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Topological Confinement of Spins and Charges:

Spinons as π− junctions.
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Topologically nontrivial states, the solitons, emerge as elementary excitations in 1D electronic
systems. In a quasi 1D material the topological requirements originate the spin- or charge- roton
like excitations with charge- or spin- kinks localized in the core. They result from the spin-charge
recombination due to confinement and the combined symmetry. The rotons possess semi-integer
winding numbers which may be relevant to configurations discussed in connection to quantum com-
puting schemes. Practically important is the case of the spinon functioning as the single electronic
π− junction in a quasi 1D superconducting material. (Published in [1].)

I. INTRODUCTION TO SOLITONS.

Topological defects: solitons, vortices, anyons, etc., are discussed currently, see [2], in connection to new trends in
physics of quantum devices, see [3]. Closest to applications and particularly addressed at this conference [4] are the π−
junctions which, linking two superconductors, provide degeneracy of their states with phase differences equal to 0 and
2π. The final goal of this publication is to show that in quasi one-dimensional (1D) superconductors the π− junctions
are produced already at the single electronic level extendible to a finite spin polarization. The effect results from
reconciliation of the spin and the charge which have been separated at the single chain level. The charge and the spin
of the single electron reconfine as soon as 2D or 3D long range correlations are established due to interchain coupling.
The phenomenon is much more general taking place, in other respects, also in such a common system as the Charge
Density Wave -CDW and in such a popular system as the doped antiferromagnet or the Spin Density Wave as its quasi
1D version [5]. Actually in this article we shall consider firstly and in greater details the CDW which is an object a
bit distant to the mesoscopic community. The applications to superconductors will become apparent afterwards. We
shall concentrate on effects of interchain coupling D > 1: confinement, topological constraints, combined symmetry,
spin-charge recombination. A short review and basic references on history of solitons and related topics in correlated
electronic systems (like holes moving within the antiferromagnetic media) can be found in [5].

Solitons in superconducting wires were considered very early [6], within the macroscopic regime of the Ginzburg -
Landau theory, for the phase slips problem. Closer to our goals is the microscopic solution for solitonic lattice in quasi
1D superconductors [7] at the Zeeman magnetic field. This successful application of results from theory of CDWs, see
[8], to superconductors provides also a link of pair breaking effects in these different systems. The solitonic structures
in qasi 1D superconductors appear as a 1D version of the well known FFLO (Fulde, Ferrel, Larkin, Ovchinnikov, see
[7]) inhomogeneous state near the pair breaking limit. Being very weak in 3D, this effect becomes quite pronounced
in systems with nested Fermi surfaces which is the case of the 1D limit.

To extend physics of solitons to the higher D world, the most important problem one faces is the effect of confinement

(S.B. 1980): as topological objects connecting degenerate vacuums, the solitons at D > 1 acquire an infinite energy
unless they reduce or compensate their topological charges. The problem is generic to solitons but it becomes
particularly interesting at the electronic level where the spin-charge reconfinement appears as the result of topological
constraints. The topological effects of D > 1 ordering reconfines the charge and the spin locally while still with
essentially different distributions. Nevertheless integrally one of the two is screened again, being transferred to the
collective mode, so that in transport the massive particles carry only either charge or spin as in 1D, see reviews [8,9].

II. CONFINEMENT AND COMBINED EXCITATIONS.

A. The classical commensurate CDW: confinement of phase solitons and of kinks.

The CDWs were always considered as the most natural electronic systems to observe solitons. We shall devote to
them some more attention because the CDWs also became the subject of studies in mesoscopics [10]. Being a case of
spontaneous symmetry breaking, the CDW order parameter Ocdw ∼ ∆cos[Qr+ϕ] possesses a manifold of degenerate
ground states. For the M− fold commensurate CDW the energy ∼ cos[Mϕ] reduces the allowed positions to multiples
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of 2π/M , M > 1. Connecting trajectories ϕ → ϕ ± 2π/M are phase solitons, or ”ϕ− particles” after Bishop et al.
Particularly important is the case M = 2 for which solitons are clearly observed e.g. in polyacethylene [11] or in
organic Mott insulators [12].

Above the 3D or 2D transition temperature Tc, the symmetry is not broken and solitons are allowed to exist
as elementary particles. But in the symmetry broken phase at T < Tc, any local deformation must return the
configuration to the same (modulo 2π for the phase) state. Otherwise the interchain interaction energy (with the
linear density F ∼ 〈∆0∆n cos[ϕ0 − ϕn]〉 is lost when the effective phase ϕ0 + πsign(∆0) at the soliton bearing chain
n = 0 acquires a finite (and 6= 2π) increment with respect to the neighboring chain values ϕn. The 1D allowed
solitons do not satisfy this condition which originates a constant confinement force F between them, hence the
infinitely growing confinement energy F |x|. E.g. for M = 2 the kinks should be bound in pairs or aggregate into
macroscopic complexes with a particular role plaid by Coulomb interactions [13].

Especially interesting is the more complicated case of coexisting discrete and continuous symmetries. As a result
of their interference the topolological charge of solitons originated by the discrete symmetry can be compensated by
gapless degrees of freedom originated by the continuous one. This scenario we shall discuss through the rest of the
article.

B. The incommensurate CDW:

confinement of Amplitude Solitons with phase wings.

Difference of ground states with even and odd numbers of particles is a common issue in mesoscopics. In CDWs it
also shows up in a spectacular way (S.B. 1980, see [8,9]. Thus any pair of electrons or holes is accommodated to the
extended ground states for which the overall phase difference becomes ±2π. Phase increments are produced by phase
slips which provide the spectral flow [14] from the upper +∆0 to the lower −∆0 rims of the single particle gap. The
phase slip requires for the amplitude ∆(x, t) to pass through zero, at which moment the complex order parameter has a
shape of the amplitude soliton (AS, the kink ∆(x = −∞) ↔ −∆(x = ∞). Curiously, this instantaneous configuration
becomes the stationary ground state for the case when only one electron is added to the system or when the total
spin polarization is controlled to be nonzero, see Figure 1. The AS carries the singly occupied mid-gap state, thus
having a spin 1/2 but its charge is compensated to zero by local dilatation of singlet vacuum states [8,9].

As a nontrivial topological object (Ocdw does not map onto itself) the pure AS is prohibited in D > 1 environment.
Nevertheless it becomes allowed even their if it acquires phase tails with the total increment δϕ = π, see Figure 2.
The length of these tails ξϕ is determined by the weak interchain coupling, thus ξϕ ≫ ξ0. As in 1D, the sign of ∆
changes within the scale ξ0 but further on, at the scale ξϕ, the factor cos[Qx + ϕ] also changes the sign thus leaving
the product in Ocdw to be invariant. As a result the 3D allowed particle is formed with the AS core ξ0 carrying the
spin and the two phase π/2 twisting wings stretched over ξϕ, each carrying the charge e/2.

stretching by 1�2 period
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FIG. 1. Amplitude soliton in the IC CDW
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FIG. 2. Phase tails adapting the AS.

C. Spin-Gap cases: the quantum CDW and the superconductivity.

We shall omit from consideration the case of repulsion which is relevant to the case of the incommensurate Spin
Density Wave or to a hole within the antiferromagnetic media which is important for doped Mott insulators. These
cases were emphasized in previous publications [5]. Here we shall concentrate upon systems with attraction which
originate the gap and the discrete degeneracy in the spin channel. Firstly we shall generalize the description of the
CDW solitons to the quantum model. Secondly we shall use the accumulated experience to arrive at our final goal:
the spin carrier in the SC media.

1D electronic systems are efficiently treated within the boson representation, see [16] for a review. The variables
can be chosen as ϕ which is the analog of the CDW phase and θ which is the angle of the SU2 spin rotation. These
phases are normalized in such a way that their increments divided by π count the electronic charge and spin.

For the incommensurate electronic systems the Lagrangian can be written as
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Latr ∼ {C1(∂θ)2 + V cos(2θ)} + C2(∂ϕ)2 ; C1, C2 = cnst

where V is the backward exchange scattering and (∂f)2 = v−2(∂tf)2 − (∂xf)2, v ∼ vF is the velocity. Elementary
excitations in 1D are the spinon as a soliton θ = 0 → θ = ±π, hence carrying the spin ±1/2, and the gapless charge
sound in ϕ. It is important to recall the alternative description in terms of conjugated phases. We shall need only the
one for the charge channel which is the standard gauge phase χ of the superconductivity. Phases ϕ and χ are related
(Efetov and Larkin 79) since their derivatives determine the same quantity - the current j: ∂tϕ/π = j ∼ ∂xχ. The

term C2(∂ϕ)2 is duel to C̃2(∂χ)2 with C̃2 ∼ 1/C2

1. The Quantum CDW.

The CDW order parameter is Ocdw ∼ exp[i(Qx + ϕ)] cos θ. The spin operator cos θ stands for what was the
amplitude in the quasi- classical description and at presence of the spinon it changes the sign as it was for ∆. Hence
for the CDW ordered state in a quasi 1D system the allowed configuration must be composed with two components:
the spin soliton θ → θ + π and the phase wings ϕ → ϕ + π where the charge e = 1 is concentrated. Beyond the low
dimensionality, a general view is: the spinon as a soliton bound to the semi-integer dislocation loop.
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FIG. 3. Motion of the topologically combined excitation in a spin-gap media. The string of the amplitude reversal of the
order parameter created by the spinon is cured by the semi- vortex pair (the loop in 3D) of the phase circulation. For the
CDW case the curls are displacements contours for the half integer dislocation pair. For the superconductivity the curls are
lines of electric currents circulating through the normal core carrying the unpaired spin.

2. The Singlet Superconductivity.

For the Singlet Superconductivity the order parameter is Osc ∼ exp[iχ] cos θ. In D > 1 the elementary spin
excitation is composed with the spin soliton θ → θ + π supplied with current wings χ → χ + π. The quasi 1D
interpretation is that the spinon works as a Josephson π− junction in the superconducting wire. The 2D view is a
pair of superconducting π− vortices sharing the common core where the unpaired spin is localized. The 3D view is a
half flux vortex loop which collapse is prevented by the spin confined in its center.

The solitonic nature of the spinon in the quasi 1D picture corresponds to the string of reversed sign of the order
parameter left behind in the course of the spinon motion. The spin soliton becomes an elementary fragment of the
stripe pattern near the pair breaking limit (FFLO phase). In a wire the π wings of the spinon motion become the
persistent current [14].

For this combined particle the electronic quantum numbers are reconfined (while with different scales of localization).
But integrally over the cross-section the local electric current induced by the spinon is compensated exactly by the
back-flows at distant chains. This is a general property of the vortex dipole configuration constructed above. Finally,
the soliton as a state of the coherent media will not carry a current and itself will not be driven by a homogeneous
electric field.

III. CONCLUSIONS.

Our conclusions have been derived for weakly interacting SC or CDW chains. Since the results are symmetrically
and topologically characterized, they can be extrapolated to isotropic systems with strong coupling where a clear
microscopical derivation is not available. Here the hypothesis is that instead of normal carries excited or injected
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above the gap, the lowest states are the symmetry broken ones described above as semiroton - spinon complex. This
construction can be processed from another side considering a vortex configuration bound to an unpaired electron.
Without assistance of the quasi one-dimensionality, a short coherence length is required to leave only a small number
of intragap levels in the vortex core.

The existence of complex spin excitations in superconductors is ultimately related to robustness of the FFLO
phase at finite spin polarization. It must withstand a fragmentation due to quantum or thermal melting at small
spin polarization. Then any termination point of one stripe within the regular pattern (the dislocation) will be
accompanied by the phase semiroton in accordance with the quasi 1D picture.
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