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Introduction

Wave transport in disordered systems with uncorrelated disorder in

the scattering potential has been extensively studied

Common feature of the problems investigated by our group:

size of the individual scatterers: the smallest one in the problem:

much smaller than the wavelength and is of no physical relevance.

Individual potentials are statistically independent

and modeled by delta functions

Distance between successive scatterers is then taken very small

This allows considering the dense weak-scattering limit (DWSL)

We studied the conductance, its fluctuations, and the individual

transmission coefficients

We found insensitivity of the results to details of the

individual-scatterer statistical distribution,

expressed in the form of a central-limit theorem
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However, statistical correlations in the disordered potential,

and finite size of individual scatterers and their separation,

are known to have important effects in the transport properties.

• E.g., in the so called “random-dimer model”, fully transparent

(delocalized) states have been discovered

(Dunlap, Wu, Phillips, Hilke, et al., (1990-93))

• In the presence of long-range correlated disorder in 1D systems,

Izrailev et al. (1999) found a mobility edge.

• De Moura et al. (1998): Anderson-like metal-insulator transition

• Schomerus and Titov (2005) report violations of single-parameter

scaling due to short-range correlations.

• Izrailev et al. (1995) have discussed delocalization in the

continuous random-dimer model

• and Lifshitz et al (1997) in continuous disordered systems

consisting of δ-potentials and barrier-well sequences
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Here we build on previous work a

to study the simplest extension of the problems we studied earlier:

wave transport in 1D disordered systems, in which the various

scatterers have a finite size:

succession of n barriers and wells, to be called steps,

with a finite width and weak compared with energy E
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aM. Dı́az, P. A. Mello, M. Yépez and S. Tomsovic, Europh. Lett. 97, 54002

(2012)
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• Fixed step width lc fits an arbitrary number of wavelengths δ/2π;

k= wave number; δ = klc ≡ phase parameter

• Random heights Vr (r = 1, · · ·n), statist. indep. of one another;

n distributions are uniform, with zero average, and all identical

This potential has a very simple type of correlation:

it is perfectly correlated for points inside each step of length lc

(lcorr the correlation length), but uncorrelated for points lying at a

distance larger then lc.
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Our interest in the model:

• It allows investigating the effect of a finite size of the scatterers.

The model could be interpreted as simulating a potential described

by a random process with a correlation length lc.

• It exhibits peculiar transport properties which, to the best of our

knowledge, have not been discussed in the literature.

• We wish to encourage experimental realization of the system in

the laboratory
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Summary

We study, for the model we just described:

• the Landauer resistance of the chain and

• its transmission coefficient,

averaged over an ensemble of realizations,

as functions of the number of scatterers n and phase parameter δ.

• We use a random transfer-matrix method

to perform the theoretical analysis of the problem

• We verify the results by means of computer simulations.
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The Theoretical Model

The r-th scatterer of the chain: E > Vr

E

(r - 1)l

E ∝ k 2

V  ∝ Ur

x

r

E  ∝ kr r
2

Vr

rlcc

Ur = 2mVr

h̄2 , yr = Url
2
c = Ur

k2 (klc)
2 ≡ Ur

k2 δ2 , δ = klc

Transfer matrix for the r-th scatterer:

M r =





αr βr

β∗
r α∗

r



 , |αr|2 − |βr|2 = 1

M r depends on three parameters: E, Ur, lc: these occur in the

dimensionless combinations δ and yr.
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The chain of steps

Transfer matrix for a chain of n (non-overlapping) steps:

M
(n) = M n · · ·M r · · ·M 2M 1 =





α(n) β(n)

(

β(n)
)∗ (

α(n)
)∗





i) Landauer resistance of the chain

R(n)/T (n) = |β(n)|2 ≡ λ(n)

ii) Transmission coefficient of the chain

T (n) = 1
1+λ(n) .

The ensemble of chains

Choose the yr = Url
2
c ’s (r = 1, · · · , n) statistically independent

and uniformly distributed in (−y0, y0).

In our description by means of transfer matrices,

we end up with an ensemble of transfer matrices
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The recursion relation

The original system of n scatterers is extended by one scatterer

M
(n+1) = M n+1M

(n).

Recursion relation for 〈Landauer’s resistance of the chain〉


















































[

1 + 2〈|β(n+1)|2〉
]

−
[

1 + 2〈|β(n)|2〉
]

= 2〈|βn+1|2〉
[

1 + 2〈|β(n)|2〉
]

+ 2
[

〈αn+1β
∗
n+1〉〈α(n)β(n)〉 + c.c.

]

,

〈α(n+1)β(n+1)〉 − 〈α(n)β(n)〉
= 〈αn+1βn+1〉

[

1 + 2〈|β(n)|2〉
]

+
(

〈α2
n+1〉 − 1

)

〈α(n)β(n)〉
+〈β2

n+1〉〈α(n)β(n)〉∗

Notice: 〈|β(n)|2〉 coupled to 〈α(n)β(n)〉.
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Recursion relation has the structure:

z(n + 1) = Ω z(n)

z(n) =
[

A(n)/2, ib(n)/
√

2, −ib∗(n)/
√

2
]T

; z(0) = [1/2, 0, 0]T

We used the definitions

A(n) = 1 + 2〈|β(n)|2〉, b(n) = e2inδ〈α(n)β(n)〉.
Matrix Ω is complex symmetric and independent of n.

z(n) = Ωnz(0)

If Ω has no double characteristic values, it can be diagonalized by a

complex orthogonal transformation

Ω = Ω0 + ∆Ω(y0, δ); Ω0 =









µ
(0)
1 = 1 0 0

0 µ
(0)
2 = e2iδ 0

0 0 µ
(0)
3 = e−2iδ









Unperturbed matrix Ω0 ≡ limiting value for V ≡ 0
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Average Landauer resistance vs n

for δ in regime I

Let δ be far from π. E.g.: δ = π/2,

the three unperturbed eigenvalues: {µ(0)
1 , µ

(0)
2 , µ

(0)
3 } = {1,−1,−1}.

Regime I ≡ {µ(0)
2 , µ

(0)
3 } far away from µ

(0)
1 :

they may be considered effectively decoupled when we turn on a

weak interaction, y2
0 ≪ 1.

We then restrict to the 1 × 1 block of Ω:

A(n) ≈ (Ω11)
nA(0) =

(

1 + 2〈|β̊1|2〉
)n

= e2n 1
2 ln(1+2〈|β̊1|

2〉) ≡ e2nlc/ℓ,

the well known Landauer’s exponential behavior, where, now:

lc
ℓ

=
1

2
ln

(

1 + 2〈|β̊1|2〉
)

.

The new feature is the dependence of the mfp on δ. In the WSL:

〈|β̊1|2〉 = lc
ℓ̃

+ O
(

y0

δ2

)4
, lc

ℓ̃
=

y2
0

12δ4 sin2 δ.
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Average Landauer resistance 〈(R/T )(n)〉 vs. n, for δ in regime I; y0 = 0.09.

a) 1 < δ < 2 b) 2.3 < δ < 2.9.

Theory : 〈|β(n)|2〉 = 1
2

(

e2nlc/ℓ − 1
)

.

〈|β1|
2〉 = lc/ℓ̃ + O

(

y0/δ2
)4

, lc/ℓ̃ = (y2
0/12δ4) sin2 δ.

Numerical simulation: ensemble of 106 realizations.

As δ increases towards π, the average resistance decreases and the mfp increases;

i.e., the system tends to delocalize.

Excellent agreement
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Average Landauer resistance vs n

for δ in regime II

For 2.9 ≤ δ ≤ 3.4,

{µ(0)
2 = e2iδ, µ

(0)
3 = e−2iδ} are not far enough away from µ

(0)
1 = 1

to be effectively decoupled.

E.g., for δ = π, µ
(0)
1 = µ

(0)
1 = µ

(0)
1 = 1

i.e., the three unperturbed eigenvalues are degenerate

If δ is very close to π, Ω has to be diagonalized exactly:

novel behavior shows up as a consequence of the coupling

Exact solution has the structure:

A(n) =
∑3

a=1(O1a)2 µn
a

µa = a-th eigenvalue of Ω
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.

Resistance enhancement

Average Landauer resistance 〈(R/T )(n)〉 vs. n, for δ = π, in red; y0 = 0.09.

Theory: above Ω diagonalized exactly

Numerical simulation: ensemble

Excellent agreement

Results for 2.3 < δ < 2.9 (regime I) shown in black for comparison

Notice resistance enhancement as a result of the coupling:

system is more localized for δ = π than for neighboring values of δ

i.e., the tendency to delocalize as we move towards δ = π

is reversed in the vicinity of δ = π.
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Write δ = π − ǫ

For ǫ not too small, so that the unperturbed eigenvalues

do not become degenerate,

we may use perturbation theory (PT) in the parameter y0:

A(n) ≈ A1e
n ln(1+∆M11) +

[

A2e
n ln(e2iδ+∆M22) + cc

]

e2iδ dominates over ∆M22: we estimate

2nd term ≈ en ln e2iδ

= en2iδ = e2in(π+ǫ) = e2inǫ

This result oscillates with n, with a period ∆n that satisfies

2 ∆n ǫ = 2π, so that

∆n ∼ π

ǫ

i) Period ∆n independent of y0

ii) Period decreases as we go away from δ = π
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Theory: Perturbation theory in y0

Numerical simulations: ensemble

a) y0 = 0.09, b) y0 = 0.01.

Period ∆n is independent of y0, as predicted by theory
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Average Landauer resistance 〈(R/T )(n)〉 vs. n, for δ ≈ π; y0 = 0.09.

Theory: Continuous approximation from earlier theory a

Computer simulations: ensemble of 106 realizations

Period ∆n becomes smaller as we go away from δ = π, as predicted by theory

aM. Dı́az, P. A. Mello, M. Yépez and S. Tomsovic, Europh. Lett. 97, 54002

(2012)
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Average Landauer resistance for fixed n

vs δ in regimes I and II

Average Landauer resistance 〈R/T 〉(n) vs δ, for n = 5000 scatterers; y0 = 0.09.

Theory: Regime I: present theory

Regime II: Continuous approximation from earlier theory.

Computer simulations: ensemble of 105 realizations

Main figure: i) gross-structure behavior in a semilog scale: regimes I and II,

ii) Well inside regime II: enhancement of nearly three orders of magnitude:

incipient “forbidden region”

Inset: region δ ≈ π in a linear scale.
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Description

Regime I: average resistance decreases as δ ⇒ π:

recall earlier finding that the system becomes more delocalized

Well inside regime II: this tendency is reversed

We show analytically and verify numerically, the existence of an

“incipient forbidden region” I.e., in a scattering experiment:

• for δ ≈ π, resistance presented by the system has a

dramatic enhancement of nearly three orders of magnitude

• incipient: peak-to-valley enhancement in the resistance

keeps becoming greater for larger n’s

• It results from coherent contribution of

all the barriers and wells with same width lc
a.

aGastón Garćıa C., private communication, and Phys. Rev. B56, 4845

(1997), Phys. Rev. A79, 052103 (2009): S-matrix pole structure: a possible

explanation?
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Average Transmission Coefficient vs n for δ in

regime I
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Average transmission coefficient 〈T (n)〉 vs. n, for δ in regime I; y0 = 0.09 .

a) 1 < δ < 2 b) 2.3 < δ < 2.9.

Theory: 〈T 〉 = 2e−s̃/4
∫

∞

0
e−s̃t2πt[tanh(πt)/ cosh(πt)]dt, s̃ = L/l̃

Numerical simulations: ensemble of 106 realizations

Error bar ∼ 10−3 for δ = π/2 and n = 5000

As δ increases towards π, 〈T 〉 increases and mfp increases;

i.e., the system tends to delocalize.

Excellent agreement
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Average Transmission for fixed n

vs δ in regimes I and II

Average transmission 〈T 〉 vs δ, for n = 5000 scatterers and y0 = 0.09

Theory: Regime I: present theory

Regime II: continuous approximation from earlier theory.

Computer simulations: ensemble of 105 realizations

Main figure: 1) gross-structure behavior in regimes I and II

ii) Well inside regime II: significant drop: “incipient forbiden” region

Insets: zoom of the region δ ≈ π
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• 〈T 〉 exhibits a gross-structure behavior in the form of a “bump”.

For weak scatterers, system is almost transparent in

regime II, and regime I is more localized.

• Trend to delocalize as δ = π is approached

reverses in an extremely narrow window around δ = π

• For δ ≈ π, we see analytically and numerically an “incipient”

forbidden region which becomes ever deeper as n increases

• In a scattering experiment, 〈T 〉 suffers a dramatic reduction, with

a peak to valley ratio that increases with n. Consistent with the

behavior of 〈R/T 〉 already noticed

• Incipient forbidden region has features in common with a

finite stretch of a periodic Kronig Penney potential:

i) it becomes deeper as n increases

ii) it becomes wider as the strength of the potential increases (y0),

iii) it shows interference fringes at the edges
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CONCLUSIONS

• We discussed wave transport in 1D disordered chains of barriers

and wells with constant width lc and random strength

• Weak scatterers: i) system almost transparent for δ = klc ≈ π

ii) less delocalized farther away

• iii) for δ ≈ π: incipient “forbidden region” where

a) 〈T 〉 suffers a dramatic reduction

b) Landauer resistance increases by various orders of magnitude

• These phenomena are described very well by the theoretical

analysis and are verified by computer simulations

• Results suggest interest in experimental realization of the system

• Same model has been studied recently by Izrailev et al. a using a

mapping to a “classical phase space” and iterating there.
aI. F. Herrera-Gonzalez, F.M. Izrailev and N.M. Makarov, Phys. Rev. E 88,

052108 (2013)
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