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We use random matrix models to investigate the ground state energy of electrons confined to a
nanoparticle. Our expression for the energy includes the charging effect, the single-particle energies,
and the residual screened interactions treated in Hartree-Fock. This model is applicable to chaotic
quantum dots or nanoparticles—in these systems the single-particle statistics follows random matrix
theory at energy scales less than the Thouless energy. We find the distribution of Coulomb blockade
peak spacings first for a large dot in which the residual interactions can be taken constant: the
spacing fluctuations are of order the mean level separation ∆. Corrections to this limit are studied
using the small parameter 1/kF L: both the residual interactions and the effect of the changing
confinement on the single-particle levels produce fluctuations of order ∆/

√
kF L. The distributions

we find are significantly more like the experimental results than the simple constant interaction
model.

PACS numbers: 73.23.Hk, 05.45.Mt, 71.10.Ca, 73.20.Dx

I. INTRODUCTION

The ground state properties of electrons in nanoparti-
cles or quantum dots—finite systems of fermions inter-
acting via Coulomb forces—remain incompletely under-
stood. One valuable way to probe these systems is via
electrical transport (for reviews see Refs. [1–4]). The
dominant effect is the suppression of the conductance G
because of the charging energy needed to add an electron
to the nanoparticle and so allow current to flow. This
Coulomb blockade (CB) is an essentially classical effect,
and the charging energy is simply EC = e2/2C where C
is the capacitance of the nanoparticle. The blockade can
be lifted by adjusting the potential on the particle—with
a gate voltage Vg, for instance—so that the energy for N
electrons is the same as that for N+1. The conductance
through the nanoparticle has peaks at these degeneracy
points; in fact, G(Vg) is periodic with a spacing of e2/C
between the peaks [1,2].

At low temperature the electron remains coherent in
the dot and so quantum interference effects must be in-
cluded in the Coulomb blockade [5–8]. Two main effects
occur: (1) the peak heights fluctuate from peak to peak
because of varying coupling between the wavefunction
in the nanoparticle and the leads, and (2) the spacings
between the peaks fluctuate because of interference con-
tributions to the ground state energy. Peak heights have
been studied first theoretically [9–19] and then experi-
mentally [19–21]; agreement is good once effects of tem-
perature [13,19] and classical dynamics [16–18] are taken
into account.

In this paper we focus on quantum effects in the peak
spacings. These are directly related to the interference
contributions to the ground state energy. One obvious
contribution is the single-particle energy levels caused by

the confinement in the quantum dot. But there may also
be contributions coming from the interactions in the dot.
We will show that for typical parameters characterizing
experimental quantum dots or nanoparticles the contri-
butions coming from the interactions must be included.

The simplest treatment of Coulomb blockade peak
spacing fluctuations results from writing the ground state
energy as the sum of the classical electrostatic energy
and the energies of the occupied single particle states
[5]. Such an expression for the ground state energy of a
many Fermion system has a long and venerable history
in atomic and nuclear physics [22–24]. Using E for the
energy in the presence of the gate voltage while reserving
E for Vg =0, we have for N particles

EN (Vg) = EN − (Cg/C)eNVg (1)

EN = (e2/2C)N2 +
∑

occupied iσ

ǫiσ

where Cg is the capacitance of the gate to the dot and
{ǫiσ} are the single-particle energy levels. This treat-
ment, known as the constant-interaction model (CI), is
still an important point of reference in the field. The gate
voltage V ∗

g at which a peak in the conductance occurs is
given by the condition EN(V ∗

g )=EN+1(V
∗
g ). The spacing

between two peaks is, then, proportional to the (discrete)
inverse compressibility Λ

(V ∗
g )N→N+1 − (V ∗

g )N−1→N ∝ (2)

EN+1 + EN−1 − 2EN ≡ ΛN .

In the case of the CI model, one gets the simple predic-
tion [25]

ΛN = e2/C for odd N

ΛN = e2/C + (ǫN/2+1 − ǫN/2) for even N . (3)
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Note the drastic odd/even effect in the quantum correc-
tion to the classical result e2/C because of the spin of
the electron.

A number of experiments have studied the distribu-
tion of CB peak spacings in semiconductor quantum dots
[25–29], a particularly flexible and convenient type of
nanoparticle. The overall result has been striking dis-
agreement with the CI model. The main discrepancy is
that there is no sign of the strong odd/even effect pre-
dicted by Eq. (3), though there is evidence of a weak
odd/even effect [29,30]. In addition, in some of the ex-
periments the widths of the observed distributions are
significantly larger than what is predicted using the CI
model and assuming the single-particle energy levels ǫi
are distributed according to the appropriate Gaussian
random matrix ensemble. These discrepancies indicate
unambiguously that interaction effects play a significant
role in the fluctuating part of the Coulomb Blockade peak
position.

Theoretically accounting for this disagreement is diffi-
cult because of two intrinsic characteristics of the prob-
lem: (1) the fairly large number of electrons contained in
the dot (typically N∼100-1000), and (2) the long range
character of the Coulomb interaction which requires that
screening has to be correctly taken into account. The first
of these points makes it delicate to extend to realistic dots
the results obtained by exact multiparticle diagonaliza-
tion [25,31], which can only treat problems with a few
electrons ( <∼ 15). To reach the experimental number of
particles in a numerical approach, one has to rely on some
self-consistent technique. One approach is Hartree-Fock
which has been recently used in quantum dots [32–35].
Then, however, the second point comes into play. In-
deed, screening is a higher-order interaction effect, and
it is well known for the Coulomb interaction that the ex-
change terms can be significantly over evaluated in self-
consistent Hartree-Fock (for the bulk see Ref. [36] but
this applies also for restricted geometries). This makes
it rather difficult to interpret numerical self-consistent
Hartree-Fock calculations using the bare Coulomb in-
teraction as input. Another possible self-consistent ap-
proach is, of course, density functional theory in the local
density or local spin density approximation [37–39]. Here
the screening is properly handled but approximations are
made in the exchange term. Since, as we explain in de-
tail in this paper, the subtle interplay between exchange,
residual direct interactions, and single-particle level fluc-
tuations is critical in describing quantum dot physics,
results from this method are also difficult to generalize.

An alternative theoretical approach is to formally carry
out an RPA screening calculation and then use a short-
range screened interaction in the subsequent evaluation
of the magnitude of various effects [40–42,8]. The na-
ture of the screened interaction used is, then, important.
Since experimentally the system size is much larger than
the screening length, the most natural choice for the in-

teraction is the bulk RPA screened interaction. For mo-
mentum smaller than 2kF this is correctly approximated
by the Thomas-Fermi expression. Throughout this paper
we consider two dimensional systems, in which case

VTF(r) =

∫

dq

(2π)2
V̂TF(q) exp[iq·r] ,

V̂TF(q) =
ν−1

1 + r−1
s (|q|/kF )/

√
2

(4)

where ν is the mean density of states (including spin de-
generacy), and rs = r0/a0 with πr20 the average area per
electron and a0 the Bohr radius in the semiconductor.
It should be born in mind that although V̂TF is propor-
tional to rs for small rs, it becomes largely independent
of rs when rs >∼ 1, which is the case experimentally. In
fact, within any RPA-like approach the interaction can-
not become stronger than

Vzero-range(r) = ν−1δ(r) (5)

which we refer to as the zero-range limit of the potential.
Once screening is included, the problem is that the inter-
action is small, in a sense that we shall make more ex-
plicit below, even in the strongest zero-range limit. Thus
the self-consistent approach should give roughly the same
answer as the CI model with first-order perturbation in
the screened interaction added. This is exactly the pic-
ture one has of weakly interacting Landau quasi-particles,
with the obvious drawback that it is not straightforward
to extract large contributions using this approach (see
e.g. Refs. [40–42]).

In order to obtain a large interaction effect, one pos-
sibility is to give up the Fermi-liquid-like approach and
to assume, for instance, that for some reason screening
is not as efficient in a nanoparticle as in the bulk, and so
conclude that large zero-range interactions, not amenable
to a perturbative treatment, should be used [25,31,40,41].
Before taking this drastic step, it seems reasonable, how-
ever, to see how far one can go within the more standard
Fermi liquid description. Indeed, even in this framework,
we know that the CI model is inadequate.

An accurate treatment of the spacing or inverse com-
pressibility certainly requires that the average effect of
the residual interactions be added to the CI model. By
“residual interactions” we mean interactions beyond the
simple classical effect taken into account in the con-
stant interaction model and, in particular, interactions
between the quasiparticles after the bare electrons are
dressed through screening. While they make a smaller
contribution to the total energy than those considered in
Eq. (1), residual interactions make a contribution of or-
der the mean level separation to the second difference Λ,
comparable to the single-particle contribution in Eq. (3)
[40,42–46]. In the limit of a large nanoparticle—one
whose typical dimension L is many times the electron
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wavelength, kFL≫ 1—only the average effect of residual
interactions needs to be added to the CI model [42–45].
We shall below refer to this approximation as the con-
stant exchange model. The intuitive argument for this is
that the effect of residual interactions involves integrat-
ing wavefunctions over the entire volume of the nanopar-
ticle and so self-averages: the particular characteristics of
any given wavefunction are simply integrated out. Even
if one neglects the fluctuations of the residual interac-
tion terms, because of fluctuations of the single-particle
levels, the “constant exchange” contribution can modify
the total spin of the nanoparticle by favoring non-trivial
occupation of the single-particle orbitals and, as a conse-
quence, will significantly modify the fluctuations of the
peak spacings [40,42]. The ground state spin of a large
nanoparticle in this regime has been examined in detail
[43,45–47], but curiously the corresponding distribution
of Coulomb blockade peak spacings has not appeared ex-
plicitly (see however Ref. [42]). Therefore, before turning
to effects caused by fluctuations in the interactions—our
main interest in this paper—we present below the distri-
bution in the constant exchange limit (kFL ≫ 1) to use
as a reference point.

In the experiments, however, kFL is not very large be-
cause of the need to have the mean level separation larger
than the temperature. This suggests that the variations
in interactions caused by properties of individual wave-
functions are important. The main goal of this paper
is, therefore, to study the effect of fluctuations in the
electron-electron interactions on the distribution of CB
peak spacings.

We limit our study here to the case of chaotic dynam-
ics within the dot, for which a random matrix description
of the non-interacting limit can be used [48]. Much as in
the case of diffusive transport, completely chaotic dy-
namics introduces an important additional energy scale
(and only one): the Thouless energy, ETh = h̄/τ , is the
inverse of the transit time across the dot. It is gener-
ally larger than the mean level separation ∆ but smaller
than the Fermi energy; we will assume ∆≪ETh ≪EF .
On energy scales less than ETh, a universal random ma-
trix description holds while for larger energies (shorter
times) the individual dynamics of the system comes into
play. We will see that taking account of this additional
energy scale is critical in describing CB peak spacings in
nanoparticles.

We focus on two effects in particular: (1) the fluctu-
ation in the residual Hartree and Fock contributions to
the ground state energy and (2) the change in the single-
particle energies because of changes in the mean field
potential as electrons are added to the dot [42], an effect
we refer to as “scrambling”. For two dimensional quan-
tum dots, the changes in energy are evaluated to leading
order in the smallness of the dot, the constant exchange
model being used as the starting and reference point.
We find that both effects contribute terms which are of

order ∆/
√
kFL, up to logarithmic corrections. The re-

sulting distribution of CB peak spacings looks more like
the experiment—it has a more Gaussian and symmetric
form, for instance—but still deviates from the measure-
ments in significant ways.

The paper is organized as follows. Our starting point
is a semiclassical expansion of the ground state energy
described in Section II—an expansion in 1/kFL. The
important large dot limit is presented in Section III.
The next two sections discuss the two main issues—
fluctuations of the residual interaction contributions
(Section IV) and scrambling (Section V). Section VI
takes a first step beyond the Gaussian model introduced
in Section IV. Finally, our conclusions, including a dis-
cussion of the experimental results, appear in Section
VII.

II. APPROACH: SEMICLASSICAL

CORRECTIONS

In the Coulomb blockade through quantum dots we
are faced with a classical theory which works remarkably
well to which we want to add quantum effects to leading
order. The small parameter is the standard semiclassical
one, h̄. In our context, this is equivalent to an expansion
in 1/kFL where kF is the Fermi wavevector and L is the
typical size of the nanoparticle. Another useful way to
view the corrections is in terms of the dimensionless con-
ductance, g, given as the ratio of the transit rate h̄vF /L
to the mean level separation ∆; in this case the expan-
sion is in terms of 1/g, as in the diffusive mesoscopic
regime [49]. For 2-dimensional systems, such as the ones
we consider here, these two parameters are proportional
(g = kFL/2π).

We proceed by using the method of V. M. Struti-
nsky [50,51] in which the dependence of many-body
ground state quantities on particle number can be de-
composed into an average and a fluctuating part. While
the average part varies smoothly with particle number,
the fluctuating part reflects the shell structure of the sys-
tem. The smooth part is the bulk energy per unit vol-
ume integrated over the finite-size system, and the oscil-
lating contributions come from quantum interference ef-
fects explicitly caused by the confinement. By supposing
that the smooth part is known while the unknown oscil-
latory contribution is a correction, Strutinsky introduced
a physically motivated systematic approach to obtain the
shell corrections [50,51]. This shell correction method is
essentially a semiclassical approximation. It rests on the
fact that the number of particles in the system considered
is large, rather than on the interaction between the par-
ticles being weak. (One must, of course, work in a regime
where the smooth starting point is basically valid.) Since
the quantum dots in which we are interested contain on
the order of 100 electrons, they are a perfect place to
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apply the Strutinsky method. We use the formulation
recently developed specifically for quantum dots in Ref.
[52].

Density functional theory guarantees that the ground
state energy of a nanoparticle can be written as a func-
tional of its density, EDFT = FDFT[nDFT]. Neglect-
ing quantum interference effects in this functional cor-
responds to a generalized Thomas-Fermi approximation
(generalized because bulk local exchange and correlation
can be included) which can also be written as a func-
tional of a (smooth) density, EGTF = FGTF[nGTF]. The
quantum interference part of the energy, EDFT − EGTF,
can be obtained approximately by expanding nDFT about
nGTF and solving the resulting density functional equa-
tions order by order in the oscillating part of the density
nDFT − nGTF. To carry out this procedure an explicit
form for the exchange-correlation functional is required.
Based on the local density approximation, the result de-
rived in Ref. [52] is

EDFT ≃ EGTF + ∆E(1) + ∆E(2) (6)

where the first and second order correction terms are

∆E(1) = Eosc
1p

[

Veff [nGTF]
]

≡
N
∑

i=1

δǫi (7)

∆E(2) =
1

2

∫

drdr′ ñosc(r)Vsc(r, r
′) ñosc(r′) . (8)

The first-order correction is the oscillatory part of the
single-particle energy, Eosc

1p , calculated in the smooth
Thomas-Fermi potential, Veff [nGTF]; that is, it is the
sum of the deviations δǫi of the single-particle levels ǫi
from their mean values. In the second-order correction,
ñosc is the deviation of the quantum mechanical den-
sity calculated in the Thomas-Fermi potential from the
smooth starting point, ñosc ≡ n

[

Veff [nGTF]
]

(r) − nGTF,
and Vsc(r, r

′) is the screened interaction in the nanopar-
ticle. To the order that we are working, using ñosc here
is equivalent to using nDFT − nGTF [52].

In this approach, the ground state energy is, then, the
sum of a classical contribution—the generalized-Thomas-
Fermi result EGTF—and two quantum contributions—
∆E(1) and ∆E(2). With the inclusion of only the first-
order contribution, Eq. (6) is simply the CI model for
the ground state energy. Because we have the correc-
tions to this model, we can see exactly when it is appli-
cable. The second-order correction, Eq. (8), has a nat-
ural interpretation: the ripples in the density caused by
interference (the Friedel oscillations in this setting) in-
teract with each other via an interaction screened by the
smooth Thomas-Fermi fluid already present. In fact, the
bulk Thomas-Fermi interaction Eq. (4) can often be used
for Vsc. Taking the rs → ∞ limit formally yields the zero-
range interaction limit (5). This is equivalent to using a
Hubbard Hamiltonian on a square lattice with hopping
term t and interaction U with U/t = π.

The result Eq. (6) is, however, inadequate for our pur-
poses here because of the local density approximation
used. In particular, the spin degree of freedom is han-
dled poorly in this approximation: while Eq. (8) gives the
“direct” interaction between the density ripples, an anal-
ogous “exchange” term is missed. A better treatment
of the interactions in density functional theory could
presumably yield this additional term, by including off-
diagonal terms in the density matrix, for instance. In
fact, an RPA treatment of the interaction in the diffusive
case yields an energy with exactly this structure [42,8].
Motivated by these physical considerations, we simply
add the exchange term by hand to the expression for the
energy EDFT.

For the purposes of deriving CB peak spacing distri-
butions, we thus consider 3 contributions to the ground
state energy: (1) the Thomas-Fermi energy, (2) the de-
viation of the single-particle energy from its mean, and
(3) a Hartree-Fock like treatment of the residual screened
interaction. Without the residual interactions, a N -
particle state is, of course, a Slater determinant in the ba-
sis of single-particle eigenstates ψi(r); it is characterized
by the occupation numbers (n0σ, n1σ, . . .) where niσ = 0
or 1, σ = +1 or −1 labels the spin degree of freedom, and
∑

niσ = N . In this occupation number representation,
the expression for the energy is, then,

Etot({niσ}) = EGTF +
∑

iσ

niσδǫi (9)

+
1

2

∑

iσ,jσ′

niσMijnjσ′ − 1

2

∑

i,j;σ

niσNijnjσ

where

Mij ≡
∫

drdr′ |ψi(r)|2 VTF(r − r′) |ψj(r
′)|2 (10)

Nij ≡
∫

drdr′ψi(r)ψ
∗
j (r)VTF(r − r′)ψj(r

′)ψ∗
i (r′) (11)

are the direct and exchange contributions, respectively.
This is the starting point for our study of CB peak spac-
ings.

In order to derive the statistical properties of the
CB peak spacings from Eq. (9), the statistical prop-
erties of the single-particle eigenvalues and eigenfunc-
tions must be known. For this purpose we assume that
the single-particle classical dynamics in the nanoparti-
cle is completely chaotic. In this case it is well-known
that the single-particle quantum mechanics is accurately
described by random matrix theory (RMT) on an en-
ergy scale smaller than the Thouless energy ETh (which,
again, is the inverse time of flight across the system)
[48,53]. We consider only the case of no symmetry here,
so that the energy levels {ǫi} obey Gaussian Unitary En-
semble (GUE) statistics. Because of the spatial integrals
in the expressions for Mij and Nij , the correlations of the
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wavefunctions are also needed. For the classical Gaussian
ensembles, there is no spatial correlation for a given wave-
function, except for that arising from the normalization.
This is a direct consequence of the fact that no basis
should play a particular role for these matrix ensembles.
Here, however, because of the particular role played by
the kinetic energy, the plane wave basis is special. More
precisely, we should implement that each eigenfunction
is localized in this basis on the energy scale ETh. We
shall therefore build our random matrix ensemble with
the following requirements (a practical implementation
is given in section VI):

i) On energy scales smaller than the Thouless energy
ETh, one should recover standard GUE properties.

ii) On scales larger than ETh, an eigenstate of en-
ergy ǫ should appear localized on the energy surface
|k| =

√
2mǫ/h̄. More precisely, we require that in

a plane wave basis an eigenstate has an envelope of
width

δk = 1/L (12)

where L is the typical size of the system.

iii) Finally, we have to implement that the fluctuations
of energy levels, and also importantly of local den-
sity, saturate at the Thouless energy. That is, if
one considers a quantity A expressed as a sum over
the energy levels in an energy window δE about
the Fermi energy, as the window widens the fluctu-
ations of A increase until δE≈ETh beyond which
point the fluctuations of A do not further increase.

Except for the fact that the Fermi surface is given an
explicit width ≈ ETh due to the finite size L of the sys-
tem, items i) and ii) are very similar to Berry’s modeling
of chaotic wave functions [54] which assumes that a ran-
dom superposition of plane waves describes the correla-
tion on scales smaller than the size of the system L. Item
iii) is motivated by the known saturation of, for instance,
fluctuations in the density of states of chaotic systems at
an energy scale of order h̄ divided by the period of the
shortest periodic orbit [48]. Note that these requirements
will yield a random matrix approach noticeably different
from the ones discussed in Refs. [40,43,46].

In this model, the wave function statistics that we find
are as follows: for a two dimensional dot of area A (the
case that we consider throughout this paper)

A〈ψi(r)ψ
∗
j (r′)〉 = δij J0(kF |r − r′|) (13)

for |r− r′| ≪ L. (In a maximum entropy approach semi-
classically restricted by the classical dynamics, this cor-
responds to keeping only the direct trajectory between r

and r′; the approach can be generalized to keep more
classical paths [55,18].) In addition, it can be shown

that within our random matrix modeling, one has, up
to 1/(kFL) corrections

〈ψi(r1)ψ
∗
i (r2)ψi(r3)ψ

∗
i (r4)〉 = (14)

〈ψi(r1)ψ
∗
i (r2)〉〈ψi(r3)ψ

∗
i (r4)〉

+〈ψi(r1)ψ
∗
i (r4)〉〈ψi(r3)ψ

∗
i (r2)〉 .

Alternatively, these statistics can be obtained directly by
assuming that the distribution of wavefunctions is Gaus-
sian [55], though in this case special care must be taken
with regard to the normalization constraint.

There are alternate routes to our very natural starting
point Eq. (9). One that has been developed recently is
the “universal Hamiltonian” approach [56,57,45,8] which
uses RPA to treat the interactions, RMT properties of
the single-particle wavefunctions, and the small param-
eter 1/g to arrive at an effective Hamiltonian. Treating
this effective Hamiltonian in the Hartree-Fock approxi-
mation leads to the same expression for the ground state
energy that we give above.

We end this section by giving explicit expressions for
the inverse compressibility, which is proportional to the
peak spacing [Eq. (2)], in two simple cases in which the
standard up-down filling of the states is assumed. First
consider the case of N even with n=N/2. For the stan-
dard filling, it is a singlet state and the two neighboring
states for N−1 and N+1 electrons are doublets. The
peak spacing is then

∆2EN even = ∆2EGTF + δǫn+1 − δǫn (15)

+
n
∑

i=1

[

2
(

Mn+1,i −Mn,i

)

−
(

Nn+1,i −Nn,i

)]

.

On the other hand if N is odd, still assuming the simplest
up-down filling, the peak spacing is

∆2EN+1 odd = ∆2EGTF +Mn+1,n+1 . (16)

The second difference of EGTF is almost equal to the
charging energy e2/C but there is a small correction from
the residual interactions; this is discussed in detail below.

III. LARGE DOT LIMIT

The main simplifying feature in the large dot limit,
kFL≫ 1, is that the fluctuations of the interactions can
be neglected, much as for diffusive nanoparticles [56–59]
in the large g limit. The distribution of the spacings
is determined, then, by the fluctuations of the single-
particle levels and their interplay with the mean residual
interactions. Of course, as has been studied previously
[40,43–45], the ground state of the nanoparticle does not
necessarily follow the simple filling used in Eqs. (15)-
(16), and this effect must be included in finding the dis-
tribution.
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Let us consider the mean and variance of the Mij and
Nij for levels near the Fermi level. We have, for instance,
using Eq. (15)

〈Mij〉 =

∫

drdr′〈|ψi(r)|2〉VTF(r − r′)〈|ψj(r
′)|2〉 (17)

+δij

∫

drdr′ |〈ψi(r)ψ
∗
i (r′)〉|2 VTF(r − r′)

We will make the simplifying assumption that the
nanoparticle is a billiard so that the average density is
constant: 〈|ψ(r)|2〉=1/A where A is the area of the par-
ticle and the correlation function is given by Eq. (13). In
this case the mean values are

〈Mij〉 =
∆

2
+ δij

〈V̂TF〉fs
A

〈Ni6=j〉 =
〈V̂TF〉fs
A

(18)

where

〈V̂TF〉fs =

∫ 2π

0

dθ

2π
V̂TF

(

kF

√

2(1 + cos θ)
)

(19)

is the average on the Fermi surface of V̂TF(k−k′). In the
zero-range interaction limit, these expressions simplify to

〈Mij〉 = (1 + δij)∆/2 , 〈Ni6=j〉 = ∆/2 . (20)

The magnitude of the residual interaction effects is thus
of order the mean level spacing ∆. (Note that the ∆
that we use here and throughout this paper is the spac-
ing of the orbital levels alone and so does not take into
account the spin degeneracy factor.) Since energies of
this order are critical in determining the spacing of CB
peaks—note, for instance, the case of standard up-down
filling Eq. (15)—the residual interaction terms must be
included in any theory. In particular, the reason for the
failure of the simple constant interaction model, Eqs. (1)
and (3), is now clear: it does not consistently keep all
terms of order ∆.

The variance or covariance of any of the Mij and Nij

will involve the correlation function of a wavefunction.
For example, consider the variance of Mi6=j :

var(Mi6=j) =

∫

dr1dr2dr3dr4

〈

[|ψi(r1)|2 −A−1]VTF(r1 − r2)[|ψj(r2)|2 −A−1] (21)

×[|ψi(r3)|2 −A−1]VTF(r3 − r4)[|ψj(r4)|2 −A−1]
〉

=

∫

dr1dr2dr3dr4VTF(r1 − r2)VTF(r3 − r4) |〈ψi(r1)ψ
∗
i (r3)〉|2

∣

∣〈ψj(r2)ψ
∗
j (r4)〉

∣

∣

2
. (22)

The first equality is due to the normalization of the wave-
function, and the second derives from Eq. (15). Because
of the decay of the autocorrelation of ψ, Eq. (13), the
spatial integrals in (21) are restricted to a region where
r1 is close to r3 and likewise r2 to r4. These restrictions
produce factors of the small parameter 1/kFL compared
to the mean values. We will evaluate these factors be-
low. However, for the large dot limit here, we see that to
zeroth order in 1/kFL all the fluctuations in the residual
interactions may be neglected [43–45], as in the diffusive
case [56–59]. Qualitatively, this is natural because of the
averaging implicit in the integral in Mij and Nij : when
the size of the system is much larger than the scale of os-
cillation of ψ(r), particular features of ψi and ψj become
less important compared to the mean behavior.

For the CB peak spacing distribution, we thus con-
sider the expression for the ground state energy (9) with
constant 〈Mij〉 and 〈Nij〉. The problem is still compli-
cated because of the interplay of the fluctuations in the
single particle levels with these constants, which may,
for instance, lead to S = 1 or higher ground state spins
[43–45]. We thus evaluate the distribution of Coulomb
blockade peak spacings numerically: Hamiltonians are
taken at random in the GUE ensemble, and the lowest
energy states for N−1, N , and N+1 particles are ob-

tained by determining in each case the occupation num-
bers {niσ} which minimize the expression Eq. (9).

The resulting distribution of CB peak spacings is
shown in Fig. 1. We show it for two different strengths
of interactions, the case of rs = 1 and the zero-range in-
teraction limit. The first thing to note is that for both
of these values the distribution differs substantially from
that in the CI model, Eq. (3), with much less odd/even
alternation present. Still, there is a δ-function in the
distribution, as is clear in the cumulative distribution
functions in panel (c), because the constant residual in-
teraction term gives a rigid shift to the spacing for odd
N and standard filling, Eq. (16). The origin of spacing
in these plots is ∆2EGTF + 〈Mi6=j〉. This is the mean
spacing for adding a particle into the next available state
neglecting all spin/filling effects; it thus corresponds to
the classical charging energy e2/C.

The fluctuations of the peak spacings are smaller in
this constant exchange model than in the CI model.
This is natural since the even and odd parts of the dis-
tribution are brought closer together. The values are
rms(∆2EN )/∆=0.58 in the CI model and 0.28 (0.24) in
the present large dot case for rs =1 (zero-range interac-
tion).
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FIG. 1. The probability density of CB peak spacings in the large dot limit (kF L → ∞). The total distribution (solid) as well
as that for N even (dashed) and odd (dotted) is given for two strengths of the interactions: (a) rs =1 and (b) the zero-range
interaction limit. The presence of a δ-function in the distribution is particularly clear in the cumulative distribution functions
(the integral of the probability density) shown in (c). Insets show the probability of occurrence of ground state spins in the
two cases. The spacing is in units of the mean level separation ∆, and the origin corresponds to the classical spacing e2/C.

IV. FLUCTUATIONS OF RESIDUAL INTERACTIONS

In order to evaluate the statistical effect of fluctuating residual interactions, we need to find the distribution of the
Mij and Nij . We will show that in the limit of large but not infinite kFL, the M ’s and N ’s are Gaussian distributed
and uncorrelated.

The first step is to evaluate the variance of the M ’s and N ’s. Using the random matrix ensemble introduced in
Section II, we find to a good approximation,

var(Mi6=j) ≃
8

πA2

∫ 2k−π/L

π/L

dq

q

VTF(q)2

(2kL)2 − (qL)2
≃ 1

πA2

ln(kL)

(kL)2
[2V̂ 2

TF(0) + V̂ 2
TF(2k)] (23)

var(Ni6=j) ≃
2

πA2

∫ 2k−π/L

π/L

dq

q

[V̂TF(q) + V̂TF(2k)]2

(2kL)2 − (qL)2
(24)

〈Mi6=jNi6=j〉 − 〈Mi6=j〉〈Ni6=j〉 ≃
4

πA2

∫ 2k−π/L

π/L

dq

q

V̂TF(q)[V̂TF(q) + V̂TF(2k)]

(2kL)2 − (qL)2
; (25)
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details for the case of var(Mi6=j) are given in Appendix A. The diagonal part of the direct residual interaction has an
extra contribution because of the additional way in which the wavefunctions can be paired:

var(Mii) ≃ 2var(M2
i6=j) +

8

πA2

∫ 2k−π/L

π

dq

q

V̂TF(q)[V̂TF(0) + V̂TF(
√

(2k)2 − q2)]

(2kL)2 − (qL)2
. (26)

In the zero-range interaction limit, the expressions for
the variance of the M ’s and N ’s simplify considerably, as
for the mean values given in Eq. (20). In this case, we
find

var(Mij) = var(Ni6=j) =
3∆2

4π

ln(kL)

(kL)2
(1 + 3δij) . (27)

Note that the decay of the wavefunction correlations ap-
pearing in the variance produces a factor of 1/kFL in the
rms compared to the mean. The ln(kL) factor is special
to two dimensions; it comes from the 1/kL decay of the
wavefunction correlator in this case. Thus in the large
dot limit, kFL≫1, the distributions of the M ’s and N ’s
are narrowly peaked about their mean values. This is
the justification for ignoring these fluctuations to a first
approximation in the last section.

Higher moments of the distribution involve coupling

between more pairs of wavefunctions. The non-Gaussian
part of the distribution is described by the cumulants,
in which all of the wavefunctions are coupled in ways
not present in the lower moments. In this case, the spa-
tial integrals will have more restrictions coming from the
wavefunction correlation (13); these restrictions will in
turn produce additional factors of the small parameter
1/kFL. Thus in the large dot limit all higher moments
can be neglected. In the case of third and fourth moments
this can be easily verified by explicit calculation. Like-
wise it is straightforward to check that cross correlations
among the M ’s and N ’s do not need to be considered,
except for the obvious correlation between Mij and Nij

which are equal in the zero-range interaction limit. We
shall return to this point in Section VI. In this Section,
however, we shall either take Mij =Nij in the zero-range
interaction limit, or neglect this correlation for rs = 1,
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FIG. 2. The probability density of CB peak spacings including the fluctuations in the residual interactions. The total
distribution (solid) as well as that for N even (dashed) and odd (dotted) is given for two sizes of quantum dot (N ≈ 200, left
column, or 80, right column) and two strengths of interaction (rs =1, top row, or the case of a zero-range interaction, bottom
row). All of the features of the distribution are smoothed compared to Fig. 1. Note that the odd/even effect is quite clear in
all four cases, and that the remnants of the δ-function are discernible. The spacing is in units of the mean level separation ∆,
and the origin corresponds to the classical spacing e2/C.
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and therefore take the Mij and Nij to be uncorrelated
random Gaussian variables with mean and variance given
above.

We now use the statistics of the Mij , Nij , and sin-
gle particle levels (assumed to follow the random matrix
GUE ensemble as in Section III) to deduce the statistics
of the CB peak spacings. It is clear from the expres-
sions for the spacing in the simple up-down filling case,
Eq. (15), that sums such as

∑

j Mij will be important.
Because of the saturation of the fluctuations, item iii)
in the random matrix model of Section II, the variance
of such a sum involves only levels within ETh of each
other. In calculating var

(
∑

j Mij

)

, then, the sum should
be taken over of order kFL independent M ’s:

var
(

∑

j

Mij

)

∝ ln(kFL)

kFL
∆2 . (28)

The variance of other sums over the residual interaction
terms will have the same dependence on kFL. Up to a√

ln factor, we thus expect the contribution of the fluctua-
tions of the residual interactions to the CB peak spacings
to be of order ∆/

√
kFL in rms.

In order to evaluate the magnitude more accurately, we
turn again to numerical evaluation. We consider a col-
lection of ETh/∆ levels with GUE energies and Gaussian
residual interaction terms. We fill the levels with N−1,
N , and N+1 particles successively, and find the occupa-
tion numbers {niσ} minimizing the energy Eq. (9) in each
case. Fig. 2 shows the resulting distribution of CB peak
spacings. The fluctuations clearly act to smooth out all
the sharp features of the kFL → ∞ case: the δ-function
becomes a finite peak, and the discontinuity at the origin
is removed. The difference between the N even and odd
cases is quite clear—even for the relatively small N=80
(for which 1/

√
kFL≃0.21). The fluctuations of the resid-

ual interaction terms lead, of course, to an increase in the
fluctuations of the spacing; now rms(∆2EN )/∆=0.31 for
rs =1 and N=80-200 compared with 0.28 in the absence
of such fluctuations. While the inclusion of the fluctu-
ations has clearly made the distributions more like the
experiments, substantial differences remain.

V. SCRAMBLING: ADDED ELECTRON

CHANGES CONFINEMENT

As electrons are added to the nanoparticle, the mean
field potential which confines the electrons changes. This
causes a change in the single particle levels, whose ener-
gies appear in the expression for the ground state energy
Eq. (9), which then in turn change the CB peak spacing.
Because we consider a chaotic quantum dot, the change
in the energy levels will be unpredictable; hence, we call
this effect “scrambling”. Note that it is an intrinsic effect
connected to the charge of the electron not the geometry

or environment of the dot. This effect has been studied
previously for diffusive quantum dots in Ref. [42]; here
we give a derivation directly in the context of ballistic
chaotic dots.

We know from the Strutinsky approach (Section II)
that the change in the single particle levels should be
found from the change in the smooth Thomas-Fermi po-
tential, Eq. (7). So we first evaluate this change in poten-
tial, and then use perturbation theory to find the change
in the energy levels. Perturbation theory is justified since
the resulting shift is smaller than the mean level sepa-
ration ∆ by a factor depending on kFL. As a check,
one can evaluate the magnitude of the fluctuation in the
event of a complete scrambling of all the single particle
levels. The properties of sums of random matrix eigen-
values in Ref. [60] imply a very large fluctuation of the
peak spacings—of the order 2-4∆ which is larger than
observed experimentally.

A. Evaluation of δVeff

The generalized Thomas-Fermi problem is specified in
terms of the density functional

FGTF[n] = TTF[n] + Eext[n] + Ecoul[n] + Exc[n] (29)

comprising four contributions: the kinetic energy

TTF[n] =

∫

dr
[

∫ n(r)

dn′ǫ(n′)
]

(30)

where ǫ(n′) is the maximum kinetic energy of non-
interacting particles with density n′, the confinement po-
tential defining the geometry of the dot

Eext[n] =

∫

drVext(r)n(r) , (31)

the Coulomb energy

Ecoul[n] =
e2

2

∫

drdr′
n(r)n(r′)

|r − r′| , (32)

and the exchange-correlation potential Exc. The Thomas-
Fermi density is found by solving

δFGTF

δn
[nGTF] = µTF , (33)

where n(r) is the electronic density and µTF is found
such that

∫

n(r)dr = N . The effective potential is, then,
defined by

Veff(r) ≡ δ(Eext + Ecoul + Exc)

δn
[nGTF] . (34)

Let δnGTF = nGTF(N+1)−nGTF(N) be the change in
the Thomas-Fermi density when one electron is added to
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the system. Bearing in mind that Eq. (33) is a classical-
like equation for which δnGTF is small, one can write

∫

dr′
δ2TTF

δn2
[nGTF](r, r′)δnGTF(r′) (35)

+

∫

dr′
δVeff

δn
(r, r′)δnGTF(r′) = δµTF

with δµTF such that
∫

δnGTF(r) = 1. In two dimen-
sions, the Coulomb energy of the added charge will dom-
inate any variations in the kinetic energy. One can
therefore write the variation of the density as δnGTF =
δn0

GTF +δn1
GTF + . . . with δn0

GTF the solution of the elec-
trostatic problem

δµ0 =

∫

dr′
δ2Ecoul

δn2
(r, r′)δn0

GTF(r′)

= e2
∫

dr′
δn0

GTF(r′)

|r − r′| . (36)

At this level of approximation, the variation of the po-
tential inside the dot is just the constant δµ0, which will
just shift the one particle energies ǫi but not give rise
to any fluctuation. One should keep in mind though
that Eq. (33) applies only at places where nGTF(r) 6= 0.
Therefore the boundaries of the effective potential can
be affected, in a way that depends, of course, largely on
the external confining potential, and in particular on the
second derivative of this latter at the the boundary. If
the curvature is weak, fairly large displacements of the
boundary can occur, which could play a significant role.

If, on the other hand, one assumes a billiard-like con-
fining potential, the only source of modification of the
effective potential comes from δn1

GTF, which is obtained
through the equation

∫

dr′
δ2TTF

δn2
(r, r′)δn0

GTF(r′) +

∫

dr′
δVeff

δn
(r, r′)δn1

GTF = δµ1 .

(37)

Noting that
∫

(δVeff/δn)δn1
GTF is, up to an inessential

additive constant, the variation δVeff of the effective po-
tential we are interested in, and that

δ2TTF

δn2
(r, r′) = ν−1δd(r − r′) , (38)

we get

δVeff(r) = −∆
(

δñ(r) − δñ
)

(39)

where δñ ≡ Aδn0
GTF(r) is a smooth function of order 1

(A is the area of the dot). Note that we choose δVeff with
mean value zero. This ensures that there is no change in
the mean energy levels; any such change in the mean
should be incorporated in the charging energy.

B. Consequences for the peak spacing distribution

The variation of the effective potential induces a
change of the one particle energies. We let εN denote

the single particle energy of the Nth electron, whatever
orbital it is in (for N even and simple up/down fill-
ing, for instance, εN = ǫN/2). In perturbation theory,

δεj = δε
(1)
j + δε

(2)
j + . . . with

δε
(1)
j = 〈ψj |δVeff |ψj〉 (40)

δε
(2)
j =

∑

k 6=j

|〈ψj |δVeff |ψk|〉|2
εk − εj

. (41)

When going back to the inverse compressibility, one
should bear in mind, however, that the variation of Veff

when going from N−1 to N electron is the same as when
going from N to N +1. As a consequence, it can be

checked easily that the linear variation δε
(1)
j cancels for

all levels except the two top ones. At this level of ap-
proximation one therefore gets

∆2EN = ∆2ECI
N + ∆2Escramb

N (42)

where ∆2ECI
N is the constant interaction model result

given in Eq. (3), and

∆2Escramb
N = δεN+1 + δεN +

N−1
∑

j=1

δ2εj (43)

is the correction due to scrambling. The levels used for
∆2ECI

N are those for the N -electron Veff . Throughout
this scrambling argument we assume that the filling of
the levels does not change.

First order terms

The mean of the first order terms is zero by construc-

tion. The variance of δε
(1)
i is

var
(

δε
(1)
i

)

= ∆2

∫

drdr′|〈ψi(r)ψ
∗
i (r′)〉|2δñ(r)δñ(r′) .

(44)

Using the wavefunction correlations (13) and approxi-
mating J2

0 (kF |r − r′|) ≃ 1/(πkF |r − r′|) plus oscillating
terms (kF |r − r′| > 1), we find

var
(

δεi

)

≃ α · ∆2

πkFL
. (45)

The prefactor depends on the geometry of the dot under
consideration:

α =

∫

d2ud2u′ 1

|u − u′|δñ(u)δñ(u′) (46)
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is a dimensionless quantity of order 1 (note u = r/L). For
a circular dot, for instance, with diffuse boundary scat-
tering to make it chaotic, δñ = {[1− (r/R)2]−1/2 − 2}/2
where R is the radius; in this case, α ≃ 1.2.

Bearing in mind that kFL ≃
√

2πN (taking into ac-
count the spin degeneracy), we see that the typical am-
plitude of the variation of the δεi scales as N−1/4 times
the mean level spacing. This may, in fact, be numeri-
cally significant for experimental dots—for a circular dot
with 100 electrons, for instance, the magnitude would be
≃ 0.12∆ .

Second order terms

The variance of the sum
∑N−1

1 δ2εi can be evaluated
along the same lines. Since it turns out to be parametri-
cally smaller, we will be less careful with the constant.

First we note that the fluctuation of an individual ma-
trix element is

var
(

〈i|δVeff |j|〉
)

=
∆2

A2

∫

drdr′J0(kiδr)J0(kjδr)δñ(r)δñ(r′)

(47)

where δr = r−r′. Following the same reasoning as above,
this implies that

var
(

〈i|δVeff |j|〉
)

≃
{

0 if δkL > 1
α∆2/πkFL if δkL < 1

(48)

where δk = ki − kj .
This result is now inserted in the expression (41) for the

energy shift δε
(2)
j and then for the inverse compressibility

Eq. (43). Assuming the matrix elements 〈i|δVeff |j|〉 are
Gaussian distributed independent variables, we find

σ2
2 ≡ var

(

N−1
∑

i=1

δ2εi

)

(49)

≃
N−1
∑

i=N−Nc

N+Nc
∑

j=N

1

(ε̄i − ε̄j)2
var
(

|〈ψi|δVeff |ψj |〉|2
)

.

Because of the saturation of the fluctuations of the levels,
point (iii) in the random matrix criteria of Section II, the
sum over levels is cut off at Nc =kFL. The final result is

σ2
2 ∝ ln kFL

(

∆

kFL

)2

(50)
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FIG. 3. The probability density of CB peak spacings including the scrambling effect on the top two levels as well as the
fluctuations in the residual interactions. The total distribution (solid) as well as that for N even (dashed) and odd (dotted)
is given for two sizes of quantum dot (N =200, left column, or 80, right column) and two strengths of interaction (rs =1, top
row, or the case of a zero-range interaction, bottom row). Note that the clear odd/even effect for rs =1 and the relatively small
N =80 remains visible even for the stronger zero-range interaction. The spacing is in units of the mean level separation ∆, and
the origin corresponds to the classical spacing e2/C.
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which is parametrically smaller than the first order re-
sult (45). We therefore see that the the effect of scram-
bling is dominated by the variation of the top levels, and
that this adds contributions to the peak spacing fluctu-
ations which while parametrically small on the scale of
∆ could be numerically important for dots which are not
too large.

C. Numerics

It is a simple matter to incorporate the scrambling of
the top two levels into our numerical investigation of the
ground state energy specified by Eq. (9). In random ma-
trix theory, the change in an energy level upon varying
a parameter is uncorrelated with its value [61,62], so we
simply choose random δεN and δεN+1 from a Gaussian
distribution with variance Eq. (45). The ground state
configuration is then found as before.

Fig. 3 shows the resulting probability density of CB
peak spacings. In the rs = 1 case there is still a sub-
stantial difference between the distributions of even and
odd spacings: for N even, the large spacing tail com-
ing from the level-spacing distribution (Wigner surmise)
survives even for less than 100 electrons. When the inter-
actions are stronger, as in the zero-range interaction case
shown, the even and odd distributions are more similar,
but there is still a discernible difference. The magni-
tude of the fluctuations increases further: we now find
rms(∆2EN )/∆=0.33-0.32 for rs =1 and N=80-200.

VI. BEYOND THE GAUSSIAN MODEL

Our treatment of the fluctuations of the residual inter-
actions in the previous sections relies on a certain number
of assumptions. We have for instance neglected correla-
tions among the Mij and Ni′j′ (except for the obvious
Mij = Nij for a zero-range interaction) when we know,
for instance, that the correlation coefficient of Mij with
Nij is of order 1 even in the infinite size limit. Similarly
we have assumed the absence of correlation between these
residual interaction terms and the one particle energies ǫi.
Furthermore, we have used expressions such as Eqs. (23)-
(26) which are derived in the large kFL limit. To check
that these assumptions do not drastically modify the re-
sulting distribution of CB peak spacings, we shall in this
section implement the random matrix ensemble described
in Section II [paragraph containing Eq. (12)] by directly
performing numerical Monte Carlo calculations.

To implement the constraints of our random matrix
model, we start by considering the system to be a square
of size L, for which we can use a plane wave basis

|nx, ny〉 = L−2 exp[i2πnxx/L] exp[i2πnyy/L] (51)

ordered by increasing momentum. In this basis, we write
the one particle Hamiltonian as H = D+V where D
is diagonal with Dii = i. V is taken to be a banded
random Hamiltonian with independent complex matrix
elements which are Gaussian distributed with variance
v2

ij = a(i)exp(−b(i)|i− j|). For a(i) in the correct range
[63] such an ensemble yields (1) eigenvalues with a mean
spacing close to one, (2) local fluctuations which are typ-
ical of the GUE, and (3) eigenfunctions which are local-
ized in energy. The localization in energy can be char-
acterized by the inverse participation ratio in the plane
wave basis: Ij =

∑

nx,ny
|〈nx, ny|ǫj〉|4. Our requirement

Eq. (12) implies the constraint

I−1
j = (3/4)(kjL) . (52)

In practice, we use a simple algorithm to tune the value
of a(i) and b(i) in such a way that this constraint holds.
Diagonalizing the random matrix specified leads to eigen-
values and eigenvectors which are then used to evaluate
ground state energies for different number of particles via
Eq. (9), and hence arrive at the CB peak spacings in this
model.

In this approach, deviations from the wavefunction cor-
relations (13) required by normalization are naturally
present. Furthermore, correlation between eigenvalues
and eigenfunctions is present as well. Of course, in a
real physical system, these effects would be automati-
cally included because of the scattering at the boundary
of the system—the transit time τ , for instance, gives both
the scale over which fluctuations saturate (h̄/τ) and the
length scale at which the Bessel function correlations be-
come suspect (vF τ). We believe that our random matrix
model includes the main features of these effects in a
generic way.

Fig. 4 shows numerical results for this model. We
consider only the smaller value of N , N = 80, because
the effects are expected to be only significant for smaller
quantum dots. On the other hand, we present results
both with and without the scrambling effect of Section
V, and for different interaction strengths—rs = 1 corre-
sponds to a typical value for a GaAs quantum dot while
the zero-range interaction case corresponds to the max-
imum effect possible within a perturbative approach to
the interactions. When these results are compared to
those of Figs. 2 and 3, we see that there is a small
but noticeable effect. This is highlighted in the quantile-
quantile plots in the insets to Fig. 4 where an ordered
set of RMT spacings is plotted against a similar set for
the Gaussian model. The present RMT yields a more
pronounced large spacing tail than the Gaussian model.

VII. CONCLUSIONS

In this paper we have studied the Coulomb blockade
peak spacings for large but not infinite quantum dots
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approximation. For N ≈80, the total distribution (solid) as well as that for N even (dashed) and odd (dotted) is given for two
strengths of interaction (rs =1, top row, or the case of a zero-range interaction, bottom row) in the presence of scrambling (right
column) and without scrambling (left column). Features of the distribution are more pronounced than in the Gaussian model
(Figs. 2 and 3), suggesting that smoothing effects are slightly overestimated in the Gaussian approximation. Insets: Quan-
tile-quantile plots of the random matrix model versus the Gaussian model; note the differences at large spacings. Throughout,
the spacing is in units of the mean level separation ∆, and the origin corresponds to the classical spacing e2/C.

in the case that the interactions can be treated pertur-
batively and the single-particle properties described by
random matrix theory. Motivated by the Strutinsky ap-
proach to finite Fermi systems [50–52], we use an expres-
sion for the ground state energy [Eq. (9)] which includes
the charging energy, the single particle quantization ef-
fects, and the residual (screened) interactions treated in
first order (Hartree-Fock).

We presented results in four cases. First, in the limit
kFL → ∞, fluctuations of the residual interactions are
negligible. The CB peak spacing distribution has a dis-
continuity at e2/C and a δ-function because of the odd
N case (Fig. 1). The distribution is very different from
that predicted by the simple CI model which neglects
some terms of order ∆ while keeping others.

Second, fluctuations in the residual interactions con-
tribute a term typically of order ∆/

√
kFL to the CB peak

spacings. The sharp features of the infinite dot limit are
rounded out (Fig. 2).

Third, the addition of an electron in the CB process
changes the confinement potential in the quantum dot
and so changes the single particle properties. This scram-
bling effect also contributes a term typically of order

∆/
√
kFL to the CB peak spacings, and the distribution is

rounded further. However, the difference betweenN even
and N odd remains substantial at large spacings where
a tail is present for N even (Fig. 3) which is a remnant
of the Wigner surmise distribution for level spacings.

Finally, we took a first step towards investigating cor-
rections to the Gaussian uncorrelated model for the fluc-
tuations of the residual interactions. We found that the
large spacing part of the distribution is somewhat under-
estimated in the Gaussian model.

Before ending this paper, we compare our theoretical
distributions to those obtained experimentally [25–29].
The observed distribution has little structure, being
Gaussian near its peak but with longer tails for both
larger and smaller spacings. The width of the distribu-
tion is contentious: early work claimed that the width
scaled with the charging energy [25,26] but this has not
been verified by more recent experiments [27–29]. In the
more recent experiments, the width is clearly related to
the mean level separation ∆ and in the range 0.5-1.5∆,
somewhat larger than given by, e.g., the CI model.

The theoretical results presented here certainly look
more like the experiments than the benchmark CI model:
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the distribution is more rounded and so less structured,
and the odd/even alternation is much less pronounced.
We suspect that further development of this approach
will produce qualitative agreement with the experiments.

In the end, however, the theory presented here does
not provide an adequate quantitative description of the
experiments. To start with, the magnitude of the fluctu-
ations is actually less than in the CI model (0.58 versus
0.32 for N = 200) and so differs from experiment. With
regard to the odd/even effect, the situation is somewhat
less clear, and so more interesting. Looking at Fig. 3, for
instance, one observes that a substantial odd/even effect
is still present for rs = 1, while it has been largely washed
out in the zero-range limit of the screened interaction. It
should be stressed that this drastic modification of the
distributions can be traced back mainly to the relatively
modest change in the mean values 〈Mii〉−∆/2 and 〈Nij〉,
Eqs. (18)-(20), which change from about 0.3∆ for rs =1
to 0.5∆ in the zero-range limit. The sensitivity to the nu-
merical value of these quantities should not come as a sur-
prise since we know that the Stoner instability, for which
a spontaneous polarization of the spin of many electrons
takes place, occurs for 〈Nij〉 = ∆. These observations
suggest an experiment: placing a good conductor close
to the 2DEG in such a way that it can screen the inter-
action between electrons within the quantum dot should
significantly affect the peak spacing distribution. If the
auxiliary screening is strong enough, a strong odd/even
effect should be visible. A double quantum well structure
seems like a possible setting for such an experiment.

We can divide the potential explanations for the quan-
titative discrepancy between theory and experiment into
basically three categories. The first one, which we can-
not absolutely exclude, is that noise in the experiments
is corrupting the results [27,64]. The second is that ef-
fects not included here, but interpretable within the kind
of Fermi liquid theory on which we have relied through-
out this paper, dominate. Some candidates are (a) the
effect of the changing gate potential on the single parti-
cle levels [14,15]—this would, however, somewhat contra-
dict the remarkable stability observed in the wavefunc-
tion [65]—(b) boundary effects in the scrambling which
need to be considered using a realistic description of the
dot, and (c) consequences of non-chaotic dynamics within
the dots [11,15]. Finally, a third completely different
kind of interpretation is that the perturbative approach
to interactions taken here is not accurate even though
rs≈1-2 [25,31,40,41]. Further experimental and theoret-
ical work is needed to discern between these options.
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APPENDIX A: VARIANCE OF THE MIJ

In this appendix we sketch the argument which leads
to Eqs. (23)-(26). As in Section VI, we assume that the
configuration space is a square of size L, for which the
plane wave basis |k〉 = |nx, ny〉 introduced in Eq. (51)
can be used.

Expanding the eigenfunctions in this basis,

|ϕi〉 =
∑

k

vik|k〉 , (A1)

we can write the Mij ’s as

Mij =
∑

k1,k2,k3,k4

vik1
v∗ik2

vjk3
v∗jk4

δk1−k2,−k3+k4
V̂TF(k1 − k2)

=
∑

q

V̂TF(q)WiqW
∗
jq (A2)

where we define

Wiq ≡
∑

k1−k2=q

vik1
v∗ik2

. (A3)

Our random matrix model (Section II) implies

〈vik1
v∗jk2

〉 = (kFL)−1δijδk1k2
if δk < π/L (A4)

= 0 if δk > π/L

with δk = ||k1| − ki| and ki =
√

2mEi/h̄. From this, we
deduce

var(Mi6=j) ≃
1

A2

∑

q 6=0

V̂ 2
TF(q)〈|Wiq|2〉〈|Wjq|2〉 (A5)

|Wjq|2 can be interpreted as (2πki)
−2 times the area

of the intersection of two rings of diameter ki and width
2π/L, centered at a distance |q| = q. Simple geometry
therefore gives, for 2π/L ≤ |q| ≤ 2ki − 2π/L

〈|Wiq|2〉 ≃
4

(qL)
√

(2kiL)2 − (qL)2
. (A6)

We obtain for i ≃ j

var(Mi6=j) ≃
8

πA2

∫ 2k−π/L

π/L

dq

q

VTF(q)2

(2kL)2 − (qL)2
. (A7)

The variance of Mii and Nij and the covariance be-
tweenMij andNij can be computed along the same lines.
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