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Abstract

We present a semiclassical theory of weak disorder effects in small struc-

tures and apply it to the magnetic response of non–interacting electrons con-

fined in integrable geometries. We discuss the various averaging procedures

describing different experimental situations in terms of one– and two–particle

Green functions. We demonstrate that the anomalously large zero-field sus-

ceptibility characteristic of clean integrable structures is only weakly sup-

pressed by disorder. This damping depends on the ratio of the typical size of

the structure with the two characteristic length scales describing the disorder

(elastic mean-free-path and correlation length of the potential) in a power-

law form for the experimentally relevant parameter region. We establish the

comparison with the available experimental data and we extend the study of

the interplay between disorder and integrability to finite magnetic fields.
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I. INTRODUCTION

Electronic mesoscopic systems offer nowadays the possibility of being used as a labora-

tory for studying quantum chaos. The main question of this novel discipline – the quantum

signatures of the underlying classical dynamics – can be addressed in microstructures defined

on high mobility semiconductor heterojunctions. This connection presents a considerable

challenge to experimentalists since it implies complicated fabrication processes and delicate

measurements. The challenge for theoreticians is not lesser since semiconductor microstruc-

tures are very rich condensed matter systems (involving effects of temperature, confinement,

disorder, electron-electron and electron-phonon interactions, etc) where the applicability and

validity of simple models has to be clearly established.

Within the simple model of a particle-in-a-billiard, important differences have been

predicted1, and later measured2,3, in the transport through chaotic and integrable geome-

tries. In the former nearby trajectories diverge exponentially and periodic orbits are usually

isolated; the latter are characterized by having as many constants of motion in involution as

degrees of freedom, and periodic orbits are organized in families on invariant tori4. Chaotic

cavities exhibit a universal behavior for the conductance fluctuations and weak-localization,

characterized by a single scale. On the contrary, integrable cavities do not show generic be-

havior presenting more fine-scale fluctuations and a non-lorentzian line-shape of the low-field

magneto resistance. In the case of thermodynamical properties like the magnetic suscep-

tibility, the differences between chaotic and integrable billiards are more spectacular since

they involve an order-of-magnitude enhancement of the low-field susceptibility of integrable

geometries compared to that of chaotic ones5–7. Unlike the transport problem, the predicted

different behavior according to the integrability of the underlying classical mechanics has

not been experimentally confirmed yet.

The residual disorder present in actual microstructures plays a special role in the quantum

chaos studies. Indeed, any perturbing potential, such as the one provided by the disorder,

immediately breaks the integrable character of the classical dynamics. Since small amounts
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of disorder are unavoidable in actual microstructures, the question whether or not integrable

behavior should be observed, naturally arises. It is then of foremost importance to establish

if the differences between chaotic and integrable geometries persist when we go beyond

the particle-in-a-box model. This interplay between integrability and disorder is the main

subject of this paper.

We start by characterizing the disorder. One limiting case is the absence of it, where

the dynamics is determined by the non-random confinement potential (particle-in-a-box or

clean models). On the other extreme we have the diffusive limit where the electron motion

is a random walk between the impurities and the confining effects are not important. The

strength of the disorder in the diffusive case is characterized by the transport mean free

path lT : the mean distance over which the electron momentum is randomized. When lT

becomes of the order of the typical size a of the microstructure, confinement and disorder

are relevant. For lT > a we arrive at the ballistic regime where electrons can traverse the

structure with a small drift in their momentum (going along almost straight lines), and

their dynamics is mainly given by the bounces off the walls of the confining potential. In

the ballistic regime the underlying classical mechanics still depends on the geometry and we

would like to understand the different role of disorder in integrable and chaotic geometries.

For short range impurity potentials (as typically found in metallic samples) the scat-

tering is isotropic (s-type) and the momentum is randomized after each collision with an

impurity. There is therefore only one length scale, namely lT , characterizing the disorder.

For smooth impurity potentials (as typically realized in high-mobility microstructures) the

scattering is forward directed and lT may be significantly larger than the elastic mean free

path l associated to the total amplitude diffracted by the disorder8. The regime lT > a > l

is particularly interesting because it is ballistic (since the classical mechanics is hardly af-

fected by disorder), but the single particle eigenstates are short lived. In a more technical

language that we will precise on the sequel, we have l as given by a single-particle Green

function and lT as by a two-particle Green function9. We will study the interplay between

disorder and confinement for physical observables that depend on one– and two–particle
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Green functions, concentrating on the magnetic susceptibility of individual and ensembles

of ballistic microstructures.

The natural tools to attack the interplay between disorder and confinement are semi-

classical expansions since they transparently convey at the quantum level the information

about the classical mechanics. Supersymmetry10 and random matrix theories are quite pow-

erful methods that have been widely used in recent studies of quantum chaos and disordered

systems11–14, but are not applicable to our regime of interest since they deal with the ergodic

universal (long time) properties of completely chaotic systems. Diagrammatic perturbation

theory for the disorder can describe the diffusive regime15, but calculations become exceed-

ingly complicated when the confinement and the detailed nature of the impurity potential

has to be considered.

In our semiclassical approach we emphasize the dependence of disorder effects on the ratio

between the finite system size a and the disorder correlation length ξ, showing that confined

systems exhibit strong deviations from the bulk–behavior. In particular we demonstrate that

for integrable geometries the effect of smooth disorder results in a power–law damping of the

two–particle Green function properties, and we compare this behavior with that expected in

chaotic systems. For completeness of the presentation we first briefly review in Sec. II our

work on the magnetic response of clean systems5,6. We then develop in detail a treatment

of disorder in ballistic microstructures extending some preliminary work16. In Sec. III we

present the disorder model and some general implications at the level of one– and two–

particle Green functions. In Sec. IV and V we specialize in the impurity averaged magnetic

susceptibility for individual and ensembles of microstructures.

II. ORBITAL MAGNETISM IN CLEAN SYSTEMS: A BRIEF REVIEW
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A. Thermodynamic Formalism

In this section we present the basic thermodynamical formalism for obtaining the orbital

magnetism within a semiclassical approach. We indicate the main ideas for its application to

clean microstructures5,6 which will be further developed in the Sections IV,V in order to allow

the treatment of static disorder. The principle is to derive thermodynamical expressions for

the free energy and the grand potential using a semiclassical approximation for the density

of states. This allows us to calculate physical observables such as the magnetic susceptibility

for the canonical and grand canonical ensembles.

For a system of electrons confined to an area A at temperature T and subject to a

perpendicular magnetic field H , the free energy F (T, H,N) for a fixed number N of electrons

and the grand potential Ω(T, H, µ) (representing the coupling to a particle reservoir with

chemical potential µ) are related by means of the Legendre transform

F (T, H,N) = µN + Ω(T, H, µ) . (2.1)

The canonical (χ) and grand canonical (χGC) susceptibilities of a confined electron gas are

given by

χ = − 1

A

(

∂2F

∂H2

)

T,N

, χGC = − 1

A

(

∂2Ω

∂H2

)

T,µ

. (2.2)

The grand potential can be expressed in the form

Ω(T, H, µ) = − 1

β

∫

dE d(E) ln[1 + exp(β(µ − E))] (2.3)

(with β = 1/kBT ) in terms of the single–particle density of states d(E) which we decompose

into a smooth mean and oscillating part according to

d(E) = d̄(E) + dosc(E) . (2.4)

As has been first noticed in the context of persistent currents in disordered rings17 a dis-

tinction between χ and χGC may be of crucial importance in mesoscopic thermodynamics:

Although the number of electrons can be large for a mesoscopic system, the fact that N is
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fixed must be taken into account (by working in the canonical formalism) if a disorder or

energy averaged magnetic response of an ensemble of isolated micro-systems is examined.

According to Imry18 a convenient representation for the canonical free energy in terms of

grand canonical quantities is obtained by expanding the relationship (2.1) to second order

in µ − µ̄ with a mean chemical potential µ̄ being implicitly defined by accommodating N

charge carriers to the mean number of states

N = N(µ) = N̄(µ̄) . (2.5)

Here

N(µ) =
∫ ∞

0
dE d(E) f(E−µ) (2.6)

with the Fermi distribution function

f(E − µ) =
1

1 + exp[β(E − µ)]
. (2.7)

N̄ is obtained in Eq. (2.5) by replacing d(E) by d̄(E). This finally allows an expansion of

the free energy as17

F (N) ≃ F 0 + ∆F (1) + ∆F (2) , (2.8)

with

F 0 = µ̄N + Ω̄(µ̄) , (2.9a)

∆F (1) = Ωosc(µ̄) , (2.9b)

∆F (2) =
1

2d̄(µ̄)
(Nosc(µ̄))2 . (2.9c)

The functions Ωosc(µ̄) and Nosc(µ̄) are expressed by means of Eqs. (2.3) and (2.6), respec-

tively, upon inserting the oscillating part dosc(E) of the density of states (2.4). The leading

order contribution to F is given by the first two terms F 0 +∆F (1) yielding the susceptibility

calculated in the grand canonical case. F 0 gives rise to the (two–dimensional) diamagnetic

Landau–susceptibility which for billiard like systems is expressed as for the bulk as

− χL = − gse
2

24πmc2
(2.10)

with gs = 2 the spin degeneracy.
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B. Semiclassical treatment of susceptibilities

For a semiclassical computation of ∆F (1) and ∆F (2) and their derivatives with respect

to H we calculate dosc(E, H) from the trace

d(E, H) = −gs

π
Im

∫

drGE(r, r) (2.11)

of the semiclassical one–particle Green function. Its contribution to dosc(E) is given by4

GE(r′, r) =
∑

t

Dt exp
[

i
(

St

h̄
− ηt

π

2

)]

, (2.12)

as the sum over all classical paths t (of non–zero length) joining r to r′ at energy E.

St =
∫

Ct

p dq (2.13)

is the classical action integral along the path Ct. The amplitude Dt takes care of the classical

probability conservation, and ηt is the Maslov index.

The evaluation of the trace integral (2.11) for chaotic and integrable systems leads to

the Gutzwiller–4 and Berry–Tabor–19 periodic–orbit trace formulas, respectively. In order to

calculate the magnetic susceptibility at small fields one has to carefully distinguish6 between

the three possibilities of a chaotic billiard, the special case of an integrable billiard remaining

integrable upon inclusion of the H–field, and the more general case where the field acts as

a perturbation breaking the integrability of a regular structure.

Since our main interest in the Sections III,IV and V will be devoted to disorder effects on

the susceptibility of billiards being integrable at zero H–field we will focus here on the last

case. There neither Gutzwiller– nor Berry–Tabor–trace formulas are directly applicable and,

following Ozorio de Almeida20, a uniform treatment of the perturbing H–field is necessary.

In the integrable zero–field limit each closed trajectory belongs to a torus IM and we can

replace r in the trace integral (2.11) by angle coordinates Θ1 specifying the trajectory within

the (one–parameter) family and by the position Θ2 on the trajectory. For small magnetic

field the classical orbits can be treated as essentially unaffected while the field acts merely

on the phases in the Green function in terms of the magnetic flux through the area AM(Θ1)
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enclosed by each orbit of family M. Evaluating the trace integral (2.11) along Θ2 for

the semiclassical Green function of an integrable system leads in this approximation to a

factorization of the density of states

dosc(E) =
∑

M 6=0

CM(H) d0
M

(E) (2.14)

into the contribution from the integrable zero–field limit

d0
M

(E) = D̃M cos
(

kFLM − ηM

π

2
− π

4

)

(2.15)

(LM is the length of the orbits of family M and D̃M the semiclassical weight19) and the

function

CM(H) =
1

2π

∫ 2π

0
dΘ1 cos

[

2π
HAM(Θ1)

Φ0

]

(2.16)

containing the H–field dependence (Φ0 = hc/e). Calculating ∆F (1) from Eq. (2.9b) and

taking the derivatives with respect to H gives the grand canonical contribution to the sus-

ceptibility at small magnetic field

χ(1)

χL

= −24π

gs

mA
(

Φ0

2πA

)2
∑

M

RT (τM)

τ 2
M

d0
M

(µ)
d2CM

dH2
. (2.17)

Here, τM is the period of a closed orbit of family M and

RT (τ) =
τ/τc

sinh(τ/τc)
; τc =

h̄β

π
(2.18)

is a temperature damping factor which arises from the convolution integral in Eq. (2.3) and

gives an exponential suppression of long orbits. This is important from a physical as well

as computational point of view, as conceptual difficulties associated with the questions of

absolute convergence of semiclassical expansions at zero temperature do not arise.

Eq. (2.17) is the basic equation for the susceptibility of an individual microstructure.

When considering ensembles of ballistic microstructures however, an average ( · ) over

energy (i.e. kF ) or over the system size a has usually to be performed and leads to variations

in the phases (actions S/h̄ = kFLM) of the density of states (2.15) which are much larger
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than 2π. Therefore, χ(1) vanishes upon ensemble average. In order to characterize the orbital

magnetism of ensembles we introduce the typical susceptibility χ(t) = (χ2)1/2 (the width of

the distribution) and the ensemble average χ (its mean value, which is non–zero because

of the term ∆F (2) in the expansion Eq. (2.8)). They are of theoretical interest because of

being based on two–particle Green functions and they are relevant for the description of

experiments on ensembles of mesoscopic systems.

If we assume that there are no degeneracies in the lengths of orbits from different families

M we obtain for χ(t)

(

χ(t)

χL

)2

=

(

24π

gs

mA

)2 (
Φ0

2πA

)4
∑

M

R2
T (τM)

τ 4
M

d0
M

(µ)2

(

d2CM

dH2

)2

. (2.19)

In calculating χ, the grand canonical contribution χ(1) from ∆F (1) vanishes under energy

average and the canonical correction ∆F (2) in Eq. (2.8) gives in semiclassical approximation

using Eq. (2.9c)

χ

χL

≃ χ(2)

χL

= −24π2

gs

2
h̄2
(

Φ0

2πA

)2
∑

M

R2
T (τM)

τ 2
M

d0
M

(µ)2
d2C2

M

dH2
. (2.20)

The Eqs. (2.17)–(2.20) provide the general starting point for a computation of the suscepti-

bility of integrable billiards at small fields.

As an important example, which is also of experimental relevance21, we will apply the

results to square billiards. At finite temperature χ is essentially given by the family M =

(1,1) of the shortest, flux–enclosing periodic orbits depicted in Fig. 1. A complete treatment

including families of longer orbits is given in Ref.6. Instead of Θ1 we use the lower reflection

point x0 as orbit parameterization within the family. The orbits (1,1) have the unique length

L11 = 2
√

2a and enclose a normalized area A(x0) = 4πx0(a−x0)/a
2. Computation of d0

11(µ)

for the square geometry gives for χ(1) (Eq. (2.17))

χ(1)

χ0
=
∫ a

0

dx0

a
A2(x0) cos(ϕA(x0)) sin

(

kFL11 +
π

4

)

(2.21)

as a function of the total flux ϕ = Ha2/Φ0 with Φ0 = hc/e. The prefactor

χ0 = χL

3

(
√

2π)5/2
(kFa)3/2RT (L11) . (2.22)
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shows the (kFa)3/2–dependence typical for (nearly–)integrable systems.

For the square geometry the Equations (2.19) and (2.20) for the susceptibilities χ(t) and χ

(characterizing different ensemble averages) can be reduced to (including only the dominant

contributions from the family (1,1))

χ(t)

χ0
≃

√

χ(1)2

χ0
=

1√
2

∫ a

0

dx0

a
A2(x0) cos (ϕA(x0)) (2.23)

and

χ

χ0
=

1

2

∫ a

0

dx0

a

∫ a

0

dx′
0

a

[

A2
− cos(ϕA−) + A2

+ cos(ϕA+)
]

(2.24)

with

χ0

χL

=
3

(
√

2π)3
(kFa) R2

T (L11) (2.25)

and A± = A(x0)±A(x′
0). Although the integrals (2.21),(2.23) and (2.24) can be evaluated

analytically in the clean case (leading to Fresnel functions of the magnetic flux5) the above

expressions serve as suitable starting points for the discussion of disorder effects on ensembles

of microstructures discussed in Sections IV and V.

III. SEMICLASSICAL APPROACH TO WEAK DISORDER

Disorder is usually studied in terms of the ensemble average over impurity realizations,

since it is a perturbation of a electrostatic potential whose detailed nature is unknown.

Typically, quantum perturbation theory is followed by the average over the strengths and

positions of the impurities. This approach is suited for macroscopic metallic samples (which

are self-averaging) or ensembles of mesoscopic samples (where different samples present dif-

ferent impurity configurations). The possibility of measuring a single disordered mesoscopic

sample posses a conceptual difficulty since there is not an average process involved. When

discussing the effect of disorder on the orbital magnetism of microstructures, it is therefore

necessary to distinguish between the behavior of an individual sample and an ensemble22.
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Moreover, we have to consider the cases where the Fermi energy and size of the mi-

crostructures are kept fixed under impurity average and the cases where these parameters

change with the different impurity realizations. These various averages, that will be thor-

oughly discussed in the remainder of the paper, can be expressed in terms of the impurity

average of one– and two–particle Green functions. Therefore we perform in this section a

general treatment of disorder effects on the basis of semiclassical expansions of Green func-

tions. The Green function formalism, which is useful for a wide range of physical problems,

can be applied to thermodynamical quantities like the magnetic susceptibility (Sec. IV and

V) as well as to quantum transport problems.

1. Disorder models

Our basic assumptions for the treatment of disorder are the following: We study a

spatially random potential V (r) characterized by a correlation function

C(|r− r′|) = 〈V (r)V (r′)〉 (3.1)

with a typical correlation length ξ and a mean disorder strength C0 = C(0). We will make

use of a Gaussian correlation

C(|r− r′|) = C0 exp

(

−(r − r′)2

4ξ2

)

(3.2)

which allows us to derive analytical expressions for disorder averages considered below23.

The disorder correlation function (3.2) can be viewed as being generated by means of a

realization i of a two-dimensional Gaussian disorder potential given by the sum

V (r) =
Ni
∑

j

uj

2πξ2
exp

{

−(r−Rj)
2

2ξ2

}

(3.3)

of the potentials of Ni independent impurities located at points Rj with uniform probability

on an area V. The strengths uj obey 〈ujuj′〉 = u2δjj′. The disorder strength (as defined in

Eq. (3.2)) is
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C0 =
u2ni

4πξ2
(3.4)

with ni = Ni/V. For ξ → 0 this model yields the white noise case of δ-function scatterers

V (r) =
∑Ni

j ujδ(r−Rj). We will use the model of Gaussian disorder for some analytical

calculations and for numerical quantum simulations. However, the general results expressed

in terms of the correlation function C(|r − r′|) will be valid for any kind of disorder.

As we will show, disorder effects depend on several length scales: the Fermi–wavelength

λF of the electrons, the disorder correlation length ξ and the size a of the microstructure. In

the bulk case of an unconstrained two–dimensional electron gas (2DEG) we will distinguish

between short range (ξ <λF ) and finite range (ξ >λF ) disorder potentials. In the case of a

microstructure a third, long range regime for ξ >a>λF has to be considered. The cleanest

samples used in today experiments are in the finite range regime a > ξ > λF

24.

2. Single–particle Green function

If we assume a microstructure with size a ≫ λF (a condition which is always met in

lithographically defined samples) and work in the finite range or long range regime, where

the disorder potential is smooth on the scale of λF , a semiclassical treatment is well justi-

fied. A natural starting point is the semiclassical expression (2.12) for the single–particle

Green function GE(r′, r) as a sum over the contributions from classical paths. The classical

mechanics of trajectories with length Lt ≪ lT (the transport mean free path) is essentially

unaffected by disorder. Therefore the dominant effect on the Green function in Eq. (2.12)

results from shifts in the semiclassical phases due to the modification of the actions while

the amplitudes Dt and topological indices ηt are nearly unchanged. The first–order approxi-

mation to the classical action (2.13) along a path Ct in a system with weak disorder potential

is

Sd
t ≃ Sc

t + δSt , (3.5)
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where the clean action Sc
t is obtained by integrating along the unperturbed trajectory Cc

t

without disorder (i.e. Sc
t = kF Lt in the case of billiards without magnetic field) instead of

the actual path Ct. The correction term δSt is obtained, after expanding p =
√

2m[E − V (q)]

for small V/E, by the integral

δSt = − 1

vF

∫

Cc
t

V (q) dq . (3.6)

In this approximation an impurity average 〈. . .〉 acts only on δSt and the disorder averaged

Green function reads

〈GE(r′, r)〉 =
∑

t

Gc
E,t(r

′, r) 〈exp
[

i

h̄
δSt

]

〉 . (3.7)

Here Gc
E,t is the contribution of the trajectory t to the zero-disorder Green function Gc

E.

For trajectories of length Lt ≫ ξ the contributions to δS according to Eq. (3.6) from

the disorder potential at trajectory segments separated by a distance larger than ξ are

uncorrelated. The related stochastic accumulation of action along the path can be therefore

interpreted as determined by a random-walk process, resulting in a Gaussian distribution

of δSt(Lt). For larger ξ or shorter trajectories (Lt 6≫ ξ), one can still think of a Gaussian

distribution of the de-phasing δSt provided V (r) is generated by a sum of a large number

of independent impurity potentials. As a consequence of the Gaussian character of the

distribution of δSt(Lt), the characteristic function involved in Eq. (3.7) is given by

〈exp
[

i

h̄
δSt

]

〉 = exp

[

−〈δS2
t 〉

2h̄2

]

(3.8)

and therefore entirely specified by the variance

〈δS2
t 〉 =

1

v2
F

∫

Cc
t

dq
∫

Cc
t

dq′〈V (q)V (q′)〉 , (3.9)

which is expressed as the mean of the disorder correlation function C(|q − q′|) when the

unperturbed orbit is traversed.

If we consider, to start with, an unconstrained 2DEG the sum in Eq. (3.7) is reduced to

the direct trajectory joining r and r′. If L = |r− r′| ≫ ξ the inner integral in Eq. (3.9) can

be extended to infinity and we obtain
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〈δS2〉 =
L

v2
F

∫

dqC(q) . (3.10)

The semiclassical average Green function for the bulk exhibits therefore an exponential

behavior16,25 (on a length scale lT > L ≫ ξ)

〈GE(r′, r)〉 = Gc
E(r′, r) exp

(

−L

2l

)

, (3.11)

with the damping governed by an inverse elastic mean free path

1

l
=

1

h̄2v2
F

∫

dqC(q) . (3.12)

In the case of Gaussian correlation C(q) is given by Eq. (3.2) and we get

l =
h̄2v2

F

ξ
√

πC0
. (3.13)

Using the disorder strength (3.4) we have

l =
4
√

πh̄2v2
F
ξ

u2ni
. (3.14)

In Appendix A we discuss the relation between the semiclassical elastic MFP’s

(Eqs. (3.12)–(3.14)) and the MFP obtained from quantum diagrammatic perturbation the-

ory for the bulk for the disorder model (3.3). The semiclassical and the quantum result

(Eq. (A5)) agree asymptotically to leading order in kFξ. In the limit of small ξ, especially

ξ < λF , our semiclassical approach is no longer applicable26. However, Eq. (3.11) still holds,

but with l replaced by lδ given in Eq. (A4).

We now turn from the semiclassical treatment of the bulk to that of a confined system.

In the constrained case in the limit lT ≪ a impurity scattering is the dominant process27.

This gives rise to diffusive motion, and thus there is no essential difference to the bulk for

the damping of the Green function. We will treat the ballistic regime lT >a where both, the

confinement and the impurities have to be considered. A treatment of lT in the appendix

shows that for finite ξ the transport MFP l is considerably larger than the elastic one and

a ballistic treatment is therefore well justified, even if l is of the order of the system size.
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In contrast to the bulk case a disorder averaged confined system is no longer trans-

lationally invariant and one has to impose in quantum calculations the correct boundary

conditions of the geometry. Confinement implies semi-classically that Gc
E(r′, r) is given as

a sum over all direct and multiply reflected paths connecting r and r′; disorder modifies the

corresponding actions according to Eq. (3.6).

In the regimes of short– and finite–range scatterers, the damping of each contribution

〈GE,t〉 to 〈GE〉 is given, analogous to the bulk expression (3.11), (using Eq. (3.10)) by

〈GE(r′, r)〉 =
∑

t

Gc
E,t(r

′, r) exp
(

−Lt

2l

)

. (3.15)

Here, L is now replaced by the trajectory length Lt > a ≫ ξ. This gives an individual

damping exp(−Lt/2l) for each geometry–affected path contributing to 〈GE〉.

In the long range regime and for ξ ∼ a the correlation integral (3.9) can no longer be

approximated (as for ξ ≪ Lt) by L
∫+∞
−∞ dqC(q) due to correlations across different sectors of

an orbit (with distance smaller ξ). Therefore the orbit–geometry enters into the correlation

integral. For ξ ≫ a we can however expand C(|r − r′|) and obtain in the case of Gaussian

disorder (up to first order in ξ−2) C(|r− r′| ≃ C0[1− (r− r′)2/(4ξ2)]. In this approximation

the integral (3.9) gives for the Green function damping an exponent

〈δS2
t 〉

2h̄2 =
1

4
√

π

L2
t

l ξ

(

1 − 1

2

It

ξ2

)

. (3.16)

It = (1/Lt)
∫

Ct
r2(q)dq can be regarded as the “moment of inertia” of the unperturbed

trajectory Ct with respect to its “center of mass” (1/Lt)
∫

Ct
r(q)dq. Eq. (3.16) shows that

the damping in the long range regime depends quadratically on Lt (in contrast to linear

behavior in the finite range case or bulk). The length scale of damping is now given by the

geometrical mean of the bulk MFP l and ξ. The leading damping term does not depend

on the specific orbit geometry since it essentially reflects the fluctuation in the mean of the

(smooth) potentials of different impurity configurations. Inclusion of higher powers of ξ−2

leads to additional contributions from higher moments
∫

Ct
rn(q)dq on the RHS of Eq. (3.16).
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3. Two-particle Green function

Density correlation functions in general or the typical susceptibility (Eq. (2.19)) and

ensemble averaged susceptibility (Eq. (2.20)), which will be treated in the subsequent sec-

tions, involve squares of the density of states. Writing the latter, Eq. (2.11), in terms of

the difference between advanced and retarded Green functions (G+ − G−) we are left with

products of one–particle Green functions. The terms of most interest are the cross products

G+(r, r′) G−(r, r′) = G+(r, r′)G+∗
(r′, r), because they survive the energy average and are

sensitive to changes in the magnetic field.

Since in the non–interacting approach we are using, the two–particle Green function

factorizes into a product of one–particle Green function28 we will use the former as a synonym

for the latter. The semiclassical average for products of single–particle Green functions will

be quantitatively performed for the susceptibility of confined integrable systems in Section

V, and we discuss here the underlying ideas for the general case.

Considering for instance the product G(r1, r2)G
∗(r′1, r

′
2), the effect of the disorder poten-

tial can be taken into account perturbatively for each realization of the disorder in the same

way as before by Eqs. (3.5)–(3.6). Using the same kind of argument, one can therefore write

the disorder average as a double sum over the averaged contributions from trajectories t and

t′

〈GE G∗
E〉 =

∑

t

∑

t′
〈GE,t G∗

E,t′〉 =
∑

t

∑

t′
Gc

E,t Gc∗
E,t′〈e(i/h̄)(δSt−δS

t′
)〉 (3.17)

=
∑

t

∑

t′
Gc

E,t Gc∗
E,t′ exp

[

−〈(δSt − δSt′)
2〉

2h̄2

]

.

It is necessary here however to take into account the correlation of the disorder potential

between points on trajectories t and t′. One limiting case for instance would be that t and

t′ are either the same trajectory or the time reversal one of each other. In these cases their

contribution acquires exactly the same phase shift and 〈GE,t G∗
E,t〉 = |Gc

E,t|2. Within our

approximation the diagonal contributions t = t′, which e.g. are responsible for the classical

part of the conductivity, remain thus disorder–unaffected, since we assume the trajectories
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have a length much smaller than lT . (A semiclassical consideration of these effects for

trajectories of length of the order of lT or larger was performed in Ref.25 for the bulk, giving

a damping of the two–point Green function on the scale of lT .) At the opposite extreme,

if trajectories t, t′ are completely uncorrelated, i.e., for long trajectories in classical chaotic

systems or trajectories in integrable systems with a spatial distance larger than ξ, the average

in Eq. (3.17) factorizes: 〈GE,t G∗
E,t′〉 = 〈GE,t〉 · 〈G∗

E,t′〉 and lead to single–particle damping

behavior.

The double sum Eq. (3.17) may however involve pairs of trajectories which stay within a

distance of the order of ξ (as for nearby paths on a torus of an integrable system). In this case

the behavior of 〈GE,t G∗
E,t′〉 is more complicated and depends of the confinement geometry

of the system under consideration. As a simple illustration of the interplay between disorder

correlation and families of orbits, let us consider for the case of the bulk the product of

G(r1, r2) joining r1 = (0, 0) to r2 = (L, 0) with G∗(r′1, r
′
2) joining r1 = (0, y) to r2 = (L, y),

with L ≫ ξ but y possibly of the order of ξ. Introducing the function

K(y) =
∫ +∞

−∞
C(x, y) dx (3.18)

(for Gaussian correlations Eq. (3.2), K(y)/K(0) = exp(−y2/(4ξ2))), the variance of the

de-phasing is obtained as

〈(δSt − δSt′)
2〉 = 2L

(K(0) − K(y))

v2
F

(3.19)

and therefore 〈GE G∗
E〉 = Gc

E Gc∗
E f̃(y) with

f̃(y) = exp

[

−L

le

(

1 − K(y)

K(0)

)]

. (3.20)

The function f̃(y) expresses in a very simple way that as y → 0, the effect of disorder

disappears (f̃(0) = 1) while for y ≫ ξ the function f̃(y) behaves as the square of single

particle Green function damping.
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IV. FIXED–SIZE IMPURITY AVERAGE OF THE MAGNETIC

SUSCEPTIBILITY

We consider here a disorder average (which will henceforth be called a fixed–size impu-

rity average) of an ensemble of structures for which the parameters of the corresponding

clean system (geometry, size, chemical potential) remain fixed under the change of impurity

realizations. In Section V, we will then treat the more realistic case of the orbital magnetic

response of a combined energy (or size) and disorder average.

As shown in the previous section, averages over weak disorder exponentially damp, but

do not completely suppress oscillatory contributions (with phase kFLt) to the single–particle

Green function from geometrical paths in confined systems. An observable quantity depen-

dent on these contributions is the disorder averaged susceptibility of an ensemble of billiards

of the same size or same clean–system Fermi energy, which will be studied first.

We will treat regular billiards at zero or small magnetic fields, where the integrability is

approximately maintained and the density of states has the H–dependence of the formulae

(2.14)–(2.16). The general result for χ(1), Eq. (2.17), formally persists with the replacement

of CM by

〈CM(H)〉 =
1

2π

∫ 2π

0
dΘ1 cos

[

2π
HAM(Θ1)

Φ0

]

exp

[

−〈(δSM(Θ1))
2〉

2h̄2

]

, (4.1)

where 〈δS2
M(Θ1)〉 is given by Eq. (3.9) with the integrals performed along the orbits of the

family M parameterized by Θ1. In the finite range case (if all orbits of a family M are of

the same length as in billiards) each family exhibits a unique disorder damping giving a

contribution

〈χ(1)
M 〉 = χ

(1)
M · exp

(

−〈δS2
M〉

2h̄2

)

(4.2)

to the ballistic susceptibility. χ
(1)
M

is the contribution of family M to the clean susceptibility

(Eq. (2.17)) and 〈δS2
M〉/2h̄2 = LM/2l.

In the case of square billiards, where the dominant contribution stems from the family

(1,1), we obtain, in analogy with Eq. (2.21),
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〈χ〉
χ0

≃ 〈χ(1)〉
χ0

=
∫ a

0

dx0

a
A2(x0) cos(ϕA(x0))

〈

sin

(

kFL11 +
π

4
+

δS(x0)

h̄

)〉

(4.3)

with χ0 given by Eq. (2.22). For a square billiard δS(x0) is independent of x0 for the finite–

as well as for the long–range regime since I11 = a2/12 (entering into Eq. (3.16)) is the same

for all orbits (11). Therefore Eq. (4.2) with M = (1, 1) holds for both limiting cases. In the

same way as for the damping of the one–particle Green function (Eq. (3.15)) we obtain for

square billiards at finite temperature in the finite range regime

〈χ〉 ≃ 〈χ(1)〉 = χ
(1)
cl · exp

(

−L11

2l

)

, (4.4)

where χ
(1)
cl denotes the susceptibility of the system without disorder.

In order to control the validity of our analytical semiclassical approximations we

performed numerical quantum calculations by diagonalizing the Hamiltonian for non–

interacting particles in a square billiard subject to a uniform perpendicular magnetic field

and a random disorder potential of the form of Eq. (3.3). For a given selected correlation

length ξ and quantum mechanically calculated elastic MFP lqm and fixed Fermi momen-

tum kF the product of the mean number of impurities per area and squared mean impurity

potential, niu
2, is determined by Eqs. (A3,A4). We found that our numerical results are

essentially independent of the choice of ni (with u2 adjusted accordingly) for ni ≥ 200 and

used this value for the calculations presented here. The positions Rj of the impurities were

chosen as independently distributed and for the uj we used a box distribution.

Each impurity configuration α has a self–averaging effect for an individual square billiard

(for ξ < a) due to the differences of the impurity potential Vα(r) across the structure. In

an average over an ensemble of square billiards, differences in the mean impurity potential

Vα = (1/a2)
∫

dr Vα(r) (the integral is taken over the area of the billiard) between different

squares lead to an additional damping. It is characterized by the variance

〈V 2〉 =
u2ni

a2η2

[

η erf(η) +
1√
π

(

e−η2 − 1
)

]2

; η =
a

2ξ
(4.5)

−→ u2ni

4πξ2
for ξ/a −→ ∞ (4.6)
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−→ u2ni

a2
for ξ −→ 0 (4.7)

In the limit of ξ ≫ a our numerical calculations showed that the self–averaging effect is

negligible (since the impurity potential is essentially flat across the square) and the clean

susceptibility of an individual structure remains practically unaffected by disorder. In this

limit variations in the mean potential V of an ensemble (Eq. (4.6)) dominate the damping.

In the limit of white noise disorder, fluctuations in the mean V of different samples play a

minor role and self–averaging is the predominant process for an integrable system: In semi-

classical terms different trajectories of a family of closed orbits are perturbed by white noise

disorder in an uncorrelated manner. Therefore we do not observe considerable differences

between the susceptibility of a single disordered billiard of integrable geometry and the

corresponding ensemble for ξ ≪ a. In a chaotic billiard this self–averaging effect does not

exist (for not too small ξ, see end of Sec. V)), since orbits are isolated. Therefore distinct

differences between an individual disordered sample and an ensemble of disordered billiards

are expected.

To improve the statistics of our numerical ensemble average for square billiards we per-

formed an average over disorder configurations with the same mean V and in addition

averaged over V according to Eq. (4.5)29. Fig. 2 shows results of the numerical quantum

simulations for the average susceptibility 〈χ〉 of an ensemble of squares with fixed size but

different disorder realizations at a temperature kBT = 3gs∆, where ∆ is the mean level

spacing. The characteristic oscillations in kFa show an interchange between para– and dia-

magnetic behavior on a scale kFL11. This indicates that they are dominated by contributions

from the shortest flux–enclosing orbits of the family (1,1) (according to Eqs. (2.17,4.3)), as

has been already shown for the clean case in Refs.5,6. Fig. 2 demonstrates the damping of

the clean susceptibility (dotted line) with decreasing elastic MFP l/a = 4, 2, 1, 0.5 for fixed

ξ/a = 0.1 (which represents a typical disorder correlation length in experimental realiza-

tions). Variations in the mean V lead to a de-phasing of the oscillations in the finite range

case on a scale (δk)a ∼ (4π)1/4
√

ξ/lqm(ξ) which is, as discussed above, small compared to
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the self–averaging effect in this regime.

Fig. 3 depicts the quantitative comparison between numerical and analytical results:

It shows the logarithm of 〈χ〉 normalized to the corresponding zero–disorder susceptibility

as a function of the inverse MFP for different correlation lengths ξ. The semi-classically

predicted exponential damping (Eq. (4.2)) is shown as straight lines for the short range

(ξ ≪ a, Eq. (3.11), full line for ξ = 0) and long range (ξ > a, Eq. (3.16), dotted lines

for ξ/a =4,2,1 from the top). The semiclassical predictions accurately agree with the cor-

responding quantum results (symbols) for ξ/a = 4, 2, 1, 0 and fail for intermediate values

ξ/a = 0.5, 0.2 (squares and diamonds) which are off the range of validity of the approxi-

mations. The transition from self–averaging dominated (ξ → 0) suppression to damping

according to fluctuations in the floor V (for ξ/a → ∞) turns out to be non–monotonic.

V. COMBINED IMPURITY– AND ENERGY–AVERAGE OF THE

SUSCEPTIBILITY

In currently experimentally realizable structures disorder averages cannot be performed

independently from size–averages since the detailed features of the confining potential do not

remain unchanged for different impurity configurations. From the basic expressions (2.21)

and (4.3) for the susceptibility we see that changes in size a give rise to rapid variations in the

phase kFa (on a quantum scale) and a much slower secular variation through the geometrical

factors A. Thus, the effect of small size variations is equivalent to an energy (kF ) average.

As discussed in Sec. II for the clean case, variations in kF lead to vanishing χ(1). Therefore

we have to use the typical and energy averaged susceptibilities (see Eqs. (2.19) and (2.20)

for their definition in the clean case). When disorder is introduced we must consider energy–

and disorder averages. The typical susceptibility is now defined by χ(t) = 〈χ2〉1/2. It applies

to the case of repeated measurements on a given microstructure when different impurity

realizations (and simultaneous changes in kF ) are obtained by some kind of perturbation

(e.g. cycling to room temperature). From now on we will reserve the term χ
(t)
cl for the clean
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typical susceptibility (χ2)1/2. The energy and impurity averaged susceptibility 〈χ〉 describes

the magnetic response of an ensemble of a large number of microstructures with different

impurity realizations and variations in size. This is the situation of the experiment of Ref.21

that we discuss in the sequel.

A. Integrable systems: The square billiard

The semiclassical results for χ(t) and 〈χ〉 for a system of integrable geometry are obtained

in an analogous way as we proceeded for 〈χ〉 in Section IV, that is by including in the integral

(2.16) for CM a Θ1–dependent disorder–induced phase exp(iδS(Θ1)/h̄) (see Eq. (4.1)). How-

ever, now we have to take the square of CM (respectively ∂2CM/∂H2) before the impurity

average and cross correlations between different paths Θ and Θ′ on a torus M or between

different tori have to be considered. We discuss this effect, typical of integrable systems, for

the case of a square billiard. For sake of clarity we moreover assume a temperature range

such that only the contribution of the shortest closed orbit has to be taken into account.

Instead of Eq. (2.23) and (2.24) which hold for the clean case, the contribution of orbits of

topology M = (1, 1) for the typical susceptibility now reads:

(

χ(t)

χ0

)2

=
1

2

∫ a

0

dx0

a

∫ a

0

dx′
0

a
A2(x0)A2(x′

0) cos (ϕA(x0)) cos (ϕA(x′
0)) f(x0, x

′
0) , (5.1)

with χ0 defined as in Eq. (2.22). The function

f(x0, x
′
0) =

〈

exp
{

i

h̄
(δS(x0) − δS(x′

0))
}〉

(5.2)

= exp
{

− 1

2h̄2

[

〈δS2(x0)〉 + 〈δS2(x′
0)〉 − 2〈δS(x0)δS(x′

0)〉
]

}

(5.3)

accounts for the effect of disorder on pairs of orbits x0 and x′
0. See Eq. (3.20) for the

treatment in the general case. For the magnetic response of an energy– and disorder–

averaged ensemble we find correspondingly:

〈χ〉
χ0

=
1

2

∫ a

0

dx0

a

∫ a

0

dx′
0

a

[

A2
− cos(ϕA−) + A2

+ cos(ϕA+)
]

f(x0, x
′
0) (5.4)

with χ0 defined in Eq. (2.25) and A± as in Eq. (2.24).
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1. Short range case

We begin with the discussion of the short range case: Although we reach the border

of applicability of our semiclassical approximation for ξ −→ 0, it shows us that in this

limit orbits with x0 6= x′
0 are disorder–uncorrelated and all such pair contributions are

exponentially damped. Using exclusively the family (1,1), one obtains an overall suppression

of the typical and average susceptibility at finite temperature according to

lim
ξ→0

χ(t) = χ
(t)
cl e−L11/2lδ (5.5)

lim
ξ→0

〈χ〉 = χ e−L11/lδ . (5.6)

Note that the exponent for 〈χ〉 differs by a factor 1/2 from that for 〈χ〉 (see Eq. (4.2) and

subsequent text).

Fig. 4 depicts the kFa dependence of the ensemble averaged susceptibility 〈χ〉 in the

short range case ξ = 0. The dotted curves showing the semiclassical analytical formula (5.6)

are compared with a direct quantum mechanical calculation of 〈χ(2)〉 (using the numerically

obtained Nosc(µ̄) in Eq. (2.9c)) for disorder ensembles of different impurity strength equiv-

alent to an elastic MFP lδ/a = ∞, 8, 4, 2 and 1 at kFa ∼ 65 (from the top). Note, that the

effective MFP decreases along the curves with decreasing kF (see Eq. (A4)) and the localized

regime may eventually be reached for small kFa. At the limit of the ballistic regime at small

l ∼ a the semiclassical result begins to differ from the quantum one although the functional

behavior remains the same. This arising difference may be related to non–ballistic scattering

from impurities which is not included here.

2. Finite range case

In the finite range λF < ξ ≪ a, the phase shifts δS(x0) and δS(x′
0) in f(x0, x

′
0) are

accumulated in a correlated way, if the spatial distance of two orbits x0 and x′
0 is smaller

than ξ. To evaluate the product term 2〈δS(x0)δS(x′
0)〉 in the exponent of f(x0, x

′
0) in this

regime the integrations are performed as in Eq. (3.9) but with q and q′ running along
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paths starting at x0, respectively x′
0. Ignoring the additional correlations occuring near the

bounces off the boundaries of the billiard, the trajectories x0 and x′
0 (see Fig. 1) can be

regarded as straight lines remaining at a constant distance y = |x0 − x′
0|/

√
2 from another.

We can therefore approximate f(x0, x
′
0) by f̃(|x0 − x′

0|/
√

2) with the function f̃ given by

Eq. (3.20). For Gaussian correlation we thus have

f(x0, x
′
0) = exp

{

−L11

l

[

1 − exp

(

−(x0 − x′
0)

2

8ξ2

)]}

. (5.7)

Orbits separated by |x0 − x′
0| ≫ ξ are disorder–uncorrelated and exponentially suppressed:

f(x0, x
′
0) ≃ exp(−L11/l). For those orbits the individual random disorder leads to an uncor-

related detuning of the phases. In contrast to that, disorder only weakly affects trajectories

separated by |x0 − x′
0| < ξ.

The disorder averages in the finite range regime lead, by means of the function f , to a

non–exponential damping of the susceptibilities for systems with families of periodic orbits.

This behavior becomes obvious for the case of square billiards where at H = 0 the integrals

(5.1) and (5.4) can be evaluated analytically in the limits of L11 ≪ l (extreme ballistic) and

L11 ≫ l (deep ballistic). We find for the typical and average susceptibility at H = 0 in the

finite range case for L11 ≪ l

(

χ(t)

χ
(t)
cl

)2

≃ 1 − L11

l

(

1 − ct
ξ

a

)

, (5.8a)

〈χ〉
χ

≃ 1 − L11

l

(

1 − ca
ξ

a

)

, (5.8b)

and for L11 ≫ l (by steepest descent):

(

χ(t)

χ
(t)
cl

)2

≃ ct

(

ξ

a

) (

l

L11

)1/2

, (5.9a)

〈χ〉
χ

≃ ca

(

ξ

a

) (

l

L11

)1/2

. (5.9b)

The constants in the above equations are ct = (20/7)
√

2π and ca = 2
√

2π. Eqs. (5.8) express

the limit of very weak disorder, showing that the small disorder effect is further reduced
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due to the correlation of the disorder potential. The other limit, Eqs. (5.9), is noticeably

more interesting since it shows that disorder correlation effects lead to a replacement of the

exponential disorder damping by a power law.

Fig. 5 depicts in logarithmic representation our collected results for the disorder averaged

typical (a) and averaged (b) susceptibility for square billiards (at H = 0 and kBT = 2gs∆) as

a function of the inverse elastic MFP for different disorder correlation lengths. The symbols

denote results from numerical quantum simulations described in the previous section and the

full curves semiclassical results from numerical integration of the Eqs. (5.1) and (5.4). For

the short range case ξ = 0 they reduce to Eq. (5.6) predicting an exponential decrease with

exponent L11/l which is in line with the quantum calculations (circles). The semiclassical

results for the finite range are on the whole in agreement with the numerical results for

ξ/a = 0.1 (diamonds), ξ/a = 0.2 (triangles) and ξ/a = 0.5 (squares). The semiclassical

curves seem to overestimate the damping of the typical susceptibility. The dotted curves

(shown for a/l ≥ 1) depict the analytical expressions (5.9) in the regime L11 > l. Since

for finite ξ the transport MFP lT > l (see Eq. (A6)), this regime can still be considered as

(deep) ballistic and our semiclassical assumptions being based on straight–line trajectories

remain valid.

As the semiclassical formulae already indicate, the overall disorder behavior of 〈χ〉 and

χ(t) is quite similar.

3. Long range case

For completeness, we will consider the effect of the disorder for the long range regime:

We can use the Eqs. (5.1) and (5.4) but cannot calculate the disorder function f(x0, x
′
0)

in the same way as for the finite range. We can however, similar as for 〈χ〉 in Section IV,

expand the exponent −〈(δS(x0) − δS(x′
0))

2〉 of f(x0, x
′
0) in Eq. (5.2) for small a/ξ. In the

case of the square all orders up to (a/ξ)8 vanish and we find a very small overall reduction

of the clean averaged susceptibilities (from family (11)) given by
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(

χ(t)

χ
(t)
cl

)2

≃ 1 − 6.5 · 10−5 a

l

(

a

ξ

)9

. (5.10)

For square billiards this leading order contribution does not depend any longer on x0. The

energy– and disorder–average 〈χ〉 exhibits the same damping as (χ(t))2. Note that besides

the high order in (a/ξ) the prefactor is rather small. This weak suppression of the averaged

susceptibilities can be related to the fact that in the long range case, different sectors of

the contributing periodic orbits are highly correlated. As visible in Fig. 5(a), the quantum

mechanical results (squares) for χ(t) at ξ/a = 0.5, which are closest to the long range case,

exhibit already a very weak damping.

B. Disorder effects at finite H–field: from integrable to chaotic behavior

In Fig. 6 we compare the ratio (χ(t)/χ0)2 (obtained from calculating the integral in

Eq. (5.1)) as a function of the dimensionless flux ϕ = Ha2/Φ0 for the clean case and for

disorder characterized by l = a and ξ = 0.1. This figure shows that the damping due to

disorder is maximal at zero field, but that already for ϕ = 5 the disorder seems not to affect

the magnetic response any further.

The origin of this behavior can be understood readily by observing that as soon as ϕ

is larger than one, the integral Eq. (5.1) is correctly approximated by a stationary phase

approximation5. The stationary point xs
0 = a/2 corresponds to the two periodic orbits of

the perturbed system, and only the trajectories such that

(x0 − xs
0)

2ϕ < 1 (5.11)

actually contribute to the integral. The magnetic field causes a de-phasing of the con-

tributions of the various trajectories of the family, thus breaking the integrability of the

system. This effect is responsible for the overall decrease of the typical susceptibility as

the field increases. In this respect clean and disordered square billiards are not equivalent.

In the disordered case, trajectories separated by a distance larger than ξ are already not

contributing in phase. Therefore the additional magnetic field affects the magnitude of the
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susceptibility much less. This remains true up to the point where the condition (5.11) im-

plies |x0 − xs
0| < ξ in which case the disorder is not effective anymore, and the two curves

coincide.

Therefore the behavior of the disorder damping we discussed in the previous subsection

is characteristic for integrable geometries. For chaotic systems diagonal contributions (pair

products of the same periodic orbit) are barely affected by disorder. This behavior is similar

to that of an integrable systems at finite field. When evaluating the contribution to the trace

of the Green function in the neighborhood of a periodic orbit by stationary phase approx-

imation, (as for the derivation of the Gutzwiller trace formula) only orbits extremely close

to the periodic orbit under consideration actually contribute. Unless ξ is taken exceedingly

small, all these trajectories will see the same disorder potential.

As a final remark, note that non–diagonal contributions (pairs of different paths) are fully

damped upon impurity average for chaotic as well as integrable systems, since the disorder

potential along two different trajectories is usually not correlated (see also the discussion

of the averaged Green function product after Eq. (3.17)). Therefore non–diagonal contri-

butions, which might be necessary to be considered in the clean case30, are exponentially

suppressed in the presence of disorder. On the contrary, diagonal terms which contain orbit

correlations on distances ξ, exhibit non–exponential behavior (Eq. (5.7)) as a function of the

inverse MFP 1/l for integrable geometries and are not affected (within our approximations)

by disorder in the chaotic case.

C. Relation to experiment and other theories

Measurements of the orbital magnetism of small microstructures are still rare today. The

only experiment on ensembles of ballistic billiards that we are aware of, was performed by

Lévy et al.21 and investigated the magnetic susceptibility of an array of about 105 ballistic

square-like cavities. The size of the squares is on average a = 4.5µm, with a large dispersion

(estimated between 10 and 30%) along the array. Each individual square is a mesoscopic
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ballistic system since the phase-coherence length is estimated to be LΦ = 15–40 µm and the

elastic mean-free-path l = 4.5–10 µm. The potential correlation length can be estimated24

to be of the order of ξ/a ≃ 0.1. Taking the most unfavourable case of l ≃ a ≃ 4.5µm we

obtain, with respect to the clean case, a disorder reduction for the averaged susceptibility of

〈χ〉/χ ≃ 0.37, showing that the features of the clean integrable systems (strong paramagnetic

susceptibility at H = 0) persist upon inclusion of disorder. Since χ ≃ 100 χL

5–7, our

calculations for the paramagnetic response of the ballistic squares agree quantitatively with

the experimental findings (given the experimental uncertainties).

Persistent currents in individual quasi-ballistic rings have recently been measured31. A

similar setup would be needed for measuring the magnetic response of singly connected

geometries, where our typical susceptibility (5.1) should be measured for the integrable

case. Since modern lithographic techniques allow to design chaotic as well as integrable

cavities2,3 and since we have demonstrated that disorder does not mask this difference, an

order-of-magnitude effect is expected in the susceptibility according to the shape (chaotic

vs. integrable) of the cavity.

In a related theoretical work Gefen et al.32 followed a complementary approach to ours

and calculated the disorder–averaged susceptibility for an ensemble of ballistic squares based

on long trajectories [strongly] affected by scattering from δ–like impurities. They found that

the average susceptibility does not depend on the elastic MFP. These results are not borne

out by either our analytical or our semiclassical calculations at temperatures relevant for the

experiment, where the exponential damping from Eq. (2.18) makes very long trajectories

irrelevant.

VI. SUMMARY

In this work we have studied the interplay between integrability and disorder in the

ballistic regime. The integrable property of the confining potential of a microstructure

implies a peculiar behavior of its thermodynamical response functions, like the magnetic
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susceptibility. The disorder effects provided by remote impurity scattering tend to weaken

the importance of the boundary scattering (and therefore the relevance of the underlying

classical mechanics). Using a semiclassical approach we quantify this damping and show it

to be much weaker than previously estimated (power-law suppression instead of exponential

damping for the typical and average susceptibility). The disorder damping is decisively

affected by finite–size effects since it depends not only on bulk-like characteristics of the

disorder (like the elastic mean-free-path), but also on the ratio between the size of the

structure and the correlation length of the potential.

Our finding for the weak disorder damping is particularly important due to the large

phase coherence effects found for clean integrable structures and to the fact that the dif-

ference in the magnetic response between integrable and chaotic geometries has not been

experimentally demonstrated yet.

Our calculational tools have been semiclassical expansions, which naturally convey at the

quantum level the information about the underlying classical mechanics and its sensitivity

with respect to disorder. For the weak disorder that we have considered in this work, the

lowest order approximation consists of the perturbative modification of the classical actions

by the impurity potential. Averages over impurity configurations following our semiclassical

calculations, allow us to obtain various ensemble susceptibilities. Our analytical calculations

have been checked against numerical quantum simulations performing exact diagonalizations

of the corresponding Hamiltonian.

The need to consider different averages is inherent to ballistic nanostructures, which

are sufficiently small to be non-self-averaging. These various types of impurity-averaged

susceptibilities for integrable systems are summarized in Table I for the three regimes defined

by the correlation length of the impurity potential. We have first studied the fixed–size

averaged susceptibility, directly obtainable from the disorder average of one-particle Green

functions. It corresponds to the case where different impurity configurations of a given

sample with a fixed Fermi energy are considered. For the short range regime, where the

disorder correlation length ξ < λF , we have an exponential suppression of the clean results
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governed by the short-range elastic mean-free-path lδ and the length of the most relevant

trajectories. This result also holds in the finite-range (λF < ξ ≪ a), but with an elastic

mean-free-path that we have evaluated semi-classically. In the long-range regime (ξ > a) the

fixed–size averaged susceptibility depends exponentially on the product (L/l) · (L/ξ) (where

L denotes the typical orbit length) and a correction taking into account the geometry of the

periodic trajectories.

For comparison with actual experiments we have to take into account that different

impurity realizations are obtained together with a change in the Fermi energy and the size

of the structures. We are then lead to consider impurity and size averaged susceptibilities,

which are expressed in terms of two-particle Green functions. The typical susceptibility

is appropriate when considering the magnetic response of an individual sample which is

thermally cycled in order to obtain different realizations of the potential. The average

susceptibility is obtained from the measurement of an array of microscopically different

samples. For the short-range case the only difference between one– and two-point Green

function quantities is the factor 1/2 of the exponential damping of the former. In the

finite-range regime there appear important differences when considering two-point Green

function quantities with respect to the one-particle case. Closed trajectories that remain

closer than the correlation length of the potential result in a weak damping with a power-

law dependence on l/L and ξ/a. This is the experimentally relevant situation, and the use

of standard parameters lead us to conclude that disorder damping in currently realizable

microstructures is sufficiently weak in order not to mask the large effects due to integrability.

In the long-range case the damping due to disorder is extremely small.

We have further considered the interplay between disorder and magnetic field in in-

tegrable geometries. It is interesting to notice that both have a similar effect since they

produce de-phasing between nearby trajectories. Since the two sources of de-phasing do not

superpose, we find that disorder is less effective at finite fields, and reciprocally, disordered

samples are less sensitive to magnetic field.

In chaotic geometries periodic trajectories are usually isolated, resulting in smaller os-
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cillations of the density of states and a much smaller magnetic response than integrable

systems. Introduction of disorder in chaotic geometries is therefore less dramatic than in

integrable systems, since it merely changes the action of the relevant periodic trajectories

instead of producing de-phasing within a family. The transition from the ballistic regime

(where classical trajectories are essentially unaffected by disorder) to the diffusive regime

will be considered in a subsequent publication.

In this work we have started from a system that is physically realizable using modern

technology and we have developed a theoretical model with some key ingredients involving

integrability and disorder. These are deep theoretical issues that need to be complemented by

the consideration of other effects, like interactions, in order to obtain a complete description

of the thermodynamics of mesoscopic systems.
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APPENDIX A: RELATION BETWEEN SEMICLASSICAL AND QUANTUM

MECHANICAL RESULTS FOR BULK MEAN FREE PATHS

It is instructive to compare the semiclassical results of Eqs. (3.12)–(3.14) for the ballistic

regime with their counterparts obtained from quantum mechanical scattering theory.

In a perturbative diagrammatic approach (treating the related Dyson–equation for scat-

tering within a self–consistent Born approximation) the damping of the disorder–averaged

one–particle Green function in a random potential is of the same exponential form as in

Eq. (3.11)9. This is usually obtained by replacing the imaginary part of the self-energy in

the Green function after impurity average by the density of states of the unperturbed system.
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The resulting quantum mechanical inverse elastic MFP lqm, which appears in Eq. (3.11), is

related to the total cross section σ by means of

1

lqm
= niσ , (A1)

where ni is the impurity density and

σ =
∫

dΘ σ(Θ) (A2)

with σ(Θ) being the partial cross section for scattering with an angle Θ.

For a Gaussian disorder potential of the form of Eq. (3.3) a calculation of the cross

section can be performed analytically and the corresponding inverse MFP gives

1

lqm
=

1

lδ
I0[2(kξ)2] e−2(kξ)2 . (A3)

Here, I0 is a modified Bessel function and

1

lδ
=

2π

h̄

niu
2

vF
d(µ) =

niu
2

vF

m

h̄3 (A4)

is the inverse MFP for the white noise case of δ–like scatterers of mean strength u. The vF

is the Fermi velocity and d(µ) = m/(2πh̄2) the density of states at the Fermi energy of a

2DEG9.

In order to compare lqm with our semiclassical result we expand lqm(kξ) for large kξ

which gives

lqm(kξ) ≃
√

4π (kξ) lδ

[

1 − 1

16(kξ)2

]

for kξ −→ ∞ . (A5)

The leading order term is exactly the semiclassical MFP Eq. (3.12) for the Gaussian disorder

model (3.3). The agreement between the semiclassical and diagrammatic approaches for the

bulk can be related to the fact that our semiclassical treatment of disorder corresponds to

the use of the Eikonal approximation (for each single scattering event) which is known to

give the same results as Born approximation for large kξ.
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In the limit of ξ < λF where our semiclassical description is no longer applicable, the

mean free path lqm approaches lδ, which means that Eq. (3.11) can further be used, but with

the semiclassical l replaced by lδ.

The quantum mechanical transport mean free path lT is calculated by including a factor

(1− cos Θ) in the integral (A2) for the scattering amplitude. It reads for Gaussian disorder

1

lT
=

1

lδ
(I0[2(kξ)2] − I1[2(kξ)2]) e−2(kξ)2 (A6)

≃ 1

lqm

1

4(kξ)2
. for kξ −→ ∞ . (A7)

This relation shows that lT can be considerably larger than lqm for λF < ξ. This shows that

in the case of a confined system and smooth disorder, the system may behave ballistically

although the elastic MFP l might be considerably smaller than the system size.
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1 H.U. Baranger, R.A. Jalabert, and A.D. Stone, Chaos, 3, 665 (1993).

2 C.M. Marcus, R.M Westervelt, P.F. Hopkings, and A.C. Gossard, Chaos, 3, 643 (1993).

3 A. M. Chang, H.U. Baranger, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 73, 2111

(1994).

4 M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer–Verlag, Berlin,

1990).

5 D. Ullmo, K. Richter, and R.A. Jalabert, Phys. Rev. Lett. 74, 383 (1995).

6 K. Richter, D. Ullmo, and R.A. Jalabert, Phys. Rep., in print (1996).

7 F. von Oppen, Phys. Rev. B 50, 17151 (1994).

8 S. Das Sarma and F. Stern, Phys. Rev. B 32, 8442 (1988).

9 A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory

in Statistical Physics (Prentice-Hall, Englewood Cliffs, 1963).

10 K. Efetov, Adv. Phys. 32, 53 (1983).

11 H.U. Baranger and P. Mello, Phys. Rev. Lett. 73, 142 (1994).

12 R.A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett. 27, 255 (1994).

13 Z. Pluhar̆, H. A. Weidenmüller, J. A. Zuk, and C. H. Lewenkopf, Phys. Rev. Lett. 73,

2115 (1994).

14 K. Efetov Phys. Rev. Lett. 74, 2299 (1995).

15 B. L. Altshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz., 91, 220 (1986) [Sov. Phys. JETP,

64, 127 (1986)].

34



16 K. Richter, D. Ullmo, and R.A. Jalabert, Phys. Rev. B, in print (1996).

17 A. Schmid, Phys. Rev. Lett. 66, 80 (1991); F. von Oppen and E.K. Riedel, ibid 84;

B.L. Altshuler, Y. Gefen, and Y. Imry, ibid 88.

18 Y. Imry, in Coherence Effects in Condensed Matter Systems, ed. by B. Kramer (Plenum,

New York, 1991).

19 M.V. Berry, M. Tabor, Proc. R. Soc. Lond. A. 349, 101 (1976).

20 A.M. Ozorio de Almeida in: “Quantum Chaos and Statistical Nuclear Physics”, T.H. Selig-

man and H. Nishioka, Lecture Notes in Physics 263, (Springer, Berlin 1986).
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FIGURES

FIG. 1. Two representative periodic orbits characterized by x0 and x′
0 belonging to the family

M = (1,1) (denoting, respectively, one bounce with each wall) of a square billiard of length a.

FIG. 2. Magnetic susceptibility 〈χ〉 (normalized with respect to the Landau susceptibility χL

of a square billiard as a function of kF a for the clean case (dotted) and for the ensemble average of

billiards of fixed size with increasing Gaussian disorder (ξ/a = 0.1) according to an elastic mean

free path l/a = 4, 2, 1, 0.5 (solid lines in the order of decreasing amplitude). The susceptibility is

calculated for zero magnetic field and at a temperature equal to 6 level spacings.

FIG. 3. Logarithm of the ratio 〈χ〉/χcl as a function of the inverse elastic MFP a/l. The

symbols indicate the numerical quantum results (from the top for ξ/a = 4, 2, 1, 0, 0.5 and 0.2. The

dotted lines show the semiclassical analytical results for ξ/a = 4, 2, 1 (from above) according to

Eq. (3.16). The full line is the semiclassical result for ξ = 0 (Eq. (3.11)). The quantum results

for ξ = 0.5 (squares) and 0.2 (diamonds) are beyond the regime of validity of the analytical limits

ξ/a ≫ 1 and ξ/a ≪ 1.

FIG. 4. Averaged magnetic susceptibility (at H ≈ 0 of an ensemble of square billiards with

variations in the size and impurity potential (ξ = 0) for different disorder strength, i.e. elastic

mean free path lδ. The full curves show the numerical quantum results and the dotted lines

the semiclassical predictions from Eq. (5.6) taking into account the variations of lδ with kF (see

Eq. (A4)). The two sets of curves correspond to an elastic MFP lδ/a = ∞, 8, 4, 2, 1 (at kF a = 65),

(from the top).

FIG. 5. Logarithm of the ratio between disorder averaged and clean results for (a) typical

χ(t) (b) ensemble averaged 〈χ〉 susceptibilities as a function of increasing inverse elastic MFP a/l

for different values of ξ/a. The symbols denote the numerical quantum results, the solid lines (for

ξ > 0) the semiclassical integrals (5.1) (a) and (5.4) (b) and the dashed lines asymptotic expansions

(5.9) of the integrals for large a/l.
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FIG. 6. Typical susceptibility as predicted by Eq. (5.1) as a function of the dimensionless flux

ϕ = Ha2/Φ0. Dash line: clean case; solid line: l = a and ξ = 0.1.
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TABLES

short-range finite-range long-range

〈χ〉/χcl exp (−L11/2lδ) exp (−L11/2l) exp
{

−d1(L
2/lξ)[1 − It/(2ξ

2)]
}

(χ(t)/χ
(t)
cl )2 exp (−L11/lδ) ct(ξ/a)(l/L11)

1/2 1 − d2a/l(a/ξ)9

〈χ̄〉/χ̄ exp (−L11/lδ) ca(ξ/a)(l/L11)
1/2 1 − d2a/l(a/ξ)9

TABLE I. Summary of the different average susceptibilities (at H = 0) considered in the

short-range (ξ < λF < a), finite-range (λF < ξ < a) and long-range (λF < a < ξ) regimes. The

fixed–size impurity averaged susceptibility 〈χ〉 is given by the one-particle Green function, while

the typical χ(t) and average 〈χ̄〉 susceptibilities are given by two-particle Green functions and

involve impurity and energy averages. The different average susceptibilities are normalized with

respect to the corresponding clean counterparts. L11 is the length of the shortest flux-enclosing

periodic trajectories in the square. In the short-range regime the damping is governed by the elastic

mean-free-path lδ given by the quantum mechanical expression (A4). The damping in the finite

and long–range regimes is governed by the elastic MFP l (whose semiclassical expression is given

in Eq. (3.14)), the correlation length ξ of the impurity potential and the size a of the structure.

It is the moment of inertia of the (11) trajectories (Eq. (3.16)). The finite–range expressions for

χ(t) and 〈χ〉 showing a power–law damping hold in the deep ballistic limit l < L11. The numerical

factors are ct = (20/7)
√

2π, ca = 2
√

2π, d1 = 1/4
√

π, and d2 = 6.5 · 10−5.
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