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Plateau transitions in fractional quantum Hall liquids
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Effects of backward scattering between fractional quantum Hall (FQH) edge modes are studied.
Based on the edge-state picture for hierarchical FQH liquids, we discuss the possibility of the tran-
sitions between different plateaux of the tunneling conductance G. We find a selection rule for the
sequence which begins with a conductance G = m/(mp±1) (m: integer, p: even integer) in units of
e2/h. The shot-noise spectrum as well as the scaling behavior of the tunneling current is calculated
explicitly.

72.10.-d, 73.20.Dx, 73.40.Hm

I. INTRODUCTION

The fractional quantum Hall (FQH) effect is a phenomenon observed in a two-dimensional electron system subjected
to a strong perpendicular magnetic field. Due to the interplay between the strong magnetic field and interactions
among the electrons as well as weak disorder, the transverse resistivity shows a plateau behavior. [1] For a filling factor
ν = 1/(odd integer), the theory predicts fractionally charged quasiparticles with charge q = νe. [2] Recent shot-noise
experiments in a two-terminal FQH system with a point-like constriction or a point quantum contact (QPC) between
the edges seem to be consistent with this theoretical prediction. [3] The FQH system which have any experimental
relevance should be confined in a finite region enclosed by one or more edges. Due to the presence of strong magnetic
field, the low-energy physics of this two-dimensional electron liquid reduces essentially to that of the one-dimensional
edge mode. In one dimension it is known that the interaction plays a significant role. The electrons are strongly
renormalized so that the Fermi liquid theory breaks down to be replaced by the Tomonaga-Luttinger liquid (TLL). [4]
If one considers spinless electrons in 1D, the TLL is completely characterized by one parameter g which represents
the strength of interaction. Therefore the parameter g for an interacting electron system in 1D is not universal. On
the other hand a remarkable feature of FQH edge mode is that the parameter g which controls this 1D system is
universal, since g is related to the topological nature of the bulk FQH liquid (FQHL). For the edge mode of principal
Laughlin states, the parameter g is simply given by the bulk filling factor ν. [5]

The edge-tunneling experiment in FQH liquids has shown that a chiral TLL is realized at the edge of FQHL.
[6] Indeed the chiral TLL theory has succeeded in the description of non-linear I − V characteristics for ν = 1/(odd
integer), [7] but it is also true that the edge-tunneling experiment cannot be explained by a naive TLL theory for other
filling factors. [8,9] In particular, for the Jain’s composite fermion hierarchy states at filling factor ν = m/(mp + χ)
(m: integer, p: even integer, χ = ±1), [10] Wen’s chiral TLL theory predicts that there should be m edge modes
corresponding to each composite fermion Landau level. [11] Due to the existence of these internal degrees of freedom
the predicted exponent α for the I − V characteristics does not fit the experiment: α ∼ 1/ν.

Although the observed exponent α ∼ 1/ν for the tunneling into FQHL does not support the hierarchial structure of
edge mode, there is another experimental observation which encourages us to work on this theory. It is the suppressed
shot-noise measurement at bulk filling factor ν = 2/5, i.e., at m = 2, p = 2, χ = 1 in a constricted two-terminal
Hall bar geometry. [12] They observed the transitions of two-terminal conductance from a plateau at G = 2/5 to
another at G = 1/3 and finally to G = 0 as the constriction is increased. On the plateau at G = 1/3 they observed a
fractional charge q = e/3, which indicates that the filling factor near the quantum point contact (QPC) is ν = 1/3.
The experiment clearly indicates a deep connection between the ν = 2/5 daughter state and the ν = 1/3 parents
state, and therefore seems to support the hierachy theory at ν = 2/5.

This paper studies the tunneling through a QPC at the edge of FQHL. This topic has captured a widespread
attention both experimentally and theoretically. For the reasons stated above we forcus on the filling factor ν =
m/(mp + χ). The FQH systems at those filling factors will provide an interesting arena to study the hierarchical
nature of those liquids. We discuss the successive transition between the plateaux of conductance. The sequence
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begins with the conductance G = Gm = m/(mp + χ) in units of e2/h, which is identical to the bulk filling factor.
We discuss the selection rule for the transitions between different G’s. Even though the eventual correctness of the
hierachical TLL theory description is yet to be tested, on which we will be based, we insist that it is of importantance
to make various interesting applications of the theory. It will enable us to compare the experiment with the theoretical
predictions, and hence will be useful to judge the correctness of hierarchical picture.

II. MODEL

Our model has a two-terminal Hall bar geometry. The bulk FQHL in the xy-plane is confined electro-statically
on the y-direction into a finite region: −w/2 < y < w/2. Each end of this strip is connected to a source (the left
terminal) or to a drain (the right terminal). We assume that the bulk FQHL is incompressible at a filling factor ν.
Therefore the low-energy excitations are allowed only in the vicinity of two boundaries, which constitute the edge
modes. The upper (lower) edge mode carries a current from the left (right) to the right (left) terminal, and the total
current I is defined as the difference of two. Since there is no mechanism of relaxation in the TLL itself, the chemical
potential is uniform in the respective edge modes, i.e., the upper (lower) edge mode has a chemical potential equal to
that of the source (drain). All the scatterings occur inside the terminals. [13] In the absence of point-like constriction,
the two-terminal conductance G = I/V is quantized at G = ν in units of e2/h, since the back-scattering between the
two edge modes which breaks the momentum conservation is allowed nowhere through the edge, where V is defined
as the source-drain voltage.

Now we go back to the bulk FQHL. We forcus on a filling factor ν = m/(mp + χ) in the Jain’s composite fermion
hierarchy series, where m: integer, p: even integer and χ = ±1. According to the bulk hierarchy structure, there
should be m edge modes, i.e., each edge mode corresponds to a composite fermion Landau level in the bulk. Then
the low-energy physics of this electron liquid is controlled by the m-channel edge mode, which obey the following
Lagrangian density, [11]

LTLL =
i

4π
Kαβ ∂φ+

α

∂τ

∂φ−

β

∂x
+

1

8π
Uαβ

(

∂φ+
α

∂x

∂φ+
β

∂x
+

∂φ−
α

∂x

∂φ−

β

∂x

)

, (1)

where φ± = φu±φl with φu(φl) being the edge mode propagating near the upper (lower) boundary of the system. The
matrix K in Eq. (1) could be identified as the so-called K-matrix in the bulk, which together with the electromagnetic-
charge vector t completely classify the universal properties of bulk FQHL. [14] The standard construction for the
K-matrix at a hierarchical filling factor ν = m/(mp + χ) yields

K = K(m, p, χ) = χIm + pCm (2)

in the unitary basis tT = (1, · · · , 1), where Im, Cm are m × m identity and pseudo-identity matrices. By a linear
transformation one can decompose the modes into charge and pseudo-spin bosons. Each row and column of the
matrices corresponds to a Landau level for the composite fermions, i.e., α, β = 1, · · · , m. However it would be fair
to comment that it is still a controversial question what the correct construction of the K-matrix is. [15] The matrix
U in Eq. (1) is a positive definite matrix, which specifies among others the velocities of the edge modes. For χ = 1
charge and pseudo-spin modes propagate in the same direction (co-propagate), whereas for χ = −1 they are counter-
propagating, i.e., χ stands for the chirality of the edge modes. For the latter case (χ = −1), the interaction between
the edge modes can make the conductance non-universal. The observed conductance, on the contrary, seems to be
universal. A remedy for this puzzle would be to put disorder along the edge. [16] In the presence of such disorder our
conclusions will be modified, however, which will not be discussed in the body of the paper.

Now we introduce the back-scattering by pinching the Hall bar, i.e., by breaking the global translational invariance
at x = 0. Let us think of applying a gate voltage locally in the middle of Hall bar. It squeezes the Hall bar and
makes a quantum point contact (QPC) between the two edges. The QPC introduces the tunneling of quasiparticle
through the pinched region of Hall bar. In the TLL model it corresponds to a backward scattering and hence could
be described by a periodic potential barrier for the bosonic fields. [17] Let us remember that we are focusing on the
bulk filling factor νbulk = m/(mp + χ). According to the Jain’s composite fermion hierarchy, there should be m filled
composite fermion Landau levels in the bulk, and accordingly m types of elementary quasiparticles. Each correspond
to a vortex-charge vector l = lj where (lj)

α = δα
j (j, α = 1, · · · , m) with δα

j being unity for α = j and vanishes
otherwise. [18] The fractional charge carried by the quasiparticle l is given in general as

q/e = tT K−1l =
1

mp + χ

m
∑

α=1

lα. (3)
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For the elementary quasiparticles l = lj one finds q = e/(mp + χ), which is indeed the smallest possible value. For
m = 2, p = 2, χ = 1, i.e., q = e/5 they could be identified as the current-carrying particles observed in the recent
shot-noise experiment at ν = 2/5. [12]

The tunneling of quasiparticle on the j-th composite fermion Landau level induces a potential barrier proportional
to δ(x) cos φ+

j . Since the scattering amplitude would be different for different types of quasiparticles, the tunneling of
these elementary quasiparticles sums up to the following scattering potential barrier:

L
(I)
tun =

m
∑

j=1

ujδ(x) cosφ+
j . (4)

We call it the scattering potential due to the tunneling of Class [I] quasiparticles. In Eq. (4) we took into account
only the ‘intra-Landau-level’ processes.

Now I draw your attention to another class of quasiparticles, which we call Class [II]. It consists of m elementary
quasiparticles. The vortex-charge vector assigned to this Class [II] quasiparticle is lT = (1, · · · , 1). In this combination
of the bosonic fields all the neutral modes cancel and the tunneling of such quasiparticles do not accompany any neutral
modes. The fractional charge carried by this quasiparticle is found to be q/e = m/(mp + χ) = ν. In the bosonic
language it can be written as φc = φ1 + · · · + φm, which indeed corresponds to the charge mode. The scattering
potential due to the Class [II] quasiparticle tunneling operator can be written as

L
(II)
tun = uδ(x) cosφ+

c . (5)

Now our total Lagrangian density reads Ltotal = LTLL + L
(I)
tun + L

(II)
tun.

In the RG analysis in Sec. IV, we study the scaling behavior of uj’s and u, which are controlled by the scaling
dimesions of the quasiparticle tunneling operators: cosφ+

j and cosφ+
c . They are given by ∆I = ν/m2 + 1 − 1/m for

the Class [I] quasiparticles, whereas ∆II = ν for the Class [II] quasiparticle, where ν = m/(mp + χ). [7] If the scaling
dimension is smaller than 1, the corresponding tunneling amplitude tends to have stronger values as the voltage or
the temperature is lowered. It is indeed the case both for uj ’s and u. In the parameter region {(m, p)|m ≥ 2, p ≥ 2}
in which we are interested, one can prove that

{

∆I = ∆II for χ = −1, m = 2, p = 2 (ν = 2/3)
∆I > ∆II otherwise

, (6)

i.e., the Class [II] quasiparticles have a lower scaling dimension in most of the cases, and hence more relevant in
the RG sense. Another important observation is that there would be at least two ways how the scattering becomes
stronger. One way is, as we have described above, to increase its amplitude. However it would be also possible that
higher-order cascade of scatterings becomes important, where the single QPC description is no longer valid. One
might have to take into account the resonance in such non-perturbative regime.

III. HYPOTHESES

In Sec. II we gave expressions to the possible tunneling processes through a single QPC in terms of the bosonic
field φj or of its linear combination φc. We considered two classes of quasiparticles. The Class [I] corresponds to
the elementary quasiparticles with the smallest fractional charge. The Class [II] corresponds to the charge mode:
φc = φ1 + · · ·+ φm. We also compared the scaling dimensions of the two classes of quasiparticle tunneling operators.
Although the Class [II] quasiparticles have a lower scaling dimension in most of the cases and more relevant in the RG
sense, it is not unlikely that the Class [II] is negligible for some reason; since they are bound states of m elementary
quasiparticles, they are so scarcely created that the scattering potential (5) could not develop enough to be effective
at the energy scales in question despite its relevant scaling dimension. Therefore we are encouraged to consider the
following cases:

1. Case [A]: Class [II] quasiparticles are negligible for some reason. Furthermore the tunneling amplitudes for each
channel j have different orders of magnitude:

um ≫ um−1 ≫ · · · ≫ u1. (7)
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2. Case [B]: Class [II] is still negligible, but some uj ’s have comparable orders of magnitude;

uj+1 ≫ uj ∼ · · · ∼ uj−k+1 ≫ uj−k, (8)

where k ≥ 2 is an integer.

3. Case [C]: Class [II] is no longer negligible, i.e., the amplitudes u for the Class [II] quasiparticle has a comparable
magnitude with those for uj ’s.

The assumption (7) for Case [A] might be justified in a way analogous to the edge-channel argument for integer
quantum Hall effect (IQH). [19] Let us consider the Landau levels for composite fermions. The lowest m Landau
levels are completely filled by the composite fermions, and the chemical potential lies between the m-th and (m + 1)-
th Landau levels. Towards the edge of the sample each energy level tends to be lifted up by the confining potential.
Since the j-th edge mode lies in where the chemical potential crosses the j-th energy level, each edge channels are
spatially separated. Therefore the tunneling between the m-th edge modes, the spatially closest ones, is supposed to
have a much larger amplitude than the other m−1 channels. It is also the case for um−1 compared with the remaining
m − 2 channels and so forth. I would like to mention an experiment which encourages us to employ the assumptions
(6). It is the suppressed shot-noise measurement at bulk filling factor ν = 2/5, i.e., at m = 2, p = 2, χ = 1. [12] They
observed the transitions of two-terminal conductance from a plateau at G = 2/5 to another at G = 1/3 and finally to
G = 0 as the constriction is increased. On the plateau at G = 1/3 they observed a fractional charge q = e/3, which
indicates that the filling factor near the QPC is ν = 1/3. Hence a single-channel edge mode described by a 1 × 1
K-matrix; K = 3 is expected near the QPC. [20] On the other hand in the region where the physics is completely
unaffected by the gate, the matrix K should be given by K = K(2, 2, 1). This experiment not only indicates a deep
connection between the ν = 2/5 daughter state and the ν = 1/3 parents state. It also implies that u2 ≫ u1 as well
as u is negligiblly small.

We have explained above a physical reason why we are intereted in the parameter region (7). However we have
another example where the assumption (8) seems to be reasonable. It is the spin-singlet state at ν = 2/3 (m = 2, p =
2, χ = −1), where j = 1, 2 corresponds to each spin indices instead of each Landau level for the spin-polarized state.
If we neglect the Zeeman energy, the theory should be symmetric in terms of the two spin components. Therefore it
seems more reasonable to assume in this case as u1 ∼ u2, which belongs to our Case [B]. [21]

IV. RG FLOW AND CRITICAL PHENOMENA

Let us forget for the moment the Class (II) quasiparticles. Then we consider the renormalization group (RG) phase
diagram in the m-dimensional space of u = (u1, · · · , um). The origin of this plane corresponds to the conductance
plateau at G = m/(mp + χ) = νbulk. A standard RG analysis shows that only the fixed point at u = (∞, · · · ,∞), is
infra-red (IR) stable, since all uj’s are found to be relevant. We introduce a small negative gate voltage to the system
on the conductance plateau at G = Gm. We fix the gate voltage so that the scaling at the zero temperature should
be controlled by the voltage difference qV between the two reservoirs. Now we ask where the initial point of our RG
flow is.

A. Successive transistions

Let us consider the Case [A]. Our RG flow starts from a point in the vicinity of the origin (unstable fixed point)
where Eq. (7): um ≫ um−1 ≫ · · · ≫ u1 is satisfied. As the voltage is decreased, all uj ’s scale to larger values. But
due to the assumption (7) um increases much faster than the other m− 1 channels. Therefore our RG path flows into
the domain Dm−1, where Dj (j = 1, · · · , m − 1) is defined as

Dj = {(u1, · · · , um)|um, · · · , uj+1 > ucrtc ≫ uj, · · · , u1}. (9)

ucrtc is a critical value of the tunneling amplitudes such that the phase φj is pinned when uj > ucrtc in order
for g to be quantized. In reality ucrtc is determined by the strength of impurity potential which could retain the
induced quasiparticles at the impurity cite. In the domain Dm−1 the effective K-matrix near the PC reduces to
K = K(m−1, p, χ). Therefore one could indentify Dm−1 to the plateau of conductance at G = Gm−1. However since
the domain Dm−1 corresponds to a saddle region of the RG flow, our RG path flows away from Dm−1 and goes toward
the next saddle region Dm−2 defined in the same way as Dm−1. We further introduce the domain Dj in general for
j = 1, · · · , m − 1. Our RG flow passes through Dj ’s as
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Dm−1 → Dm−2 → · · · → D1, (10)

and finally it flows into the attractive fixed point u = (∞, · · · ,∞), which is identified as the completely reflecting
phase G = 0: the domain D0. (Fig. 1) The exceptions are the series belonging to χ = −1, p = 2, i.e., the ν = 2/3
state and its daghter states. For those filling factors our RG stops at the G = 1 plateau. [20,22] In the following we
consider the other cases. As the RG path flows from the vicinity of the origin toward the G = 0 phase, the effective
K-matrix near the PC changes as

K(m, p, χ) → K(m − 1, p, χ) → · · · → K(1, p, χ) = p + χ → insulator. (11)

Correspondingly we predict the following successive plateau transitions,

Gm → Gm−1 → · · · → G1 =
1

p + χ
→ 0. (12)

One might think the above result is very close to the ‘global phase diagram’ in the quantum Hall effect. [23] Though it
indeed is, it differs in that the direction of the transition is specified in our case. Anomalous transitions (Gj → Gj−k

for k ≥ 2) are forbidden as far as the assumption (6) is satified.
I would like to deduce the scaling behavior of the tunneling current and the shot-noise spectrum on the plateau

G = Gj (j = 1, · · · , m). The back-scattering current Ib = ν(e2/h)V − I can be calculated perturbatively with respect
to uj−1 and obtained as [5]

〈Ib〉 =
2πq

Γ[2∆I ]
|uj−1|

2 a2∆I−2

v
2ν/m2

c v
2(1−1/m)
s

(qV )2∆I−1, (13)

where q = e/(jp+χ) is a fractional charge of the elementary quasiparticle on the plateau G = Gj , and ∆I is a scaling
dimension of the Type (I) quasiparticle tunneling operator: ∆I = ν/m2 + 1 − 1/m. a is a short-distance cutoff, and
vc and vs are velocities of the charge and the pseudo-spin modes, respectively. The shot-noise spectrum

S(ω) =

∫ ∞

−∞

dt cosωt〈{Ib(t), Ib(0)}〉 (14)

is also calculated perturbatively to give, S(ω) = q〈Ib〉(|1−ω/qV |2∆I−1+|1+ω/qV |2∆I−1), which reduces to S = 2q〈Ib〉
in the white-noise limit (|ω| ≪ qV ). [24] They are also calculated near the insulating phase to be S(ω) = 2e〈I〉 with

〈I〉 =
2πe

Γ[2(p + χ)]
|ũ1|

2a2(p+χ)−2ṽ1
−2(p+χ)(eV )2(p+χ)−1, (15)

where ũ1 represents the strength of electron tunneling dual to u1 and ṽ1 a corresponding velocity.

B. Anomalous transition

Let us turn to the case [B], where the Type [II] quasiparticles are still negligible, but some uj’s have comparable
orders of magnitude. Here we consider a particular case of the assumption (7); we consider the case where all uj’s
have comparable orders of magnitude:

um ∼ um−1 ∼ · · · ∼ u1. (16)

In this case a direct transition from G = Gm to G = 0 is expected, since all φj ’s tend to be pinned at the same speed.
The shot-noise spectrum on the plateau at G = Gm is given by S(ω) = 2q〈Ib〉 for |ω| ≪ qV with

〈Ib〉 =
2πq

Γ[2∆I ]

m
∑

j=1

|uj|
2 a2∆I−2

v
2ν/m2

c v
2(1−1/m)
s

(qV )2∆I−1. (17)

Now we turn our discussion to the insulating phase: G = 0. Remember each vortex-charge vector l with integer
elements corresponds to a quasiparcile which has a charge given by (3). To construct an electron operator, we have
only to set Eq. (3) to be equal to 1. Of course, there is in priciple an infinite number of choice of l to make it identical
to unity. However, as far as the tunneling is concerned, we can pick up most relevant electron operators, which are
found to be [18]
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l = l̃j , (l̃j)
α = p + χδα

j , (18)

where j = 1, · · · , m and each l̃j has m components, i.e., α = 1, · · · , m. These electrons look analogous to our Class [I]
quasiparticles. It indeed is, but we will see that the relation is deeper. Before going into that, the scattering potential
barrier due to the tunneling of these ‘Class [I] electrons’ can be written as

L̃
(I)
tun =

m
∑

j=1

ũjδ(x) cos

[

m
∑

α=1

(l̃j)
αφ̃+

α

]

. (19)

Here the ‘inter-Landau-level’ tunnelings are neglected again. Note that the x-axis is taken along the edge which is
assumed to be completely reflected in the insulating phase.

Let us take notice of the duality between the quasiparticle tunneling and the electron tunneling, which is exact
when um = um−1 = · · · = u1. [21] To see this, let us go back to the weak-scattering phase, i.e., we start with the

Lagrangian density: Ltotal = LTLL + L
(I)
tun. We starts our RG from the vicinity of the origin in the m-dimensional

space of u = (u1, · · · , um). We assume that the condition (16) is satisfied. As the voltage is decreased, all uj ’s scale
to larger values. Then one is encouraged to employ the duality transformation, i.e., one considers the tunneling of
instantons between the potential minima. [25] Up to the lowest non-trivial order with respect to those instantons,
one obtains a model which has exactly the same form as Eq. (19), where −ũj/2 corresponds to an instanton fugacity

whereas {φ̃+
α} is identified as a set of bosonic fields dual to {φ+

α}.
The shot-noise spectrum in the insulating phase is given by S(ω) = 2e〈I〉 for |ω| ≪ qV with the tunneling current

I scaling as

〈I〉 =
2πe

Γ[2∆̃I ]

m
∑

j=1

|ũj|
2 a2∆̃I−2

ṽ
2/ν
c ṽ

2(1−1/m)
s

(eV )2∆̃I−1. (20)

The scaling dimension ∆̃I of our Class [I] electron tunneling operator is given by ∆̃I = 1/ν + 1 − 1/m. ṽc, ṽs are
velocities in the insulating phase.

C. Direct transition

Let us consider the case [C]. In this case we obtain still different results. In the presence of Class [II] quasiparticles,
the physics tends to be controlled by the scattering potential u as the energy in question is lowered. In the region
where u1, · · · , um ≪ u ≪ qV is satisfied, i.e., G ∼ Gm, one obtains S(ω) = 2q〈Ib〉 with

〈Ib〉 =
2πq

Γ[2∆II ]
|u|2a2∆II−2v−2∆II

c (qV )2∆II−1. (21)

The fractional charge of the Class [II] quasiparticle is identical to the bulk filling factor: q/e = m/(mp+χ) = ν, which
is also equal to the scaling dimension of the corresponding quasiparticle tunneling operator: ∆II = m/(mp + χ) = ν.
As the RG path flows into the strong-scattering phase, the conductance G shows a direct transition to G = 0 again.
However the scaling behavior of the tunneling current in the insulating phase is less clear. The reason is that the
duality is not existing in this case so that the physical interpretation of the strong-scattering phase Lagrangian is
lacking.

V. SUMMARY: THE SELECTION RULE

In summary we obtained the following selection rules for the transition between plateaux starting with the bulk
value G = m/(mp + χ) = ν. For Case [C] a direct transition to the Hall insulator is expected. For Cases [A] (and
[B]) successive transitions from one G to another G is allowed under the following selection rule:

g = ν(j, p, χ) → g = ν(j′, p′, χ′)

j′ = j − 1, p′ = p, χ′ = χ. (22)

An anomalous transition j → j − k (k > 2: integer) is expected between the same p and χ when the condition (8) is
satisfied.
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The overall picture of the system which results from the plateaux transitions discussed above is the following. We
started with the situation where the filling factor is extended uniformly over the whole system, i.e., equal to the bulk
value ν = m/(mp + χ). Then we effectively increased the gate voltage in units of the voltage difference V between
the two terminals. We found successive transitions of the conductance (12) when the condition (7) is satisfied. The
question is what happens between the QPC and the bulk FQHL. Each time G passes through one plateau (G = Gj),
there should appear one additional incompressible strip with a filling factor ν = j/(jp + χ).

Before ending this paper I mention that the edge-confining potential is assumed to be steep through the paper
enough to avoid the complexities which may arise when the confining potential is smooth. [26,27] In conclusion
we studied the successive transitions of conductance between different plateaux of hierarchical FQHL. The scaling
behavior of the tunneling current and the shot-noise spectrum are calculated perturbatively on each plateau of the
conductance. We discussed the selection rules for the transition between different plateaux of the conductance in
order that the theory could be tested by the experiments.
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FIG. 1. RG phase diagram in the u-space for m = 3, u = (u1, u2, u3): Case 1 represents a RG flow corresponding to the
successive transitions which are expected when u3 ≫ u2 ≫ u1. Case 2 represents a direct transition to the completely reflecting
phase D0, which happens when u3 ∼ u2 ∼ u1. A direct transition to D0 is also expected for Case 3, where the Type (II)
scattering potential plays the role.
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