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Abstract

We consider a single particle spectrum as given by the eigenvalues of the

Wigner-Dyson ensembles of random matrices, and fill consecutive single par-

ticle levels with n fermions. Assuming that the fermions are non-interacting,

we show that the distribution of the total energy is Gaussian and its variance

grows as n2 log n in the large-n limit. Next to leading order corrections are

also computed. Some related quantities are discussed, in particular the near-

est neighbor spacing autocorrelation function. Canonical and grand canonical

approaches are considered and compared in detail. A semiclassical formula

describing, as a function of n, a non-universal behavior of the variance of the

total energy starting at a critical number of particles is also obtained. It is

illustrated with the particular case of single particle energies given by the

imaginary part of the zeros of the Riemann zeta function on the critical line.
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I. INTRODUCTION

Consider a system of n interacting fermions. The ground state total energy may often be
well approximated by macroscopic methods, a prototype of these being the Thomas-Fermi
approximation. Aside from the well-known expansion containing the volume energy, surface
energy, etc, these methods can be further improved by the inclusion of additional systematic
quantum effects, like for example shell effects related to some symmetries of the system (see
for instance [1]). Once all these contributions have been taken into account, one would like to
have some estimate of the remaining “irreducible” discrepancies between the calculated and
measured total energies due to non-systematic effects. These discrepancies may be viewed
as fluctuations observable as some parameters of the system are varied, like for example the
total number of particles or any other relevant external parameter.

On the other hand, it has been established that statistical properties of systems whose
classical analog is chaotic are well described by eigenvalues of ensembles of random matrices
(see for instance [3]). It seems therefore reasonable to suggest that an extreme estimate of
the above mentioned fluctuations may consist of modeling the single particle spectrum by the
spectrum of a random matrix of the Wigner-Dyson type. This may be a crude approximation
because the statistical properties of the low-lying energy levels of the single particle sequence
may not be well described by a random matrix approach. Another shortcoming of such a
model is connected to the fact that, for simplicity, we fix to a constant the average density
of single particle states, and ignore its variations with energy. In its simplest version, the
model may apply either when only properties around the Fermi level are considered or when
particles are enclosed in a 2-dimensional box. However, inclusion of a variation (increase) of
the density of single particle energies can be taken care of. This model may also be relevant
in studying the energy distribution of systems of interacting fermions trapped in a chaotic
enclosure, like for example the variations of the total energy of n electrons contained in a
quantum dot as the shape of the dot is varied by some external potential or the variation
produced when varying a magnetic field.

To be specific, consider an ordered sequence of energy levels x0 < x1 < . . . < xi < . . ..
Let s1, s2, s3, . . . be the distances between consecutive eigenvalues,

si = xi − xi−1 .

We assume that the sequence is stationary and we set the mean spacing D to one. We
are interested in the statistical properties of the “ground state” energy Xt of a system of
n non-interacting fermions resulting from adding the “single particle” energies xi of the
i = 1, 2, . . . , n occupied states

Xt(n) =
n
∑

i=1

(xi − x0) =
n
∑

i=1

(n − i + 1) si , (1.1)
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where x0 has been taken as the energy origin. Consider now an ensemble of single particle
spectra which for the moment we let unspecified. We expect under very general conditions
the probability distribution of Xt to be Gaussian in the large n limit. This, by the central
limit theorem, is obviously true for a set of uncorrelated levels. For (correlated) eigenvalues
of Gaussian ensembles of random matrices this has also shown to be true, in fact in a more
general context [4]. As a numerical illustration, Fig. 1 displays the probability distribution
of Xt for n = 300 computed for a Gaussian orthogonal ensemble of random matrices. Our
purpose is to derive expressions for the average and the variance of Xt, thereby specifying
completely the “ground-state” energy distribution.

The first physical situation we consider is when the number n of particles is fixed. This
case, which we call “canonical” by analogy to conventional statistical mechanics, is treated in
section II. From the mathematical point of view it is related to the autocorrelation function
of consecutive spacings, a poorly known quantity which is not a two-point measure. Another
possibility is to consider the typical fluctuations of the total energy of the occupied levels
contained in an energy interval of given length. In this case the number n of levels fluctuates
from sample to sample around its mean value. This alternative “grand canonical” problem
will be treated and compared to the canonical one in section III. The grand canonical case
has the advantage of being expressible in terms of the spectral two-point correlation function.
As expected we find that both approaches give the same asymptotic increase of the variance
of the total energy (proportional to n2 log n in the large-n limit).

The results of sections II and III correspond to the “universal regime” as given by ran-
dom matrix theory. In section IV we use standard semiclassical techniques to show that
generically for ballistic – as opposed to diffusive [5] – systems there is a saturation effect,
namely a crossover from the n2 log n to a n2 growth of the variance of the total energy as a
function of n. This new regime holds when the number of particles is larger than a system-
dependent critical value and is accompanied by non-universal oscillations around the mean
growth for which we give an explicit expression. To illustrate this point with a particular
example, we have considered the unphysical but interesting in its own and explicitly com-
putable case where the single particle energies are given by the imaginary part of the zeros
of the Riemann zeta function on the critical line. Section V summarizes the results and
gives some perspectives.

II. CANONICAL VARIANCE

Statistical averages over the ensemble are denoted by the symbol 〈.〉. The mean value
〈Xt〉 is

〈Xt〉 =
n
∑

i=1

(n − i + 1)〈si〉 =
n
∑

i=1

(n − i + 1) =
n(n + 1)

2
, (2.1)

where the mean level spacing has been set equal to one.
Let us now consider the variance of Xt defined, from Eq.(1.1), by

∆2(n) ≡ 〈X2
t 〉 − 〈Xt〉2 =

n
∑

i,j=1

(n − i + 1)(n − j + 1) 〈si sj〉 −
1

4
n2 (n + 1)2
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=
n
∑

i=1

(n − i + 1)2〈s2
i 〉 +

n
∑

i6=j=1

(n − i + 1)(n − j + 1)〈sisj〉 −
1

4
n2 (n + 1)2 .

The main quantity of interest in this expression is the autocorrelation function I(k) of
spacings of consecutive levels,

I(k) ≡ 〈sisi+k〉 k = 1, .., n − 1 .

The stationarity of the spectrum implies that I(k) depends only on the relative index k and
that 〈s2

i 〉 = 〈s2〉, for all i. Performing the sums over the index i

∆2(n) =
n(n + 1)(2n + 1)

6
〈s2〉 − 1

4
n2 (n + 1)2 +

1

3

n−1
∑

j=1

F (n, j) I(j), n ≥ 2 , (2.2)

where
F (n, j) ≡ j3 − (3n2 + 3n + 1)j + n (n + 1) (2n + 1) .

For n = 1 the variance takes the value ∆2(1) = 〈s2〉 − 1. All the non-trivial information is
contained in the autocorrelation of spacings; a detailed study of this function will be made
in the next subsection. The extreme case of a uniform uncorrelated sequence of levels is
particularly simple since I(j) = 1 for all j, and it follows from Eq.(2.2) that

∆2
u = (〈s2〉u − 1)

(

n3

3
+

n2

2
+

n

6

)

. (2.3)

When the nearest neighbor spacing distribution of the uncorrelated sequence is P (s) =
exp(−s) then 〈s2〉u in Eq.(2.3) is equal to 2.

A. The autocorrelation function of spacings I(j)

For Gaussian ensembles (GE) of random matrices, the quantities entering Eq.(2.2) can
be expressed as

〈s2〉 = 2
∫ ∞

0
E(0, s) ds ,

I(j) =
∫ ∞

0
E(j, s) ds, j ≥ 1, (2.4)

where E(j, s) is the probability that a randomly chosen interval of length s contains exactly
j eigenvalues [6]. The functions E(j, s) can be written in terms of an infinite product of
the eigenvalues of an integral equation involving spheroidal functions and only numerical
tables of these functions for low values of j and a limited range of s exist. Therefore the
integrals in (2.4) cannot be computed analytically and explicit expressions for the I(j) are
not available. Some numerical estimates of the integrals (2.4), to be used in what follows,
are [6]

〈s2〉 =











1.286, β = 1
1.180, β = 2
1.105, β = 4

(2.5)
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where β = 1, 2 and 4 denote the three types of GE, orthogonal (GOE), unitary (GUE) and
symplectic (GSE) respectively. Numerical estimates of I(j) exist for low values of j. For
instance, for j = 1 [6]

I(1) =











0.922, β = 1
0.944, β = 2
0.964, β = 4.

(2.6)

For our purpose the functions I(j) for arbitrary j are needed and the following ansatz

I(j) = 1 − η/j2 − λ/j4 − α/j6 (2.7)

will be made. The constants in Eq.(2.7) are, in principle, dependent on the symmetry class
of the GE considered (β = 1, 2, 4). Eq.(2.7) is one of the basic equations of this paper. The
simple functional dependence on j is consistent with the requirement that two sufficiently
far apart consecutive spacings should be uncorrelated. Moreover, general considerations
suggest that odd powers of j may be excluded. As we will now show, the three parameters
entering Eq.(2.7) may be uniquely determined by requiring the correct asymptotic behavior
of the fluctuations in the length of an interval containing a fixed number of levels.

Consider for that purpose the statistical fluctuations in the length S of a spacing made

of n consecutive nearest-neighbor spacings, S =
n
∑

i=1

si . The spacing variance σ2 of S can be

expressed in terms of the I(j) in the following manner

σ2(n) ≡ 〈S2〉 − 〈S〉2 = n
(

〈s2〉 − n
)

+ 2
n−1
∑

j=1

(n − j) I(j), n ≥ 2 , (2.8)

while σ2(1) ≡ 〈s2〉 − 1. We use a non-conventional but more natural notation, namely
σ2(n) denotes the variance of the distribution of the sum of n consecutive nearest neighbor
spacings (n = 1, 2, . . .). The conventional notation being σ2(n − 1), n = 1, 2, . . ..

Replacing the ansatz (2.7) in (2.8) we get

σ2(n) =
(

〈s2〉 − 1
)

n + 2 η [Ψ(n) + γ] + 2 η n
[

Ψ(1)(n) − ζ(2)
]

+ λ
[

Ψ(2)(n) + 2 ζ(3)
]

+ (n λ/3)
[

Ψ(3)(n) − 6 ζ(4)
]

+ (α/12)
[

Ψ(4)(n) + 24 ζ(5)
]

+ (n α/60)
[

Ψ(5)(n) − 120 ζ(6)
]

, (2.9)

where γ is the Euler constant, Ψ(n) = −γ +
n−1
∑

j=1

1

j
is the DiGamma function and Ψ(m)(z) =

dm

dz
Ψ(z) are the PolyGamma functions [7]. The large-n behavior of σ2(n) follows from the

asymptotics of the Ψ(m)’s [7]. Only Ψ and Ψ(1) will be needed, the other not contributing
at the order we are working

Ψ(n) = log n − 1

2n
− 1

12n2
+ O(1/n4) ,

Ψ(1)(n) =
1

n
+

1

2n2
+

1

6n3
+ O(1/n5) . (2.10)
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Then

σ2(n) = A n + 2 η log n + B + O(1/n2) , (2.11)

with

A ≡ 〈s2〉 − 1 − 2 η ζ(2) − 2 λ ζ(4) − 2 α ζ(6) ,

B ≡ 2 (γ + 1) η + 2 λ ζ(3) + 2 α ζ(5) .

Would one have retained a 1/j term in the ansatz, the leading order term would have been
of order n log n.

A different quantity, closely related to the spacing variance σ2(n), is the number variance
Σ2(L) defined as the variance of the number of levels contained in an interval of given length
L taken at random. This quantity is known analytically for the three Gaussian ensembles
and has in the large-L limit the asymptotic behavior [6]

Σ2(L) =
2

βπ2
log L + C + O(1/L) , (2.12)

where

C = 2/(βπ2){γ + log(2π) + 1 + β(β − 2)π2/8 + [log 2 − 7π2/8]δβ,4} . (2.13)

Consider now more carefully the relation between the spacing and the number variances.
The values that the number variance takes at integer values of its argument are, for large n,
related to the spacing variance through [8]

Σ2(L = n) − σ2(n) = 1/6 . (2.14)

This equation indicates that: (i) as expected from their definition, the leading order terms of
both quantities coincide and, (ii) the next-to-leading order terms differ by a constant (1/6),
irrespective of the symmetry class β.

Eq.(2.14) completely determines all the unknown coefficients in Eq.(2.7). In fact, con-
sistency with Eq.(2.14) imposes the following conditions in Eq.(2.11)

η =
1

βπ2
,

A = 0 , (2.15)

C − B = 1/6 .

The remaining free parameters λ and α are adjusted to satisfy the second and third condi-
tions

λ =
〈s2〉 − 1 − 2 η ζ(2)

2 ζ(4)
− ζ(6)

ζ(4)
α ,

α =
ζ(4)

2[ζ(3)ζ(6)− ζ(4)ζ(5)]

{

2 η (γ + 1) − C +
1

6
+

ζ(3)

ζ(4)

[

〈s2〉 − 1 − 2 η ζ(2)
]

}

. (2.16)
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Using Eq.(2.5) these two constants take the values λ = 0.02027, 0.03013, 0.00997 and
α = −0.04483, −0.02550, 4 × 10−5 for β = 1, 2 and 4, respectively.

In order to test the accuracy of Eq.(2.7) we have computed numerically the autocorrela-
tion function I(j) for orthogonal as well as unitary random matrices. As can be seen from
Fig. 2 the agreement between the ansatz and the numerical simulations for β = 2 is very
good. Because the overall agreement is of similar quality we do not show the analogous
curve for GOE. As an additional quantitative test let us mention that when expression (2.7)
is evaluated at j = 1 it reproduces the values in Eq.(2.6) with a 1 × 10−3 error for any β.
This is remarkable if one keeps in mind that only asymptotic information has been used
when determining the parameters in the ansatz (2.7).

In a previous study of the autocorrelation function of the spacings Odlyzko [9] has quoted
a conjecture proposed by Dyson: I(j) ≈ 1 − η/j2 (see also chapter 16 in [6]). This ansatz
coincides to lowest order with Eq.(2.7). Aside from considerations related to accuracy, let us
emphasize that the inclusion of a term of higher order (like 1/j4 or 1/j6) in (2.7) is essential
in order to obtain the correct asymptotic behavior for σ2(n) as well as, as we shall see later,
for ∆2(n). This is so because these higher order terms ensure the vanishing of the linear
term in Eq.(2.11).

Eq.(2.7) is consistent with known relationships satisfied by the autocorrelation function.
For example, the sum rule

2
∞
∑

j=1

[I(j) − 1] + σ2(1) = 0

valid for GE of random matrices [10] is equivalent to the condition A = 0 in Eq.(2.15) (i.e.,
the vanishing of the linear term of σ2(n) [11]).

B. Variance of the total energy

We have now the necessary ingredients to compute the variance of the total energy.
Replacing in Eq.(2.2) the ansatz (2.7) and using the definition of the DiGamma and
PolyGamma functions it follows that

∆2(n) =
n2

2

(

C − 7η

3
− 1

6

)

+
n

2

(

C − 5η

3
− 1

6

)

+
1

6

(

C − 2η − 2 γ λ − 2 α ζ(3) − 1

6

)

+Ψ(n)

[

η
(

n2 + n +
1

3

)

− λ

3

]

+ Ψ(1)(n) η

(

2n3

3
+ n2 +

n

3

)

+
1

2
Ψ(2)(n)

[

λ
(

n2 + n +
1

3

)

− α

3

]

+
1

6
Ψ(3)(n) λ

(

2n3

3
+ n2 +

n

3

)

+
1

24
Ψ(4)(n) α

(

n2 + n +
1

3

)

+
1

120
Ψ(5)(n) α

(

2n3

3
+ n2 +

n

3

)

for n ≥ 2. Using again the asymptotic expressions (2.10) for Ψ(n) and Ψ(1)(n), as well as
those of Ψ(2)(n) and Ψ(3)(n) [7] we finally get

∆2(n) = η n2 log n +
1

2

(

C − η − 1

6

)

n2 + η n log n +
1

2

(

C − 1

6

)

n

7



+
1

3
(η − λ) log n +

1

6

[

C +
(η − 1)

6
− 2

(

γ +
5

6

)

λ − 2 α ζ(3)

]

+ O(1/n) . (2.17)

Notice that, as it happened for σ2(n) with the terms of order n log n and n, the functional
form of the ansatz (2.7) together with the method by which the parameters η, α and λ have
been determined insure the vanishing of the terms of order n3 log n and n3 of the variance of
the total energy. That the remaining leading order behavior n2 log n in Eq.(2.17) is correct is
further confirmed by the fact that it coincides with the asymptotic result obtained from the
linear statistic theory (see section III). This behavior is in contrast with the faster growth
of order n3 of an uncorrelated spectrum (cf Eq.(2.3)). The difference is of course due to the
rigid nature of the GE spectra.

Fig. 3 shows for GOE the comparison of numerical results with Eq.(2.17) for the variance
of the total energy as a function of n. The overall agreement is good (for n ≈ 50 the relative
error is less than 2%). The theoretical curve is sensitive to the precise value of 〈s2〉 which
enters in the definition of λ and α, and is known only up to the third digit (cf Eq.(2.5)). For
comparison we have also plotted in Fig. 3 the leading-order term of ∆2, which clearly fails
to reproduce accurately the numerical results in the interval of n displayed (the error is of
the order of 10% at n ≈ 50).

In the previous analysis we have taken a single particle level (x0 in (1.1)) as the reference
energy. In some physical applications it may be more appropriate to measure energies with
respect to an arbitrary origin, which will not coincide with a single particle level but rather
will lie in a random position between two of them. As shown in Appendix A when this
construction is adopted, namely filling n successive levels located just above this origin,
Eq.(2.1) giving the mean value of the energy is modified as follows n(n + 1)/2 → n2/2,
whereas for the variance of the energy one has

∆2(n) → ∆2(n − 1) +
n2

2

(

1

2
− 〈s2〉

3

)

+
n

2
σ2(n) . (2.18)

Notice that both sides of (2.18) have the same leading order, though different coefficients
for higher order terms.

III. GRAND CANONICAL VARIANCE

Here we treat a slightly different problem with respect to the previous section. Instead of
fixing the number of occupied levels, we consider an energy interval of given length 2L and
compute the energy variance for the single particle energies x1, . . . , xn contained in it (to
follow conventional notation, in this section we will denote the length of the energy interval
by 2L, whereas in the previous section we were denoting it by L). The length 2L of the
energy interval is now kept fixed but the number n of levels contained in it may now vary
from sample to sample. This is a particular example of a more general class of problems
usually called “linear statistic” in random matrix theory [12], dealing with the distribution
of a variable W of the form

W =
n
∑

i=1

f(xi) , (3.1)

8



where f is an arbitrary function. The variance of W was given in [12]

VW =
∫ ∫ L/D

−L/D
dx dy [δ(x − y) − Y2(x, y)] f(xD)f(yD) (3.2)

or, alternatively, in the Fourier space

VW =
1

D

∫ ∞

−∞
dk [1 − b(Dk)] ϕ(k)ϕ(−k) . (3.3)

Here D is the mean level spacing (assumed to be constant; it will be set to one at the end),
Y2 the two-level cluster function, b(k) =

∫∞
−∞ Y2(x) exp[2iπkx] dx the form factor and ϕ(k)

the Fourier transform of f(x)

ϕ(k) =
∫ L

−L
f(x) exp[−2iπkx] dx

(f(x) is assumed to be zero outside the interval [−L, L]).
To compute the number variance via Eq.(3.3), one must choose f(x) = 1, as Dyson

and Mehta did. For our purpose, namely to compute the variance of the total energy, f(x)
should be chosen as follows

f(x) =

{

x + L −L ≤ x ≤ L
0 |x| > L

(3.4)

whose transform is

ϕ(k) =
i

2π2k2
[2πLk cos(2πLk) − sin(2πLk)] +

L

πk
sin(2πLk) . (3.5)

In Eq.(3.4) we have chosen to measure the energy with respect to the lower (or equivalently
upper) end of the energy interval considered. This, which is somewhat natural and analogous
to Eq.(1.1), is by no means compulsory and the reference may be taken at any given point
of the energy axis. The variance of the total energy depends on the location of the reference
point, the minimum being obtained when it is at the center of the interval. A general relation
connecting the variance at different reference points is given in Appendix B.

Let us now consider the case of a large (average) number n of levels contained in the
interval. Though we are using for notational simplicity the same symbol as in the canon-
ical case, for grand canonical expressions n will mean the expectation value 〈n〉 = 2L/D.
Therefore, in contrast to the canonical case, it takes continuous values. Following Ref. [12],
we split the integral in Eq.(3.3) in two parts

VE =
2

D

∫ ǫ

0
ϕ(k)ϕ(−k) [1 − b(Dk)] dk +

2

D

∫ ∞

ǫ
ϕ(k)ϕ(−k) [1 − b(Dk)] dk (3.6)

where we have used the parity of the integrand. The parameter ǫ is chosen such that
1/L ≪ ǫ ≪ 1/D. For k < ǫ, Dk is always much smaller than one and the form factor can
be approximated by [6]

b(Dk) ≈ 1 − 2D

β
|k|

9



and the first term in the r.h.s. of Eq.(3.6) (denoted V
(a)
E ) can be written

V
(a)
E =

4L2

βπ2

∫ 2πLǫ

0

[

1

x
− 2 cosx sin x

x2
+

sin2 x

x3

]

dx ,

which when integrated and taken in the limit Lǫ ≫ 1 gives

V
(a)
E ≈ 4L2

βπ2
[log(2πLǫ) + γ + log 2 − 1/2] . (3.7)

On the other hand, for k > ǫ we have kL ≫ 1 and the function ϕ(k) shows rapid oscillations
as compared to the variations of the form factor. We then replace the product ϕ(k)ϕ(−k)

in the second term of the r.h.s. of Eq.(3.6) (denoted V
(b)
E ) by its average value over k

〈ϕ(k)ϕ(−k)〉k =
L2

π2k2
+

1

8π4k4

and then

V
(b)
E ≈ −2L2

π2

∫ ∞

Dǫ

[b(x) − 1]

x2
dx − D2

4π4

∫ ∞

Dǫ

[b(x) − 1]

x4
dx .

The second integral in the latter equation is of order 1/(ǫL)2 with respect to the first one
and therefore can be neglected. Evaluating the first integral we get

V
(b)
E ≈ −4L2

βπ2
[log(Dǫ) − 1] + (β − 2)

L2

2
. (3.8)

Collecting the two terms we obtain the final expression for the variance which we express
in terms of the average number n of levels contained in the interval and the constant C (cf
(2.13)) (we put moreover D = 1)

VE(n) ≈ η n2 log n +
1

2
(C − η)n2 . (3.9)

Let us now compare grand canonical and canonical results. When the sequence consid-
ered is large (n ≫ 1), we expect the energy variance computed for a fixed number n of
occupied levels (∆2, canonical) to be equal to the energy variance when the fixed length of
the energy interval contains on the average n levels (VE, grand canonical). The comparison
of Eqs.(3.9) and (2.17) shows that indeed to leading order VE = ∆2 (the same leading order
behavior has been obtained in Ref. [13] for the particular case of GOE employing Dyson
Brownian motion). However the correction terms are different. It is interesting to note
that the next to leading order corrections differ, as in Eq.(2.14) for the number and spacing
variances, by a constant independent of β

lim
n→∞

VE(n) − ∆2(n)

n2
=

1

12
, (3.10)

which follows from Eqs.(2.17) and (3.9).
To conclude this subsection let us point out that exact expressions for the energy variance

can be computed in the grand canonical approach for any value of n without assuming that
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it is large. For example for the unitary case (β = 2) from the definition Eq.(3.3), using
Eq.(3.5) and the fact that

b(k) =

{

1− | k | | k |≤ 1
0 | k |> 1

(3.11)

it follows that

VE(n) =
n2

2π2

[

log n − Ci(2πn) − 4πn

3
Si(2πn) +

sin(2πn)

6πn
+
(

1

12π2n2
− 2

3

)

cos(2πn)

− 1

12π2n2
+

2π2n

3
+ γ + log(2π) +

1

2

]

, β = 2 , (3.12)

where Ci(x) and Si(x) are the CosIntegral and SinIntegral functions [7], respectively. VE(n)
grows like n3 for n → 0 (remember that here n is a continuous variable) and then switches
to the n2 log n behavior for larger values of n.

IV. SEMICLASSICAL TREATMENT: NON-UNIVERSALITIES

A. Chaotic Systems

The strength and vitality of random matrix theories rely heavily on the universality of
some of its predictions. As a counterpart it is poorly adapted to capture some system-
specific features. However special tools have been developed for that purpose to study
systems whose classical analog is chaotic. Indeed, one of the important achievements of
semiclassical theories has been to determine the limits of validity of the universal regime as
described by random matrix theories by including system-dependent corrections [14]. Our
purpose now is to adapt these methods, which have been developed for the form factor and
are thus applicable to the grand canonical case, to the study of the variance of the total
energy.

Our starting point will be Eq.(3.3) written in a slightly different form

VW =
2

D2

∫ ∞

0
dτK(τ)ϕ(τ/D)ϕ(−τ/D) . (4.1)

Here K(τ) = 1 − b(τ) and we have used the parity of the integrand. For simplicity we
restrict in the following to systems having no time reversal symmetry (β = 2). The results
can be easily generalized to the other symmetry classes.

In the previous section we computed the universal behavior of the variance of the total
energy by inserting in (4.1) the random matrix spectral form factor (cf Eq.(3.11) for the
unitary ensemble). It is possible however to give a more accurate description of the form
factor based on semiclassical approximations. For systems having a classical analog the key
ingredient is a formula expressing the spectral density ρ(E) =

∑

j

δ(E − Ej) as a sum over

the classical periodic orbits

ρ(E) ≈ 〈ρ(E)〉E +
1

πh̄

∑

p

∞
∑

r=1

Ap,r cos (rSp/h̄) . (4.2)
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Here 〈ρ(E)〉E = 1/D is the spectral average density of states, Ap,r = Tp/
√

| det(M r
p − 1)| is

an amplitude that depends on the period Tp and the stability matrix Mp of the primitive
orbit p, r are the repetitions and Sp is the action [15]. We restrict our considerations to
chaotic systems for which periodic orbits are isolated and unstable.

Using Eq.(4.2) for the density of states Berry [14] proposed the following form for K(τ)
for chaotic systems

K(τ) =



















(D/h)
∑

p,r

A2
p,r δ(T − rTp) τ < τ ∗

τ τ ∗ < τ ≤ 1
1 τ > 1 ,

(4.3)

where h is Planck’s constant and τ = TD/h is the (rescaled) time measured in units of the
Heisenberg time. The main physical ingredient entering this formula is a classical sum rule
due to Hannay and Ozorio de Almeida [16] which takes into account the exponential prolif-
eration of long periodic orbits as well as their ergodicity. As a consequence of this as well as
other semiclassical considerations the form factor for times τ larger than a certain critical
time τ ∗ becomes “universal” (i.e., coincides with random matrix theory). The situation
is different for short periodic orbits which do not display this universality and whose con-
tributions, explicitly written down in Eq.(4.3), produce system-dependent deviations from
random matrix theory for τ < τ ∗. Usually the parameter τ ∗ is chosen in order to satisfy
τmin ≪ τ ∗ ≪ 1, where τmin = TminD/h is the rescaled period of the shortest periodic orbit.

The contribution of short periodic orbits to the variance of the total energy is obtained
by replacing K(τ) for τ < τ ∗ in Eq.(4.1), with the result

2

h2

∑

p,r

Âp,r ϕ(rτp/D) ϕ(−rτp/D) . (4.4)

Here Âp,r = h2τ 2
p /(D2

√

| det(M r
p − 1)|) is the usual amplitude Ap,r written in terms of the

rescaled time τp.
For times τ > τ ∗ we can repeat the same steps as in the previous section (the form factor

coincides with GUE), with the important difference however that now there is a cutoff in
the integral (4.1) at τ = τ ∗. The variance of the total energy may now be written in the
following form

VE(n) = V
(1)
E (n) + V

(2)
E (n) + V

(3)
E (n) , (4.5)

where V
(1)
E is the GUE result (3.12) and

V
(2)
E (n) = −D2n2

2π2

[

log(nτ ∗) +
cos(2πnτ ∗)

(2πnτ ∗)2
+

sin(2πnτ ∗)

2πnτ ∗
− Ci(2πnτ ∗) − 1

(2πnτ ∗)2

+ log(2π) + γ − 1

2

]

,

V
(3)
E (n) =

D4n2

2π2h2

∑

rτp<τ∗

Â2
p,r

r2τ 2
p







[

cos(πnrτp) −
sin(πnrτp)

πnrτp

]2

+ sin2(πnrτp)







. (4.6)
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V
(2)
E is the contribution to the variance due to the lower limit at τ = τ ∗ in the integral

(4.1). Aside from the system-dependent parameter τ ∗, its functional form is general. V
(3)
E

is obtained from (4.4) using the explicit form (3.5) of the Fourier transform ϕ and contains
detailed system-specific information.

The energy variance as a function of the number of particles exhibits now two different
regimes. For n ≪ 1/τ ∗, V

(2)
E and V

(3)
E are of order (nτ ∗)2 and can therefore be neglected.

The energy variance is then given by the random matrix expression. For n ≈ 1/τ ∗ these two
terms can no longer be neglected and there is a crossover to a different regime, not described
by random matrix theory. This is clearly seen for n ≫ 1/τ ∗ when there is an almost perfect

cancellation between V
(1)
E and V

(2)
E , leading to

VE(n) ≈ D2n2

2π2

[

1 − log τ ∗ + O(1/nτ ∗)2
]

+ V
(3)
E (n) n ≫ 1/τ ∗ . (4.7)

From Eq.(4.6) for V
(3)
E we then see that now the variance instead of growing as n2 log n like

in random matrix theory, saturates and increases as κ n2. The prefactor κ is not constant
but shows non-universal oscillations as a function of n described by the short-periodic-orbit
contributions. In order to determine its average value over n we replace each oscillating
term between curly brackets in Eq.(4.6) by its mean value (which is equal to one). Then,
denoting this average by an upper bar

V
(3)
E =

D4n2

2π2h2

∑

rτp<τ∗

Â2
p,r

r2τ 2
p

=
D2n2

2π2

∑

p,r

1

r2| det(M r
p − 1)| ,

where the last sum extends over all orbits satisfying rTp < hτ∗/D. An estimate of V
(3)
E

may be obtained by replacing this sum by an integral weighted by the density exp(hKST )/T
over the period T of the periodic orbits (hKS is the Kolmogorov-Sinai entropy) [15]. This
approximation, which is not well justified in this regime of “short periodic orbits”, will
be shown however to give good results for the zeros of the Riemann zeta function (see
next subsection). Then using the Hannay-Ozorio de Almeida sum rule | det(M r

p − 1)| →
exp(hKST ) one has

V
(3)
E ≈ D2n2

2π2

∫ hτ∗/D

Tmin

dT

T
=

D2n2

2π2
log(τ ∗/τmin) . (4.8)

Inserting (4.8) in (4.7) we finally obtain

VE(n) =
D2n2

2π2

[

1 − log τmin + O(1/nτ ∗)2
]

. (4.9)

Thus in this approximation the average of the energy variance in the non-universal regime is
determined by a single parameter, namely the rescaled period of the shortest periodic orbit.

Not only is the average of the energy variance determined by the shortest period. For
n ≫ 1/τmin the contribution of the term sin(πnrτp)/(πnrτp) in Eq.(4.6) is negligible for any
τp. Then, in this limit, each oscillating term within curly brackets is again equal to one and
therefore the energy variance itself is given by the r.h.s. of Eq.(4.9). In summary, in the
non-universal regime the energy variance shows, superimposed to an n2 growth, oscillations
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whose amplitude is damped with increasing n. As the number of contributing terms in (4.6)
diminishes, the structure of the oscillations becomes more regular and eventually only the
lower frequencies survive just before the complete extinction of the oscillations.

It is worth noticing also that the damping of the oscillations is a remarkable peculiarity
occurring only when the reference point used to measure the single particle energies is at
one border of the energy interval considered. For example, setting the origin at the center of
the interval, no damping is found and the amplitude of the fluctuations remains constant as
a function of n. This latter behavior with non-universal oscillations of constant amplitude is
similar to what happens for the other two-point measures mainly considered so far, namely
the number variance and the Dyson-Mehta least square statistic [14,17].

It would be valuable to test the previous results (and in particular Eq.(4.5)) as a function
of n for a real physical system, like for example by locating of the order of 100 particles
inside a billiard of nanometric size as in the coulomb blockade experiments in quantum dots
[18]. Another possibility, not related to experiments but which can be explicitly computed,
is the Riemann zeta function.

B. Application to the Riemann zeta function

This function constitutes a paradigm in the field of quantum chaos. There are many
reasons for that. On the one hand the density of zeros of ζ(1/2 + iE) as a function of E
may be expressed through the equation

ρζ(E) = 〈ρζ(E)〉E − 1

π

∑

p

∞
∑

r=1

log p

pr/2
cos (rE log p) . (4.10)

The sum here goes over all the prime numbers p = 2, 3, 5, . . . and 〈ρζ(E)〉E = 1/D =
(1/2π) log(E/2π) (we are systematically ignoring here problems related to the convergence
of the series). Eq.(4.10) has the same structure as Eq.(4.2) and this suggests a dynamical
interpretation of it. On the other hand, it has been shown numerically [9] and proved in some
cases and demonstrated by heuristic arguments in others [19,9,14,20] that many statistical
properties of the critical zeros of that function coincide with the GUE results of random
matrix theory.

Because of the resemblance of the properties of the critical zeros of the Riemann zeta
function with those of the eigenvalues of a real chaotic system, and because of the possibility
of performing explicit computations for that function, our purpose now is to use the imagi-
nary part of the zeros as the “single particle spectrum” of some unknown physical system.
As a first test of the results obtained in this paper we have considered the nearest neighbor
spacing autocorrelation function I(j) for a set of 50 000 zeros located around the 1012th zero
of ζ(1/2+iE) (the set starts at E0 = 267653395648.8475 . . .) computed by Odlyzko [9]. The
values of I(j) for low j, shown in Fig. 2, are in good agreement with those obtained from
the ansatz (2.7). Furthermore, we have computed for the same set of zeros the variance of
the total energy as a function of the number of occupied levels. Before presenting the results
we need to compute explicitly the third term in the r.h.s. of Eq.(4.5), denoted V

(3)
E,ζ . An

analogous contribution for the number variance of the Riemann zeta function was already
considered in [17].
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By comparing Eqs.(4.2) and (4.10) one can see by analogy that the period of the pe-
riodic orbits should be identified to the logarithm of the prime numbers, Tp = log p, and
moreover h̄ = 1. Then the rescaled period is τp = log p/ log(E0/2π) and, from (4.10),

Âp,r = −2πτp/(Dpr/2). Then, as for any dynamical system, it is expected that K(τ) be-
haves in a universal manner for τ > τ ∗, while “small” prime numbers should contribute with
non-universal terms for τ < τ ∗. From the expression of V

(3)
E in Eq.(4.6) and using the above

mentioned identifications we get

V
(3)
E,ζ =

D2n2

2π2

∑

rτp<τ∗

1

r2pr







[

cos(πnrτp) −
sin(πnrτp)

πnrτp

]2

+ sin2(πnrτp)







. (4.11)

For the zeros we are considering we have τmin = log 2/ log(E0/2π) ≈ 0.028. We then choose
τ ∗ = 0.2 for the numerical comparisons, which leads to a maximum prime number pmax = 131
in the sum in Eq.(4.11).

In order to magnify the effect of non-universal corrections we have plotted in Fig. 4
the normalized quantity VE(n)/(n2/2π2) as a function of n (we set D = 1). The solid line
represents the theoretical prediction (4.5) with the third term of the r.h.s. given by Eq.(4.11).
Superimposed to this curve the normalized variance computed numerically from the zeros
of the Riemann zeta function is also shown. The agreement between the numerical results
and the theoretical prediction is remarkable and the two curves are almost indistinguishable.
Also displayed is the normalized GUE energy variance given by Eq.(3.12). The saturation
effect with respect to random matrix theory is clearly visible for a number of levels larger
than n ≈ 5. For higher values of n some oscillations are observed. These oscillations are
well reproduced by the prime-number contributions (4.11). As predicted by the theory a
damping of the oscillations is observable and illustrated in the inset in a wider range and
on an expanded scale. The theory and numerical data are again in perfect agreement. For
large values of n the curve tends to the constant 4.60, which is in very good agreement with
the theoretical value given by Eq.(4.9), 1 − log τmin = 4.56.

It is also interesting to display as a function of n the behavior of the canonical energy
variance ∆2 for the zeros of the Riemann zeta function. As was mentioned in the intro-
duction, this variance is not a two-point measure and therefore the semiclassical theories
developed for the form factor do not apply. We could again expect that, even in the non-
universal regime, for a large number of particles the canonical and grand canonical variances
are very closely related. Fig. 4 shows that indeed this is the case. The normalized energy
variance ∆2/(n2/2π2) presents the same non-universal oscillations in the saturation regime
as VE (shifted however to a lower average value). The non-universal features in ∆2 imply via
Eq.(2.2) their presence in the autocorrelation function I(j). This is confirmed by a study of
Odlyzko who has observed significant oscillatory deviations with respect to random matrix
theory for large values of j [9], attributed to effects due to primes.

As can be seen in Fig. 4 the behavior of the two variances ∆2 and VE is quite different
for n small. This difference is an (uninteresting) manifestation of the discreteness of n in
the canonical case.
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V. CONCLUDING REMARKS

Assuming that the single particle spectrum is given by the eigenvalues of a random
matrix, we have determined the typical fluctuations of the total energy of a system of non-
interacting fermions. On the light of the original applications of random matrix theory
this approach may look at first sight very unnatural. Indeed, these theories were originally
applied to (nuclear) many body systems in spectral regions and for properties unrelated to
the mean field, like for example neutron resonances of the compound nucleus. Here we are
somehow adopting the opposite point of view, namely to start with an independent particle
motion modeled by random matrix theory and neglect completely residual interactions.
Surprisingly, there are physical situations for which this extreme view seems also to be
fruitful, as should become clear by the end of this section.

Two slightly different approaches have been investigated. In the first one, denoted
“canonical”, we consider the fluctuations of a fixed number n of occupied levels. These
fluctuations are shown to be directly related to the autocorrelation function of consecutive
spacings, for which we have proposed an ansatz. The parameters entering the ansatz have
been determined from the asymptotic behavior of the fluctuations of the spacing variance
σ2(n). The canonical variance of the total energy is then computed, including corrections
up to order one. The leading-order term is found to be n2 log n/(βπ2).

In the second – “grand canonical” – approach, the total energy variance of the single
particle levels contained in an interval of given length has been considered. Contrary to the
previous case, here the number of occupied levels is not fixed. We have computed the grand
canonical variance in the limit of a large number of levels contained in the interval. Also an
exact result has been given for β = 2. Both variances have the same leading-order behavior,
but the higher order corrections are different.

This difference in the higher order terms, and more generally the connection between
“canonical” and “grand canonical” quantities, have been studied in detail and play a central
role in the present study. Among the former we have considered the spacing variance σ2 and
the energy variance ∆2, while the number variance Σ2 and the energy variance VE belong
to the latter. The connection (2.14) between the spacing and number variances has been
essential in implementing the ansatz (2.7). As already discussed in [8], Eq.(2.14), though
asymptotic, remains a good approximation for any value of n. This is also confirmed by our
results. In fact, computing the difference to higher orders we find

Σ2(n) − σ2(n) = 1/6 + O(1/n2) ,

with the coefficient of the O(1/n2) term being a small (of the order 0.01) constant for any
β. In contrast, for the other two quantities Eq.(3.10) is not a good approximation for small
n. Computing the difference to higher orders we find

VE(n) − ∆2(n)

n2
=

1

12
− η

log n

n
− 1

2

(

C − 1

6

)

1

n
− 1

3
(η − λ)

log n

n2
+ O(1/n2) , (5.1)

where the constants have been determined in Section II.A.
These relations between canonical and grand canonical quantities are those predicted

by random matrix theory, and thus applicable in principle only in the universal regime (for
example, Eq.(5.1) describes the difference between the dot-dashed and the long dashed curves
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in Fig. 4). But surprisingly we find that Eqs.(2.14) and (5.1) always hold, irrespectively of

the regime considered. This “universality in the non-universal regime” is illustrated in Fig. 5
where both differences for the zeros of the Riemann zeta function are plotted (as we have
mentioned before, a transition to a non-universal regime appears for n ≥ 5), and presumably
it can be traced back to the validity of general incompressibility conditions for a fluid [21,8].
An immediate and interesting consequence of this observation is that the non-universal
corrections for canonical quantities (for which no explicit theory is available) ought to be
identical to those of grand canonical quantities. The consequences of this remark and in
particular the presence of non-universal contributions in the behavior of the I(j)’s are under
study.

The simplicity of periodic orbit theory in the interpretation of physical phenomena has
demonstrated its power in different branches of physics. A well-known example is the pre-
diction [22] and the experimental confirmation in metallic clusters [23] of supershell effects
in the density of states which can be basically understood in terms of a beating produced
by two short periodic orbits of a spherical cavity having similar lengths. For irregularly
shaped clusters, for which our model may be a starting point, the possibility of having al-
most degenerate short periodic orbits is not excluded. However it is unclear how robust this
situation may be under small perturbations, like for example the addition of particles to the
system. As already mentioned, similar and perhaps more promising possibilities exist in the
physics of quantum dots.

Other systems for which the present study may be relevant concern diffusive systems
in mesoscopic physics, like the motion of electrons in a disordered piece of metal. Due to
the presence of impurities, in this case the dynamics of the electrons is not ballistic but
rather described by a random walk. For short times the non-universalities are not related
to short periodic orbits but to the return probability of a diffusive motion. This can be
incorporated in the short time behavior of the form factor [24]. In particular it does not
lead to the saturation effect discussed here and presumably gives rise, for the variance of
the total energy, to similar effects as the ones observed for the number variance [25] which
are governed by the diffusion constant and the space dimensionality.

In nuclear physics there are some estimates of the fluctuations of the binding energies
due to non-systematic effects. When the macroscopic part as well as shell corrections are
substracted out from the measured total energy it is found that the r.m.s. of the remaining
fluctuations is about 0.5 MeV for heavy nuclei [1]. Since the total binding energy for those
nuclei is about 1000 MeV, the relative fluctuations due to non-systematic effects are of
order Rexp = 0.5 × 10−3. With the present model, since ∆ ≈ n

√
log n/π for β = 1 and

< Xt >≈ n2/2, we obtain a theoretical estimate of the relative fluctuations Rth ≈ 7 × 10−3

for n ≈ 200 which overestimates the experimental value by an order of magnitude. Before
considering this disagreement as significant obvious effects neglected here like the energy
variations of the mean level spacing should be taken into account.
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APPENDIX. A

Given a stationary sequence of successive random single particles energies . . . , xi, xi+1, . . .,
take a point O at random on the real axis. It will lie between two levels, denoted by x0 and
x1. Call s1 = x1 − x0 and d the (random) distance between x1 and O. Fill the n successive
levels located just above O and define the total energy X∗

t (n) with respect to O:

X∗
t (n) =

n
∑

i=2

(n − i + 1) si + n d ≡ X̃∗
t (n − 1) + n d , (A.1)

where si = xi−xi−1. By construction, d is the product of two independent random variables,
ǫ and s1, with ǫ distributed uniformly in the interval [0, 1] and s1 with the nearest neighbor
spacing distribution of the original sequence. Using 〈ǫs1〉 = 〈ǫ〉 〈s1〉, 〈ǫ〉 = 1/2 and 〈s1〉 = 1
one has

〈X∗
t (n)〉 = 〈Xt(n − 1)〉 +

n

2
=

n2

2
. (A.2)

To compute the variance ∆∗2(n) of X∗
t (n), care must be taken of the correlations between

s1 and the nearest neighbor spacings above s1. Using Eq.(2.8) one obtains

〈s1 X̃t(n − 1)〉 =
n
∑

i=2

(n − i + 1) 〈s1 si〉 =
n−1
∑

j=1

(n − j) I(j) =
[

σ2(n) − n
(

〈s2〉 − n
)]

/2 .

(A.3)

Following the same steps as in section II, using the fact that ǫ is uncorrelated with s1 and
X̃t, using 〈ǫ2s2

1〉 = 〈ǫ2〉〈s2
1〉 = 〈s2〉/3, and using Eq.(A.3) one finally obtains

∆∗2(n) = ∆2(n − 1) +
n2

2

(

1

2
− 〈s2〉

3

)

+
n

2
σ2(n) . (A.4)

APPENDIX. B

The energy variance is not independent of the reference point used to measure the energy.
In the grand canonical case, when an arbitrary point a is used as reference point, f(x) in
Eq.(3.1) should be taken as

f(x) =

{

x − a −L ≤ x ≤ L
0 |x| > L .

(B.1)

It follows from the definition of the energy variance (3.2) and (B.1) that the variance VE0

with the reference point at the center of the energy interval considered and the energy
variance VEa

with the origin at x = a are related through the equation

VEa
(n) = VE0

(n) + a2 Σ2(L = n) , (B.2)
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where Σ2 is the number variance. This is an exact relation valid for any statistical sequence
of energy levels (uncorrelated, GE, etc).

When computing the energy variance we have used as reference point for the energy the
lower (or upper) end of the energy interval considered. Setting a = −L in Eq.(B.2), using
Eq.(3.9) and the asymptotic form of the number variance (2.12) we obtain for the variance
with reference at the center of the interval

VE0
(n) ≈ η

2
n2 log n +

1

2

(

C

2
− η

)

n2 , (B.3)

with the constants given in Section II.A. The leading order term in Eq.(B.3) is twice smaller
than the variance (3.9) with the reference point at the lower (or upper) end of the interval.

Because VE0
and Σ2 are positive definite, Eq.(B.2) shows, incidentally, that the energy

variance reaches a minimum when the reference point is at the center of the interval.
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FIGURES
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FIG. 1. Distribution function of the total energy Xt for n = 300. Histogram: from an ensemble

of 500 Gaussian orthogonal matrices of dimension N = 600; solid line: Gaussian distribution with

mean value 〈Xt(300)〉 and variance ∆2(300) obtained from Eqs.(2.1) and (2.17), respectively.

22



0 5 10 15
 j

0.94

0.96

0.98

1.00

 I(j)

FIG. 2. Autocorrelation of spacings I(j) for β = 2. Dots: obtained from an ensemble of 500

Gaussian unitary matrices of dimension N = 500; solid line: the ansatz (2.7) for β = 2; squares:

computed from the zeros of the Riemann zeta function (taken from [9]).
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FIG. 3. Canonical number variance ∆2 for β = 1 as a function of n. Solid line: from an

ensemble of 500 Gaussian orthogonal matrices of dimension N = 600; dashed line: theory (see

Eq.(2.17)); dot-dashed line: leading order term of the same equation.
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FIG. 4. Normalized energy variances. Solid line: the normalized grand canonical variance

VE/(n2/2π2) for the zeros of the Riemann zeta function. In this curve the numerical results as

well as the theoretical prediction are superimposed, and are almost indistinguishable. The same

curve is plotted in a wider range and on an expanded scale in the inset. Dot-dashed line: random

matrix result (β = 2) for the normalized grand canonical variance. Dashed line: the normalized

canonical variance ∆2/(n2/2π2) obtained numerically from the zeros of the Riemann zeta function.

Long-dashed line: random matrix result (β = 2, obtained using the ansatz) for the normalized

canonical variance. (See text for further explanation).
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FIG. 5. Comparison between canonical and grand canonical quantities. The upper solid curve

is the difference Σ2 − σ2 obtained numerically from the zeros of the Riemann zeta function. The

upper dashed horizontal line is at 1/6 ≈ 0.166. The lower solid curve is the numerical result for

the difference (VE − ∆2)/n2 for the same set of zeros. The lower dashed curve displays Eq.(5.1),

which tends to 1/12 ≈ 0.0833 for large values of n.
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