( \(\mathrm{TM}_{0}\) mode)
- Propagating modes are solutions of the scalar Helmholtz equation
\(\rightarrow\) Schrödinger equation for a quantum multiple-scattering problem
\(\rightarrow\) Numerical solution yields the band structure

\section*{Calculated Photonic Band Structure}
- Dispersion relation \(\omega(q)\) of a photonic crystal exhibits a band structure analogous to the electronic band structure in a solid

- The triangular photonic crystal possesses a conical dispersion relation \(\rightarrow\) Dirac spectrum with a Dirac point where bands touch each other
- The voids form a honeycomb lattice like atoms in graphene

\section*{Effective Hamiltonian around the Dirac Point}
- Close to Dirac point the effective Hamiltonian is a \(2 \times 2\) matrix
\[
\hat{H}_{\mathrm{eff}}=\omega_{D} \mathbb{1}+v_{D}\left(\delta q_{x} \hat{\sigma}_{x}+\delta q_{y} \hat{\sigma}_{y}\right)
\]
- Substitution \(\delta q_{x} \rightarrow-i \partial_{x}\) and \(\delta q_{y} \rightarrow-i \partial_{y}\) leads to the Dirac equation
\[
\left(\begin{array}{cc}
0 & \partial_{x}-i \partial_{y} \\
\partial_{x}+i \partial_{y} & 0
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=i \frac{\omega-\omega_{D}}{v_{D}}\binom{\psi_{1}}{\psi_{2}}
\]
- Experimental observation of a Dirac spectrum in open photonic crystal (S. Bittner et al., PRB 82, 014301 (2010))
- Microwave Dirac billiards

\section*{Microwave Dirac Billard: \\ Photonic Crystal in a Box \(\rightarrow\) "Artificial Graphene"}

TECHNISCHE

- Graphene flake: the electron cannot escape \(\rightarrow\) Graphene Dirac billiard
- Photonic crystal: electromagnetic waves can escape from it
\(\rightarrow\) microwave Dirac billiard: "Artificial Graphene"
- Serves as a model system for graphene Dirac billiards
(J. Wurm et al., PRB 84, 075468 (2011))
- Boundaries sustain the translational symmetry
\(\rightarrow\) the whole plane can be covered with a perfect crystal lattice

\section*{Superconducting Dirac Billiard}

- 888 cylinders (scatterers) milled out of a brass plate
- Height \(d=3 \mathrm{~mm} \rightarrow f_{\text {max }}^{2 D}=50 \mathrm{GHz}\) for 2D system
- Lead plated \(\rightarrow\) superconducting below \(7.2 \mathrm{~K} \rightarrow\) high Q value
- Boundary does not violate the translation symmetry \(\rightarrow\) no edge states

\section*{Transmission Spectrum at 4 K}

- Pronounced stop bands and Dirac points
- Quality factors >5•105
- \(\langle\Gamma\rangle /\langle D\rangle=10^{-3} \rightarrow\) complete spectrum
- Altogether 5000 resonances observed

\section*{Density of States of the Measured Spectrum and the Band Structure}


\section*{Experimental DOS and Topology of Band Structure}

TECHNISCHE



- Each frequency \(f\) in the experimental \(\operatorname{DOS} \rho(f)\) is related to an isofrequency line of band structure in \(q\) space
- Close to band edges isofrequency lines form circles around the \(\Gamma\) point
- At the saddle point the isofrequency lines become straight lines which cross each other and lead to the van Hove singularities
- Parabolically shaped surface merges into the 6 Dirac cones around Dirac frequency
\(\rightarrow\) topological phase transition ("Neck Disrupting Lifschitz Transition") from nonrelativistic to relativistic regime (B. Dietz et al., PRB 88, 1098 (2013))

\section*{Schrödinger and Dirac Dispersion Relation in the Photonic Crystal}

Schrödinger regime

- Dispersion relation along irreducible Brillouin zone ГМКГ
- Quadratic dispersion around the \(\Gamma\) point \(\rightarrow\) Schrödinger regime \(f=q^{2} / 2 m_{e f f}\)
- Linear dispersion around the K point \(\rightarrow\) Dirac regime \(f=q v_{D}\)

\section*{Computed Intensity Distributions \(\left|E_{z}(x, y)\right|^{2}\) in the Schrödinger Regime}

- First ~250 states counted from lower (upper) band edge coincide with those of empty rectangular billiard with Dirichlet / Dirichlet (Dirichlet / Neumann) boundary conditions

\section*{Periodic Orbit Theory (POT)}

Gutzwiller's Trace Formula
- Description of quantum spectra in terms of classical periodic orbits
\begin{tabular}{ccc} 
spectrum & \begin{tabular}{c} 
wave \\
numbers
\end{tabular} & \begin{tabular}{c} 
spectral density
\end{tabular} \\
\(\left\{f_{i}\right\} \longrightarrow\)
\end{tabular}\(\quad\left\{k_{i}\right\} \quad \longrightarrow \quad \rho(k)=\sum \delta\left(k-k_{i}\right) \longrightarrow \tilde{\rho}(l)=\int_{0}^{\text {FT }} d k e^{i k l} \rho(k)\)

Peaks at the lengths \(l\) of PO's

\(\xrightarrow{\text { Effective description }}\)
S: \(f=q^{2} / 2 m_{e f f}\)
D: \(f=q v_{D}\)

Periodic orbits


\section*{Experimental Length Spectrum: Schrödinger Regime}

- Effective description ( \(f=q^{2} / 2 m_{e f f}\) ) has a relative error of \(5 \%\) at the frequency of the highest eigenvalue in the regime
- Very good agreement
- Next: Dirac regime

\section*{Computed Intensity Distributions around the Dirac Frequency}

- Intensity is spread over the whole billiard area
- A long wave structure is barely seen

\section*{Experimental Length Spectrum: Dirac Regime}


- Some peak positions deviate from the lengths of POs
- Comparison with semiclassical predictions for a Dirac billiard (J. Wurm et al., PRB 84, 075468 (2011))
- Effective description ( \(f=q v_{D}\) ) has a relative error of \(20 \%\) at the frequency of the highest eigenvalue in the regime

\section*{Spectral Properties of a Rectangular Dirac Billiard: Nearest Neighbour Spacing Distribution}


- Spacing between adjacent levels depends on DOS \(\rho(k)\)
- 130 levels in the Schrödinger regime
- 159 levels in the Dirac regime

\section*{Regular and Chaotic Dirac Billards}

TECHNISCHE
UNIVERSITÄT
DARMSTADT



Berry and Mondragon (1987)


\section*{Spectral Properties Around the van Hove Singularities Ratio Distribution of Adjacent Spacings}

- DOS is unknown around Van Hove singularities
- Ratio of two consecutive spacings \(r_{i}=s_{i} / s_{i+1}\)
- Ratios are independent of the DOS \(\rightarrow\) no unfolding necessary
- Analytical prediction for Gaussian RMT ensembles (Y.Y. Atas, E. Bogomolny, O. Giraud and G. Roux, PRL, 110, 084101 (2013) )

\section*{Ratio Distributions for Dirac Billiard}

- Poisson: \(P(r)=\frac{1}{(1+r)^{2}}\); GOE: \(P(r)=\frac{27}{8} \frac{r+r^{2}}{\left(1+r+r^{2}\right)^{5 / 2}}\)
- Poisson statistics in the Schrödinger and Dirac regime
- GOE statistics to the left of first van Hove singularity
- Origin ? \(\vec{v}=\vec{\nabla} \omega(\vec{q}=M)=0 ; \lambda_{e f f} \rightarrow 0 \rightarrow\) e.m. waves "see the scatterers"

Computed Intensity Distributions around the Lower van Hove Singularity

- Some wave function patterns coincide with those of rectangular billiard with Dirichlet / Neumann (\#607, 608, 609, 610, 613), Neumann / Dirichlet (\#600, 605, 606) or Neumann / Neumann (\#602, 611) BCs
- Complexity at the van Hove singularity is due to the fact that the isofrequency line separates different regions in the quasimomentum plane \(\left(q_{x}, q_{y}\right)\)

\section*{Graphene is the "Mother of all Graphitic Forms" (Geim and Novoselov (2007))}


\section*{Outlook}
- "Artificial" Fullerene



- Electronic structure of \(\mathrm{C}_{60}\) can be described by the Dirac equation on the sphere with a gauge potential \(\rightarrow\) index theorem which connects the topology to the number of zero modes
- Test of quantum chaotic scattering predictions for graphs
(Gnutzmann, Schanz and Smilansky; Pluhař + Weidenmüller 2013)
```

