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“Flow localization on active nematic surfaces”

Experiments have recently shown that morphogenesis — the formation of shape and structure
in living systems — can involve an interplay between surface curvature change, material flow, and
orientational (nematic) order of the surface constituents. A striking example is found in the small sea
animal Hydra [3]. In this system, supra-cellular actin-myosin fibers exhibit nematic order, and because
of myosin-generated active stress, the Hydra boundary is an active nematic surface. Topological defects
in the nematic director field are focal points of actively driven flows and deformations ; the tentacles,
feet, and mouth coincide with +1 charge defects.

The goal of the M2 internship and the PhD will be to understand how curvature and in-
plane order can localize active flows in the surfaces of developing organisms. The ability to
spatially control flows is also of importance in the design of synthetic active matter systems. During the
internship you will study a problem motivated by morphogenesis of ordered surfaces, and specifically
tubular epithelial tissues, which we will model as an active nematic fluid surface. These tubes, found
in a number of developing organs, are distinguished by the shapes at their tips. It is known that in
certain tissue types, the cells at the tip rotate about the tube axis [7], but are static away from the
tip. How curvature and orientational order interact to localize this flow is not understood.

Figure 1 – Schematic of ne-
matic order on an axisymmetric
surface.

Nematic order on the tube means that there is a topological defect
in the director field of charge +1 as one circles the tube tip. Dynamics of
active integer defects have recently attracted interest in cellular systems
on flat, rigid surfaces [2, 8], but only a few, and mainly numerical, studies
have considered defects on curved, deformable surfaces [1, 4]. Using co-
variant surface theory [6, 5], you will calculate the curvature-dependent
activity threshold at which a +1 defect spontaneously rotates. For now,
we will assume the defect is centered on a rigid, axisymmetric surface.
By considering an aster defect, with angle ψ = 0 (see Fig. 1) in the
base state, you will try to map the eigenvalue problem for the instability
threshold to a time independent Schrödinger equation for a particle in
a potential with wavefunction ψ. A first outcome of the internship will
be this mapping and relating the effective potential V to the curvature
of the axisymmetric surface. A second outcome will be to identify condi-
tions for the existence of bound states, corresponding to order change,
ψ 6= 0, and flow localized near the tube tip.

During the PhD, together we will pursue three directions. First, we
will relax the above assumption of a rigid surface, and explore how surface
deformation and flow localization influence each other. Next, while the
above description is certainly valid for an active polar system, the condition under which integer
defects in active nematics are stable is not well understood. This question has been addressed for
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flat surfaces [8], but not yet on curved ones. Along these lines, we will pursue a stability analysis of
integer defects with respect to non-axisymmetric modes in ψ and in the flow v on a rigid, curved
axisymmetric surface. Finally, we will relax the above constraint of a rigid surface, with the aim of
identifying principles that affect the shape of the tips of active nematic tubes.
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