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Abstract

Recent developments in the physics of ultracold gases provide wide possibilities for reduc-
ing the dimensionality of space for magnetically or optically trapped atoms. The goal of
these lectures is to show that regimes of quantum degeneracy in two-dimensional (2D)
and one-dimensional (1D) trapped gases are drastically different from those in three di-
mensions and to stimulate an interest in low-dimensional systems. Attention is focused on
the new physics appearing in currently studied low-dimensional trapped gases and related
to finite-size and finite-temperature effects.
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INTRODUCTION

The subject of low-dimensional quantum gases has a long pre-history. The influence of dimen-
sionality of the system of bosons on the presence and character of Bose-Einstein condensation
(BEC) and superfluid phase transition has been a subject of extensive studies in the spatially
homogeneous case. From a general point of view, the absence of a true condensate in 2D
and 1D at finite temperatures follows from the Bogoliubov k−2 theorem and originates from
long-wave fluctuations of the phase (see, e.g., [1]). This has been expounded by Mermin and
Wagner [2] and by Hohenberg [3], and formed a basis for later investigations.

The earlier discussion of low-dimensional Bose gases was mostly academic as there was
no possible realization of such a system. Fast progress in evaporative and optical cooling of
trapped atoms and the observation of Bose-Einstein condensation (BEC) in trapped clouds
of alkali atoms [4–6] stimulated a search for non-trivial trapping geometries. Present facilities
allow one to tightly confine the motion of trapped particles in one (two) direction(s) to zero
point oscillations. Then, kinematically the gas is 2D (1D), and the difference from purely
2D (1D) gases is only related to the value of the effective interparticle interaction which now
depends on the tight confinement.

Recent experiments have already reached 2D and 1D regimes for trapped Bose gases and
studied some of the quantum degenerate states. These studies bring in new physics originating
from a finite size of the system, spatial inhomogeneity, and finite temperatures. The present
lectures cover most important issues in the physics of 2D and 1D trapped quantum gases: the
nature of various quantum degenerate states, the role of interaction between particles, and the
role of finite-temperature and finite-size effects.

1 LECTURE 1. BEC IN IDEAL 2D AND 1D GASES

We start with describing a cross-over to the BEC regime in ideal 2D and 1D Bose gases with a
finite number of particles. We will consider an equilibrium gas at temperature T in the grand
canonical ensemble, where the chemical potential µ is fixed and the number of particles N is
fluctuating. In the thermodynamic limit (N → ∞) this is equivalent to the description in the
canonical ensemble (fixed N and fluctuating µ).

In any dimension and confining potential the gas is characterized by a set of eigenenergies
of an individual particle, Eν , with the index ν labeling quantum numbers of the particle
eigenstates. The (average) total number of particles N is then related to the temperature and
chemical potential by the equation

N =
∑

ν

Nν

(

Eν − µ

T

)

, (1.1)

where Nν(z) = 1/(exp z − 1) are the equilibrium occupation numbers of the eigenstates. We
now demonstrate how Eq.(1.1) allows one to establish the presence or absence of BEC in 2D
and 1D ideal Bose gases.
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1.1 Uniform ideal gas

In an infinitely large uniform gas the particle eigenstates are characterized by the momentum
k and the eigenenergy Ek = ~

2k2/2m, where m is the mass of a particle. Then Eq.(1.1) takes
the form

N = Ω

∫

ddk

(2π)d
Nk

(

Ek − µ

T

)

, (1.2)

with d being the dimension of the system, and Ω the d-dimensional volume.
In the 2D case the integration in Eq.(1.2) is straightforward and we obtain

µ = T ln
[

1 − exp(−n2Λ
2
T )
]

< 0 , (1.3)

where ΛT = (2π~
2/mT )1/2 is the thermal de Broglie wavelength, and n2 is the 2D density. The

quantity n2Λ
2
T is called the degeneracy parameter and in 2D it can be written as n2Λ

2
T = T/Td,

where Td = 2π~
2n2/m is the temperature of quantum degeneracy. In the limit of a classical

gas, n2Λ
2
T ≪ 1, Eq.(1.3) gives the well-known result µ = T ln(n2Λ

2
T ). For a strongly degenerate

gas, where n2Λ
2
T ≫ 1, we obtain µ = −T exp(−n2Λ

2
T ). Unlike in the 3D case, the dependence

µ(T ) is analytical and it shows a monotonic increase of the chemical potential with decreasing
temperature up to T → 0. In the thermodynamic limit the population of the ground state
(k = 0) remains microscopic. One thus can say that there is no BEC in a finite-temperature
ideal uniform 2D Bose gas.

The situation is similar for an infinite uniform 1D Bose gas, where the degeneracy parameter
is n1ΛT = (T/Td)

1/2 and the temperature of quantum degeneracy is given by Td = 2π~
2n2

1/m,
with n1 being the 1D density. In the classical limit (n1ΛT ≪ 1), and in the limit of a strongly
degenerate gas (n1ΛT ≫ 1), Eq.(1.2) gives

µ = T ln(n1ΛT ) , n1ΛT ≪ 1 ; (1.4)

µ = − πT

(n1ΛT )2
, n1ΛT ≫ 1 . (1.5)

Again, the chemical potential monotonically decreases with temperature and remains negative
at any T , which indicates the absence of BEC.

The absence of BEC in infinitely large uniform 2D and 1D Bose gases is a striking difference
from the 3D case. This difference originates from the energy dependence of the density of states.
The (energy) density of states is ρ(E) ∝ E(d/2−1), where d is the dimension of the system,
and for the 3D gas it decreases with E. Therefore, at sufficiently low temperatures it becomes
impossible to thermally occupy the low energy states while maintaining a constant chemical
potential or density. As a result, a macroscopic number of particles goes to the ground state
(k = 0), i.e. one has the phenomenon of BEC. In 2D and 1D the density of states does not
decrease with E and this phenomenon is absent.

1.2 Ideal gas in a harmonic trap

For 2D and 1D Bose gases in a harmonic confining potential the density of states is ρ(E) ∝
E(d−1) and the situation changes. The population of the ground state (E = 0) is

N0 =
1

exp(−µ/T )− 1
. (1.6)

For a large but finite number of particles in a trap, N0 can become macroscopic (comparable
with N) at a small but finite negative µ. One then speaks of a cross-over to the BEC regime.
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We first discuss the BEC cross-over for the 2D Bose gas in a symmetric harmonic confining
potential V (r) = mω2(x2 + y2)/2. In this case the particle energy is Eν = ~ω(nx + ny), with
quantum numbers nx, ny being non-negative integers. The density of states is then ρ(E) =
E/(~ω)2, and the contribution of low-energy excited states to the total number of particles is
negligible. Therefore, separating out the population of the ground state, one can replace the
summation in Eq.(1.1) by integration:

N = N0 +

∫ ∞

0

dE ρ(E)N

(

E − µ

T

)

. (1.7)

Assuming a large population of the ground state, from Eq.(1.6) we obtain −µ/T ≈ 1/N0 ≪ 1,
and the population of excited trap states proves to be

∫ ∞

0

dE ρ(E)N

(

E − µ

T

)

≈
(

T

~ω

)2(
π2

6
− 1 + lnN0

N0

)

. (1.8)

This allows us to write Eq.(1.7) in the form

N

[

1 −
(

T

Tc

)2
]

= N0 −
(

T

~ω

)2
1 + lnN0

N0
, (1.9)

where

Tc =

√

6N

π2
~ω . (1.10)

For a large number of particles, Eq. (1.9) indicates the presence of a sharp cross-over to the
BEC regime at T ≈ Tc. Below Tc we omit the last term in Eq.(1.9) and obtain the occupation
of the ground state

N0 ≈ N

[

1 −
(

T

Tc

)2
]

. (1.11)

Note that at Tc the particle density is ∼ (Nmω2/Tc) and the de Broglie wavelength of particles
Λ ∼

√

~2/mTc becomes comparable with the mean interparticle separation ∼ (Nmω2/Tc)
−1/2.

The result of Eq.(1.11) is similar to that in the 3D case and it was first obtained by Bagnato
and Kleppner [7].

Above Tc one can omit the first term on the rhs of Eq.(1.9). The width of the cross-over
region, i.e. the temperature interval where both terms on the rhs of Eq.(1.9) are equally
important, is given by

∆T

Tc
∼
√

lnN

N
. (1.12)

The Bose-condensed fraction of particles, N0(T )/N , following from Eq.(1.9), is presented in
Fig. 1 for various values of N . For a large N the cross-over region is very narrow and one can
speak of an ordinary BEC transition in an ideal harmonically trapped 2D gas.

For the 1D Bose gas in a harmonic potential V (z) = mω2z2/2, the particle energy is
E = ~ωj, with j being a non-negative integer, and the density of states is ρ(E) = 1/~ω. Here
the integral representation of Eq.(1.7) fails as the integral diverges for µ → 0. Therefore, we
should correctly take into account the discrete structure of the lowest energy levels. In the
limit {−µ, ~ω} ≪ T we rewrite Eq.(1.1) in the form

N = N0 +
T

~ω

M
∑

j=1

1

j − µ/~ω
+

∞
∑

j=M+1

1

exp(~ωj/T − µ/T )− 1
, (1.13)
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Fig. 1. The ground state population in a 2D trap versus temperature, calculated from Eq. (1.9).

where the number M satisfies the inequalities 1 ≪M ≪ T/~ω. The first sum is

M
∑

j=1

1

j − µ/~ω
= ψ(M + 1 − µ/~ω) − ψ(1 − µ/~ω) ≈ −ψ(1 − µ/~ω) + ln(M − µ/~ω), (1.14)

where ψ is the digamma function. The second sum in Eq.(1.13) can be transformed to an
integral

∞
∑

j=M+1

1

exp(~ωj/T − µ/T )− 1
≈ T

~ω

∫ ∞

~ωM/T

dx

exp(x− µ/T ) − 1
≈ − T

~ω
ln

~ω(M − µ/~ω)

T
.

Finally, since in the limit of |µ| ≪ T the chemical potential is related to the population of the
ground state as −µ ≈ T/N0, we reduce Eq.(1.13) to the form

N − T

~ω
ln

(

T

~ω

)

= N0 −
T

~ω
ψ

(

1 +
T

~ωN0

)

. (1.15)

As in the 2D case, we have two regimes, with the border between them at a temperature

T1D ≈ N

lnN
~ω . (1.16)

For temperatures below T1D, the first term on the rhs of Eq.(1.15) greatly exceeds the second
one and the ground state population behaves as

N0 ≈ N −
(

T

~ω

)

ln

(

T

~ω

)

. (1.17)

The cross-over region is determined as the temperature interval where both terms are equally
important:

∆T

T1D
∼ 1

lnN
. (1.18)
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Fig. 2. The ground state population in a 1D trap versus temperature, found from Eq. (1.15).

In contrast to the 3D and 2D cases, the cross-over temperature is much lower than the degen-
eracy temperature Td ≈ N~ω. The described results have been obtained by Ketterle and van
Druten [8]. In Fig.2 we present the relative occupation of the ground state N0(T )/N calculated
from Eq.(1.15).

The cross-over region in the 1D case is much wider than in 2D. This is not surprising as the
cross-over is present only due to the discrete structure of the trap levels. The quasiclassical
calculation does not lead to any sharp cross-over [7].

Problem: Describe the cross-over to the BEC regime in an ideal 2D gas of N identical
bosons in a rectangular box with dimensions Lx, Ly. Find the cross-over temperature and the
width of the cross-over region (E.B. Sonin, 1969).

2 LECTURE 2. INTERACTIONS AND BEC REGIMES IN 2D TRAPPED GASES

Interaction between particles drastically changes the picture of Bose-Einstein condensation in
2D and 1D gases. In the uniform 2D gas a true condensate can exist only at T = 0 and, as
mentioned in the Introduction, its absence at finite temperatures originates from long-wave
fluctuations of the phase [1]. However, as was pointed out by Kane and Kadanoff [9] and then
proved by Berezinskii [10], there is a superfluid phase transition at sufficiently low T . Kosterlitz
and Thouless [11] found that this transition is associated with the formation of bound pairs of
vortices below the critical temperature

TKT =
π~

2

2m
ns , (2.1)

where ns is the superfluid density just below TKT . This temperature is of the order of or
smaller than Td/4, where Td = 2π~

2n/m is the temperature of quantum degeneracy introduced
in Lecture 1, and the notation n is used in this Lecture for the 2D density. Recent Monte Carlo
calculations [12] established an exact relation between TKT and Td for the weakly interacting
2D Bose gas.

Early theoretical studies of 2D systems have been reviewed by Popov [1] and have led to
the conclusion that below the Kosterlitz-Thouless transition temperature the Bose liquid (gas)
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is characterized by the presence of a quasicondensate, that is a condensate with fluctuating
phase (see, e.g., [13]). In this case the system can be divided into blocks with a characteristic
size greatly exceeding the healing length but smaller than the phase coherence length. In each
block one has a true condensate but the phases of different blocks are not correlated with each
other.

The Kosterlitz-Thouless transition has been observed in monolayers of liquid helium [14],
and recently the observation of this transition has been reported for the 2D gas of spin-polarized
atomic hydrogen on liquid helium surface [15]. The Kosterlitz-Thouless transition is discussed
in the lectures of Benoit Douçot.

In this Lecture we focus our attention on the interaction between particles and on the
correlation properties of 2D Bose-condensed gases. Recently, the 2D regime was realized for
trapped atomic Bose-Einstein condensates at MIT [16], LENS [17], Innsbruck [18], and JILA
[19]. This was done by a tight optical confinement of the particle motion in one direction [16,17],
or by a fast rotation of the cloud leading to an increase in the size of the sample in two
directions [19]. We will focus special attention on how the nature of the Bose-condensed state
is influenced by a finite size of the system.

2.1 Weakly interacting regime

We will consider weakly interacting gases with a short-range potential of interaction between
particles. In this case the total interaction energy is equal to the sum of pair interactions and
can be written as Eint = N2g/2Ω, where g is the coupling constant for the pair interparticle
interaction, N is the number of particles, and Ω the volume. Accordingly, the interaction
energy per particle is equal to I = ng, with n being the 2D density.

Let us now discuss the conditions which are required for the 2D gas to be in the weakly
interacting regime. The commonly used criterion assumes that the mean interparticle separa-
tion r̄ greatly exceeds the characteristic radius of interaction between particles, Re. In the 2D
case we have r̄ ≈ (2πn)−1/2 and thus obtain the inequality

nR2
e ≪ 1 . (2.2)

The weakly interacting regime requires that at interparticle distances of the order of r̄, the
wavefunction of particles is not influenced by the interaction between them. Relying on this
requirement, we develop a physical picture which will be used for finding how the criterion of
the weakly interacting regime depends on the dimensionality of the system. We consider a box
of size r̄, which on average contains one particle. In the limit of T → 0, the particle kinetic
energy is K ≈ ~

2/mr̄2. The wavefunction of the particle is not influenced by the interparticle
interaction if K is much larger than the interaction energy per particle, I = ng. The inequality
K ≫ |I| immediately gives the criterion of the weakly interacting regime in terms of the density
and coupling constant. In the 2D case this criterion takes the form

m|g|
2π~2

≪ 1 . (2.3)

In the 2D gas at T → 0 the coupling constant is (see, e.g. [1])

g =
4π~

2

m

1

ln(1/nd2
∗)

, (2.4)

where a length d∗ depends on the shape of the interatomic potential and in the absence of
scattering resonances is of the order of Re. Then, from Eq.(2.3) we immediately arrive at the
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criterion (2.2). However, on approach to a resonance, the value of d∗ is quite different from
Re, and one should return to the criterion (2.3).

In the dilute limit Eq.(2.4) gives g > 0, except for the case where a weakly bound state of
colliding atoms is present. Then the length d∗ is extremely large and even at very low densities
one can have the condition nd2

∗ ≫ 1 leading to an attractive mean-field interaction (g < 0).
However, in this case the 2D Bose gas at T → 0 is unstable with regard to collapse.

Note that in the 3D case we have the coupling constant g3D = 4π~
2a/m and r̄ ∼ n

−1/3
3D ,

with n3D being the 3D density, and a the 3D scattering length. The condition K ≫ |I| then
leads to the well-known criterion n|a|3 ≪ 1, required for the weakly interacting regime in the
3D gas. In the absence of resonances, the 3D scattering length is of the order of Re and this
criterion is equivalent to the inequality Re ≪ r̄.

In ongoing experiments, two-dimensional atomic gases are obtained by (tightly) confining
the motion of particles in one direction to zero point oscillations [16–18] and, in this respect, can
be called quasi2D [20]. Kinematically the gas is two-dimensional, but the value of an effective
2D coupling constant g for the interparticle interaction depends on the particle motion in the
tightly confined direction.

Let us first make a qualitative analysis of the interactions in such quasi2D gas. It can be
viewed as a 3D gas which is uniform in two directions (x and y), and is confined to zero point
oscillations by a harmonic potential mω2

0z
2/2 in the third direction (z). The quasi2D regime

requires the inequality
~ω0 ≫ n|g| , (2.5)

where n is the number of particles per unit area in the x−y plane and represents the 2D density
of the quasi2D gas. Then the distribution of the density in the z direction is not influenced by
the interactions and is given by

n3D(z) =
n

√

πl20
exp

(

−z
2

l20

)

, (2.6)

with l0 = (~/mω0)
1/2 being the harmonic oscillator length. The average interaction energy per

particle is obtained by averaging the 3D interaction over the density profile in the z direction:

I =
g3D

∫∞

−∞
n2

3D(z)dz
∫∞

−∞
n3D(z)dz

= ng . (2.7)

Eqs. (2.6) and (2.7) lead to the following relation for the effective coupling constant:

g =
2
√

2~
2

m

a

l0
. (2.8)

Accordingly, the criterion of the weakly interacting regime given by Eq.(2.3) takes the form

l0 ≫ |a| . (2.9)

One can easily check that under conditions (2.5) and (2.9) the gas satisfies the 3D criterion of
weak interactions, n3D|a|3 ≪ 1.

The criterion (2.9) is independent of the gas density and in this respect is different from the
criterion of the weakly interacting regime in the purely 2D case, following from Eqs. (2.3) and
(2.4). The density enters the problem only through the condition of the quasi2D regime given
by Eq.(2.5). However, the above analysis does not take into account the 2D character of the
particle motion at large distances between them. In the next section we discuss the quasi2D
scattering problem and derive a more exact criterion of weak interactions in the quasi2D case.
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2.2 Quasi2D scattering problem

Collisional properties of cold atoms strongly confined in one direction have been of great
interest in the studies of spin-polarized atomic hydrogen. The interest was related to inelastic
and elastic collisions in the 2D gas of hydrogen atoms adsorbed on liquid helium surface (see [21]
for review). The creation of atomic gases in the quasi2D regime [16–19] opens new handles
on studying 2D features of interparticle collisions, and provides spectacular evidence for the
relation between the quasi2D scattering parameters and those in 3D. Theoretical studies of
elastic and inelastic interactions in the quasi2D regime have been performed in [20,22,23], and
it has been shown how a decrease of the tight confinement transforms this regime into the 3D
one [22].

Here we consider elastic scattering of two atoms in the quasi2D regime [22]. So, the atoms
are (tightly) confined to zero point oscillations in the axial (z) direction, and their motion in
two other (x, y) directions is free at a large separation in the x− y plane. For a harmonic axial
confinement, the motion of two atoms interacting with each other via the potential U(r) can
be still separated into their relative and center-of-mass motion. The latter drops out of the
scattering problem. The relative motion is governed by the potential U(r) and by the potential
VH(z) = mω2

0z
2/4 originating from the axial confinement with frequency ω0. In the quasi2D

regime one has the condition

~ωo ≫ ε , (2.10)

where ε = ~
2q2/m and q are the energy and wavevector of the motion in the x − y plane.

Therefore, the atoms are in the ground state of the potential VH(z) both in the incident and
the scattered wave. The wavefunction of the relative motion satisfies the Schrödinger equation

(

−~
2

m
∆ + U(r) + VH(z) − ~ω0

2

)

ψ(r) = εψ(r) . (2.11)

We will consider the ultracold limit where the characteristic de Broglie wavelength of atoms
greatly exceeds the radius of interatomic interaction Re. For the motion in the x− y plane the
de Broglie wavelength is ∼ 1/q, and we immediately obtain the inequality qRe ≪ 1. Under
this condition the scattering is determined by the contribution of the s-wave for the motion in
the x− y plane. In the axial direction, the atoms are tightly confined and the axial harmonic
oscillator length l0 plays the role of their axial de Broglie wavelength. Therefore, we also
require the condition

l0 ≫ Re , (2.12)

which will allow us to consider only the s-wave for the three-dimensional relative motion of
the atoms when they approach each other to short distances. The condition of the quasi2D
regime (2.10) can be also written as ql0 ≪ 1, and one clearly sees that Eqs. (2.10) and (2.12)
automatically lead to the inequality qRe ≪ 1.

The scattering amplitude is defined through the asymptotic form of the wavefunction ψ at
an infinite separation ρ in the x − y plane, where it is represented as a superposition of an
incident and scattered wave:

ψ(r) ≈ ϕ0(z)

(

eiq.ρ − f(q, φ)

√

i

8πqρ
eiqρ

)

, (2.13)

where ϕ0(z) = (1/2πl20)
1/4 exp(−z2/4l20) is the eigenfunction of the ground state in the potential

VH(z), and φ is the scattering angle. The s-wave scattering is circularly symmetric in the x−y
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plane, and the scattering amplitude is independent of φ. Note that f(q, φ) in Eq.(2.13) is
different by a factor of −√

8πq from the definition of the 2D scattering amplitude used in [24].
Relying on the condition (2.12) we will express the scattering amplitude through the 3D

scattering length. At interparticle distances r ≫ Re the relative motion in the x − y plane is
free, and the motion along the z axis is governed only by the harmonic potential VH(z). Then,
the solution of Eq.(2.11) with U(r) = 0 can be expressed through the Green function Gε(r, r

′)
of this equation. Retaining only the s-wave for the motion in the x− y plane, we have

ψ(r) = ϕ0(z)J0(qρ) − fGε(r, 0)/φ0(0) . (2.14)

For ρ→ ∞ the Green function is G(r, 0) = φ0(z)φ0(0)
√

(i/8πqρ) exp (iqρ) and Eq.(2.14) gives
the s-wave of Eq.(2.13).

The condition l0 ≫ Re ensures that the relative motion of atoms in the region of interatomic
interaction is not influenced by the axial (tight) confinement. Therefore, the wavefunction ψ(r)
at distances Re ≪ r ≪ l0 differs only by a normalization coefficient from the 3D wavefunction
of free motion at zero energy, ψ3D(r). Writing this coefficient as ηϕ0(0) and recalling that for
r ≫ Re one has ψ3D(r) = (1 − a/r), we obtain

ψ(r) ≈ ηϕ0(0)
(

1 − a

r

)

; Re ≪ r ≪ l0 . (2.15)

Eq.(2.15) contains the 3D scattering length a and serves as a boundary condition for ψ(r)
(2.14) at r → 0.

For r → 0, a straightforward calculation of the Green function G(r, 0) yields [20, 22]

Gε(r, 0) ≈ 1

4πr
+

1

2(2π)3/2l0

[

ln

(

B~ω0

πε

)

+ iπ

]

, (2.16)

where B ≈ 0.915. With the Green function (2.16), the wavefunction (2.14) at r → 0 should
coincide with ψ(r) (2.15). This gives the coefficient η and the scattering amplitude:

f(ε) = 4πϕ2
0(0)aη =

2
√

2π

l0/a+ (1/
√

2π)[ln(B~ω0/πε) + iπ]
. (2.17)

One can see from Eq.(2.17) that the scattering amplitude is a universal function of the param-
eters a/l0 and ε/~ω0.

The 2D kinematics of the relative motion at interatomic distances ρ > l0 manifests itself in
the appearance of logarithmic dependence of the scattering amplitude on ε/2~ω0. The quasi2D
scattering amplitude can be represented in the purely 2D form obtained, for example, in [24]:

f(q) =
2π

ln(1/qd∗) + iπ/2
. (2.18)

In the purely 2D case a characteristic length d∗ depends on the shape of the interatomic
potential U(r). For the considered quasi2D regime this length is expressed through l0 and the
3D scattering length a:

d∗ =
d

2
eC =

√

π

B
l0 exp

(

−
√

π

2

l0
a

)

, (2.19)

where C is the Euler’s constant.
We thus conclude that the scattering problem in the quasi2D regime is equivalent to the

scattering in an effective purely 2D potential which leads to the same value of d∗. For a negative
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a satisfying the condition |a| ≪ l0, the effective potential is a shallow well which has a depth
|V0| and a radius l0. This shallow well supports a weakly bound state with an exponentially
small binding energy ε0, which leads to an exponentially large d∗ as follows from Eq.(2.19).
As a result, we have a resonance energy dependence of the scattering amplitude f at a fixed
ratio a/l0, and a resonance behavior of f as a function of a/l0 at a fixed ε/~ω0.

Equation (2.17) shows that the resonance is achieved at a = a∗(ε) = −
√

2πl0/ ln (B~ω0/πε).
One can think of observing the resonance dependence of f on a/l0 by measuring the rate of
elastic collisions, which is proportional to |f |2. For example, one can keep temperature and ω0

constant and vary a by using Feshbach resonances. This will be a striking difference from the
3D case, where the rate constant of elastic collisions monotonically increases with a2.

Stanford [25, 26] and ENS [27, 28] experiments with a thermal gas of Cs atoms tightly
confined in one direction, observed a pronounced deviation of collisional rates from the 3D
behavior. In these experiments the temperature was of the order of ~ω0 and, in this respect,
they were in between the quasi2D and 3D regimes.

The scattering amplitude f determines the coupling constant g for a fixed collision energy
ε. Away from the resonance, one may omit the imaginary part in Eq.(2.17) and f becomes
real. Using Eq.(2.11) one can establish that in the ultracold limit the interaction energy for a
pair of atoms is equal to g/Ω, where the coupling constant is given by

g =

∫

d3r ϕ0(z)U(r)ψ(r) , (2.20)

and Ω is the volume of the system. Accordingly, the total interaction energy is equal to (g/Ω)
multiplied by the number of pairs N2/2, as stated in the beginning of this Lecture.

The main contribution to the integral in Eq.(2.20) comes from interparticle distances r ∼
Re. Therefore, one may put ϕ0(z) ≈ ϕ0(0) and ψ(r) ≈ ηϕ0(0)ψ3D(r). Then, using the
well-known result

∫

d3r ψ3D(r)U(r) = 4π~
2a/m and Eq.(2.17), we obtain

g =
~

2f(ε)

m
=

4π~
2

m

1√
2πl0/a+ ln(B~ω0/πε)

. (2.21)

As one can see, the coupling constant for the interaction between particles depends on their
relative energy. In a thermal gas, averaging the coupling constant over the energy distribution
of particles simply leads to the replacement of ε by T in Eq.(2.21).

In a Bose-condensed 2D gas, similarly to the 3D case (see, e.g. [29]), to zero order in
perturbation theory the coupling constant is equal to the vertex of interparticle interaction in
vacuum at zero momenta and frequency ω̄ = 2µ. For low ω̄ > 0 this vertex coincides with
the amplitude of scattering at relative energy ω̄ and, hence, is given by Eq.(2.5) with ε = 2µ.
This certainly requires the quasi2D condition ~ω0 ≫ µ. For µ < 0, analytical continuation of
Eq.(2.21) to ε < 0 leads to the replacement ε→ |ε| = 2|µ|.

We can now analyze the criterion of the weakly interacting regime for the ultracold quasi2D
gas, assuming that it is dilute and the condition nR2

e ≪ 1 is fulfilled. Since the scattering
amplitude f and, hence, the coupling constant g can be written in the purely 2D form (see
Eq.(2.18)), the weakly interacting regime requires the inequality m|g|/2π~

2 ≪ 1 given above
by Eq.(2.3). For a > 0, the quasi2D resonance is absent and this inequality is satisfied for
any ratio a/l0. For a negative a, the system should be far away from the resonance and one
should use Eq.(2.21) to make sure that the condition (2.3) is satisfied. This is demonstrated
in Fig.3 where we present the parameter mg/2π~

2 as a function of the ratio a/l0. The results
are obtained from Eq.(2.21) for a fixed ratio ~ω0/ε = 103. In the vicinity of the resonance,
where the criterion m|g|/2π~

2 ≪ 1 is not satisfied, they are shown by the dashed curves.
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Fig. 3. The parameter mg/2π~
2 versus a/l0, obtained from Eq.(2.21) (see text).

2.3 True BEC at T = 0

We start the discussion of BEC regimes in (quasi)2D weakly interacting gases with the case of
zero temperature. From this point on we consider only repulsive interaction between particles
(g > 0). The behavior of attractively interacting Bose gases and, in particular, the problem of
collapses are beyond the scope of these lectures.

In the second quantization the Hamiltonian of the system reads:

Ĥ =

∫

dr Ψ̂†

(

− ~
2

2m
∆ + V (r) +

g

2
Ψ̂†Ψ̂

)

Ψ̂ , (2.22)

where Ψ̂(r, t) is the Heisenberg field operator of the atoms, V (r) is an external (trapping)
potential, and all field operators in the integrand are taken at the same position r and for the
same time t. The Heisenberg equation of motion for the field operator takes the form:

i~
∂Ψ̂

∂t
= [Ψ̂, Ĥ] =

(

− ~
2

2m
∆ + V (r) + gΨ̂†Ψ̂

)

Ψ̂ . (2.23)

We now assume a priori that there is a true condensate at T = 0, and the condensate density
n0 is much larger than the density of non-condensed particles n′. Accordingly, we represent
the field operator as a sum of the non-condensed part Ψ̂′ and the condensate wavefunction
Ψ0 =

√
n0 which is a c-number:

Ψ̂ = Ψ̂′ + Ψ0 . (2.24)

At equilibrium, the time dependence of the condensate wavefunction is reduced to Ψ0 ∝
exp (−iµt/~), where µ is the chemical potential. Then, taking average of both sides of Eq.(2.23)
and omitting the contribution of non-condensed particles, we obtain the Gross-Pitaevskii equa-
tion for the condensate wavefunction [30, 31]:

(

− ~
2

2m
∆ + V (r) + g|Ψ0|2 − µ

)

Ψ0 = 0 . (2.25)

The function Ψ0 is normalized by the condition
∫

dr |Ψ0|2 = N , (2.26)
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which gives a relation between the number of particles N and chemical potential µ.
Equations (2.23) and (2.25) immediately lead to the equation of motion for the non-

condensed part of the field operator:

i~
∂Ψ̂′

∂t
=

(

− ~
2

2m
∆ + V (r) + 2g|Ψ0|2

)

Ψ̂′ + gΨ2
0Ψ̂

′† . (2.27)

We then use the Bogoliubov transformation (see [32]) generalized for the spatially non-uniform
case [33] and express Ψ′ through the eigenmodes of elementary excitations:

Ψ′ = exp(−iµt/~)
∑

ν

[

uν âν exp(−iενt/~) − v∗ν â
†
ν exp(iενt/~)

]

. (2.28)

Here âν , â
†
ν are annihilation and creation operators of the excitations, and εν are their eigenen-

ergies. Excitations are characterized by a set of quantum numbers ν, and their Bogoliubov
{uν, vν} functions are normalized by the condition

∫

dr
(

|uν(r)|2 − |vν(r)|2
)

= 1 . (2.29)

Commuting both sides of Eq.(2.27) with the operators âν and â†ν , we arrive at the Bogoliubov-
de Gennes equations for the excitation energies and wavefunctions. Assuming that aside from
the factor exp(−iµt/~), the condensate wavefunction Ψ0 is real, these equations read:

(

− ~
2

2m
∆ + V (r) + g|Ψ0|2 − µ

)

f+
ν = ενf

−
ν (2.30)

(

− ~
2

2m
∆ + V (r) + 3g|Ψ0|2 − µ

)

f−
ν = ενf

+
ν , (2.31)

where the functions f±
ν = uν ± vν .

In the spatially uniform case Eq.(2.25) is reduced to the expression for the chemical potential
through the condensate density: µ = n0g. Excitations are characterized by their wave vector
k, and Eqs. (2.30), (2.31) give the eigenfunctions

f±
k = uk ± vk =

1

Ω

(

εk

Ek

)±1/2

exp (ik.r) (2.32)

and lead to the Bogoliubov energy spectrum

εk =
√

E2
k + 2µEk , (2.33)

where Ek = ~
2k2/2m is the energy of a free particle. For small momenta, excitations are

phonons characterized by a linear dispersion law εk = ~csk, where cs =
√

µ/m is the velocity
of sound. High-momentum excitations are single particles with εk = Ek + µ. Characteristic
momenta at which the linear spectrum transforms into the quadratic one are of the order of
1/lc, where lc = ~/

√
mµ is called correlation or healing length. The corresponding excitation

energies are ∼ µ. Note that the criterion (2.3) of the weakly interacting regime is equivalent
to the condition lc ≫ r̄. In other words, there are many particles under the healing length.

We now calculate the density of non-condensed particles n′ and the single-particle correla-
tion function. Using Eqs. (2.28) and (2.32) we obtain

n′ = 〈Ψ̂′†(r)Ψ̂′(r)〉 =

∫

Ωd2k

(2π)2
v2

k =
mg

4π~2
n0 . (2.34)
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Fig. 4. Normalized single-particle correlation function g1/n0 versus r/lc, for a uniform 2D Bose gas

at zero temperature.

One clearly sees that the ratio n′/n0 is small. It is proportional to the small parametermg/2π~
2

required for the weakly interacting regime in the 2D Bose gas.
The single-particle correlation function is g1(r

′, r′′) = 〈Ψ̂†(r′)Ψ̂(r′′)〉 and it depends only on
the relative coordinate r = |r′ − r′′|. On the basis of Eqs. (2.24), (2.28), and (2.32) we obtain

g1(r) = n0 +

∫

Ωd2k

(2π)2
v2

k exp(ik.r) = n0

[

1 +
mg

2π~2
I1

(

r

lc

)

K1

(

r

lc

)]

, (2.35)

where I1 and K1 are the growing and decaying modified Bessel functions, respectively. The
result of Eq.(2.35) is displayed in Fig.4. For r ≪ lc the single-particle correlation function is
close to the total density n. At distances r ≫ lc, Eq.(2.35) gives

g1(r) = n0

(

1 +
mg

4π~2

lc
r

)

; r ≫ lc . (2.36)

For r → ∞ the second term in the brackets vanishes and g1 is tending to n0. Thus, there is a
long-range order in the system. This justifies our initial assumption of the presence of a true
BEC in the 2D weakly interacting gas at T = 0. Note that g1 drops from n to n0 at distances
of the order of the healing length lc.

In order to go beyond the Bogoliubov approach and find, for example, corrections to the
excitation energies, which are small as mg/2π~

2, one may proceed along the lines of the Beliaev
theory [34] developed for 3D Bose-condensed gases at T = 0.

2.4 Quasicondensate at finite temperatures

As we already mentioned, the finite-temperature uniform 2D Bose gas is characterized by the
absence of a true Bose-Einstein condensate and long-range order. To gain insight into the
nature of this phenomenon we first try to calculate the density of non-condensed particles,
assuming that there is a true BEC and one can use the Bogoliubov approach described in the
previous subsection. Then, at finite temperatures, from Eqs. (2.28) and (2.32) we obtain

n′ = 〈Ψ′†(r)Ψ′(r)〉 = n′
v + n′

T . (2.37)
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The vacuum (temperature-independent) contribution n′
v is given by Eq.(2.34), and the thermal

contribution is determined by the relation

n′
T =

∫

Ωd2k

(2π)2
(v2

k + u2
k)Nk =

∫

d2k

(2π)2

(

Ek + µ

εk

)

Nk , (2.38)

where Nk = [exp(εk/T ) − 1]−1 are equilibrium occupation numbers for the excitations. For
k → 0 the occupation numbers are Nk ≈ T/εk, and the excitation energy is εk ∝ k. Therefore,
the integrand in the rhs of Eq.(2.38) behaves as d2k/k2 and the integral is divergent at small
momenta, which rules out the assumption of the presence of a true condensate. The origin
of this infrared divergence is related to long-wave fluctuations of the phase of the condensate
wavefunction, which can be understood turning to the density-phase representation for the
field operators:

Ψ̂ = exp(iφ̂)
√
n̂, Ψ̂† =

√
n̂ exp(−iφ̂) . (2.39)

Here the density and phase operators are real and satisfy the commutation relation

[n̂(r), φ̂(r′)] = iδ(r − r′) . (2.40)

We now present a general approach which is based on the Hamiltonian (2.22) and includes
the presence of an external trapping potential V (r). We assume a priori and justify later that
fluctuations of the density are small. Substituting Eqs. (2.39) into Eq. (2.23) and separating
real and imaginary parts, we get the coupled continuity and Euler hydrodynamic equations for
the density and velocity v̂ = (~/m)∇φ̂:

− ~
∂
√
n̂

∂t
=

~
2

2m
(∆φ̂

√
n̂+ 2∇φ̂∇

√
n̂) , (2.41)

−~
∂φ̂

∂t

√
n̂ =

~
2

2m
(∇φ̂)2

√
n̂− ~

2

2m
∆
√
n̂+ V (r)

√
n̂+ gn̂3/2 . (2.42)

For small density fluctuations, Eq.(2.41) shows that fluctuations of the phase gradient are
also small. Writing the density operator as n̂(r) = n(r)+δn̂(r) and shifting the phase by −µt/~,

we then linearize Eqs. (2.41-2.42) with respect to δn̂, ∇φ̂ around the stationary solution n̂ = n,

∇φ̂ = 0. The zero order terms give the Gross-Pitaevskii equation for the mean density n:

− ~
2

2m

∇2
√
n√
n

+ V (r) + gn = µ , (2.43)

and the first order terms provide equations for the density and phase fluctuations:

~ ∂(δn̂/
√
n)/∂t = (−~

2∇2/2m+ V (r) + gn− µ)(2
√
n φ̂) , (2.44)

−~ ∂(2
√
n φ̂)/∂t = (−~

2∇2/2m+ V (r) + 3gn− µ)(δn̂/
√
n) . (2.45)

Solutions of Eqs. (2.44-2.45) for δn̂, ∇φ̂ are obtained in terms of elementary excitations:

δn̂(r) = n(r)1/2
∑

ν

f−
ν (r)e−iεν t/~ âν + h.c. , (2.46)

φ̂(r) = [4n(r)]−1/2
∑

ν

−if+
ν (r)e−iεν t/~ âν + h.c. , (2.47)

where the eigenfunctions f±
ν obey the Bogoliubov-de Gennes equations (2.30) and (2.31), with

|Ψ0|2 replaced by n. In the previous subsection these functions were introduced as eigen-
functions of elementary excitations of a true Bose-Einstein condensate. We thus see that the
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assumption of small density fluctuations is sufficient for having the Bogoliubov wavefunctions
and spectrum of the excitations, irrespective of the presence or absence of a true conden-
sate. Note that this statement holds for both uniform and trapped Bose gases in the weakly
interacting regime in any dimension.

In the uniform case the chemical potential is µ = gn, and the excitation wavefunctions and
spectrum are given by Eqs. (2.32) and (2.33). As discussed above, the characteristic excitation
energies at which the character of the spectrum transforms from the phonon into the single-
particle one are of the order of µ. We, therefore, separate the energy space into two regions:
low-energy (phonon) part with εk < µ, and high-energy (free-particle) part where εk > µ. The
operators of the density and phase fluctuations are then represented as:

δn̂ = δn̂p + δn̂f , (2.48)

φ̂ = φ̂p + φ̂f , (2.49)

where the indices p and f stand for the phonon (ε < µ) and free-particle (ε > µ) parts,
respectively.

Fluctuations originating from the high-energy part are small. This is seen from the cal-
culation of the density of this part of the gas, < Ψ̂†

fΨ̂f >, where the operator Ψ̂f ac-
counts for both the density and phase fluctuations and is given by the Bogoliubov trans-
formation (2.28) in which the summation is performed only over excitations with energies
εk > µ. At energies significantly larger than µ the function vk = (f+

k − f−
k )/2 → 0, and

uk = (f+
k + f−

k )/2 → Ω−1/2 exp(ik · r). The excitation energy is εk ≈ E(k) + µ and, hence,

the operator Ψ̂f describes an ideal thermal gas of Bose particles with chemical potential equal
to −µ. The density of this gas is exponentially small at T < µ. In the 2D case, for higher
temperatures it is equal to

〈Ψ̂†
f Ψ̂f〉 ≈

∫

εk>µ

d2k

(2π)2
Nk < n

T

Td
ln

(

T

µ

)

,

and is much smaller than n assuming that T is well below the temperature of quantum degen-
eracy Td = 2π~

2n/m.
The low-energy fluctuations of the density at T ≪ Td are also small. This follows from

the calculation of the density-density correlation function 〈δn̂s(r)δn̂s(0)〉. For the 2D gas, a
straightforward calculation using Eq.(2.46) yields

〈δn̂p(r)δn̂p(0)〉
n2

=
1

nΩ

∑

εk<µ

E(k)

ε(k)
(2Nk + 1) cos(k.r) < max

{

T

Td
,
mg

4π~2

}

≪ 1 . (2.50)

Similarly, one finds that the density-phase correlation functions 〈 δn̂p(r)
n φ̂p(0)〉 and 〈φ̂p(r)

δn̂p(0)
n 〉

are small for T ≪ Td.
To zero order in perturbation theory, omitting small high-energy fluctuations and small

low-energy fluctuations of the density, the single-particle correlation function is found by using
the field operator in the form:

Ψ̂ =
√
n exp(iφ̂p) . (2.51)

Relying on the Taylor expansion of the exponent one proves directly that 〈exp{iφp}〉 =
exp(−〈φ2

p〉/2). Then, for the single-particle correlation function we obtain:

g1(r) = 〈Ψ̂†(r)Ψ̂(0)〉 = n exp

(

−1

2
〈(φ̂p(0) − φ̂p(r))

2〉
)

; T ≪ Td . (2.52)
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In the 2D case, vacuum low-energy (long-wave) fluctuations of the phase are small as
mg/2π~

2. However, thermal phase fluctuations are large for r → ∞. On the basis of Eq.(2.47),
we find the following asymptotic expression for the mean square phase fluctuations:

〈

[

φ̂p(r) − φ̂p(0)
]2
〉

T

≈ 2T

Td
ln

(

r

λT

)

; r ≫ λT . (2.53)

where λT is equal to the healing length lc at T ≫ µ, and to the thermal de Broglie wavelength
of phonons ~cs/T for T ≪ µ. Accordingly, the correlation function g1(r) undergoes a slow
power law decay at large distances:

g1(r) = n

(

λT

r

)T/Td

; r ≫ λT . (2.54)

This is drastically different from the situation in 3D Bose-condensed gases, where fluctuations
are small at any distance and g1 is tending to the condensate density as r → ∞. We thus see
that just long-wave thermal fluctuations of the phase destroy the long-range order and true
BEC in finite-temperature 2D Bose gases.

The low-temperature behavior of the single-particle correlation function, showing its power
law decay at large r, was first obtained by Kane and Kadanoff [9]. The idea of dividing the
system into slow (low-energy) and fast (high-energy) parts belongs to Popov who developed
a perturbation theory for Bose systems on these grounds [1]. In the described hydrodynamic
approach, for obtaining perturbative corrections to Eq.(2.52) one should expand the continuity
and Euler equations (2.41) and (2.42) up to second order in the density and phase fluctuations,
which provides a correction to the stationary solution. One should then include the low-energy
density fluctuations and the high-energy fluctuations in the expression for the field operator.
An expression for g1(r) in the uniform 2D case, which contains these corrections and is obtained
on the basis of the Popov theory, is given in [35].

The distance at which the mean square phase fluctuations become of the order of unity and
the single-particle correlation function significantly decreases, is called the phase coherence
length lφ. From Eq.(2.53) we obtain

lφ = λT exp

(

Td

2T

)

(2.55)

and clearly see that at T ≪ Td the phase coherence length greatly exceeds the healing length
lc. This means that the system can be divided into blocks of size L̃ which is chosen such that
lc ≪ L̃≪ lφ. Then, using Eqs. (2.52) and (2.53) we can make sure that correlation properties
inside each block are the same as in a genuine Bose-condensed gas. We thus conclude that there
is a true condensate in each block. However, the phases of different blocks are not correlated
with each other. Therefore, this system got the term quasicondensate, or condensate with
fluctuating phase [13]. For the existence of the quasicondensate, it is crucial that the density
fluctuations are small on any distance scale.

2.5 True and quasicondensates in 2D traps

Bose-Einstein condensation in trapped 2D gases is qualitatively different from that in the
uniform case. As was discussed in Lecture 1, for an ideal 2D gas the change of the density of
states due to a harmonic confining potential, leads to a macroscopic occupation of the ground
state of the trap (ordinary BEC) at temperatures T < Tc ≈N1/2

~ω, where N is the number
of particles, and ω the trap frequency [7]. Thus, there is a question of whether an interacting
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trapped 2D gas supports the ordinary BEC or the Kosterlitz-Thouless type of a cross-over to
the BEC regime. Related studies are now underway, and for large 2D samples one expects the
Kosterlitz-Thouless cross-over. However, irrespective of the type of the BEC cross-over, the
critical temperature will be always comparable with Tc of an ideal gas. On approach to Tc

from above, the gas density is nc ∼ N/R2
Tc

, where RTc
≈
√

Tc/mω2 is the thermal size of the

cloud, and hence the Kosterlitz-Thouless temperature is ∼ ~
2nc/m ∼ N1/2

~ω ∼ Tc.
An important feature of trapped gases is that the confining potential introduces a finite

size of the sample, which sets a lower bound for the momentum of elementary excitations
and reduces the phase fluctuations. For this reason, at finite temperatures well below Tc the
phase fluctuations are small, and the equilibrium state is a true condensate. At intermediate
temperatures T < Tc the phase fluctuates on a distance scale smaller than the size of the gas
sample, and one has a quasicondensate. Qualitatively, the character of the BEC state can be
identified by comparing the size of the sample with the uniform-gas phase coherence length
(2.55) at the maximum density of the trapped gas. In this Lecture we present a more detailed
analysis of the phase fluctuations and BEC character in weakly interacting trapped (quasi)2D
gases. For simplicity we assume that the coupling constant g is independent of the gas density.
In the quasi2D case this requires the condition l0 ≫ |a| which leads to g given by Eq.(2.8).
This condition is satisfied in recent experiments [16–19], where the quasi2D regime was reached
for atomic Bose condensates.

For finding the phase (and density) fluctuations in a trapped gas, one should know the
density profile and the spectrum of elementary excitations. If the number of particles is very
large and the chemical potential µ greatly exceeds the level spacing in the trap, the kinetic
energy term in Eq. (2.43) is much smaller than the nonlinear term and can be neglected. This
approach is called the Thomas-Fermi (TF) approximation, and in a harmonic trap the density
profile takes the well-known parabolic shape:

n =
1

g

(

µ− m

2

∑

i

ω2
i r

2
i

)

, (2.56)

with ωi and ri being the trap frequency and coordinate in the i-th direction. The dependence
of the excitation spectrum on the trapping geometry has been extensively studied for 3D TF
condensates (see [39] for review). The spectrum and wavefunctions of low-energy excitations
(εν ≪ µ) can be found analytically [36–38]. For the 1D and 2D weakly interacting trapped
Bose gases this has been done in [40, 41].

We analyze the character of BEC in a harmonically trapped symmetric 2D gas with repulsive
interparticle interaction, relying on the calculation of the single-particle correlation function
[20]. As well as in the uniform case, fluctuations of the density are provided by excitations
with wavelengths of the order of 1/lc and in a similar way one proves that they are small
at temperatures T ≪ Td. Therefore, the single-particle correlation function can be found by
using the field operator from Eq.(2.51), with coordinate-dependent mean density n(r) and

phase operator φ̂p(r). Then the correlation function is given by Eq.(2.52) generalized to the
trapped case:

〈Ψ̂†(r)Ψ̂(0)〉 =
√

n0(r)n0(0) exp

(

−1

2
〈(φ̂p(0) − φ̂p(r))

2〉
)

, (2.57)

where r = 0 at the trap center.
In the Thomas-Fermi regime, the radius of the gas sample is RTF = (2µ/mω2)1/2, and

integration of Eq.(2.56) over the spatial volume of the gas gives a relation between the chemical
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potential and the number of particles:

µ = n0mg =

√

Nmg

π~2
~ω , (2.58)

where nm = n(0) is the maximum density. It is worth noting that the ratio of the chemical
potential to the BEC transition temperature Tc of an ideal gas is µ/Tc ≈ (mg/π~

2)1/2 ≪ 1.

For calculating the mean square fluctuations of the phase, we use the (discrete) spectrum
and wavefunctions of excitations with energies εν ≪ µ, obtained relying on the method devel-
oped for Thomas-Fermi trapped condensates [36–38, 40, 41]. At temperatures larger than the
chemical potential, for distances r greatly exceeding the healing length lc at the trap center,
we obtain a result similar to that in the uniform case:

〈(φ̂p(0) − φ̂p(r))
2〉 ≡ (δφ(r))2 ≈

(mg

π~2

) T

µ
ln

(

r

lc

)

. (2.59)

The character of the Bose-condensed state is determined by the phase fluctuations at dis-
tances r ∼ RTF . If they are small, one has a true condensate, and for a large value of these
fluctuations the state is a quasicondensate. With logarithmic accuracy, from Eq.(2.59) we find

(δφ(r ∼ RTF ))2 ≈
( mg

2π~2

) T

µ
lnN . (2.60)

In the case of a quasicondensate the phase coherence length lφ is given by an expres-
sion similar to that for uniform quasicondensates. For T > µ, equation (2.59) yields lφ ≈
lc exp(π~

2nm/mT ). As lφ greatly exceeds the healing length, the quasicondensate has the
same Thomas-Fermi density profile as the true condensate. Correlation properties at dis-
tances smaller than lφ and, in particular, local density correlators are also the same. Hence,
one expects the same reduction of inelastic decay rates as in 3D condensates [13]. However,
the phase coherence properties of a quasicondensate are drastically different. We will have a
detailed discussion of this subject in the next Lecture for the case of 1D quasicondensates.

From Eq.(2.60) we see that in large gas samples one has more possibilities for obtaining the
quasicondensate regime. In quasi2D trapped alkali gases one can expect the number of trapped
atomsN ranging from 104 to 106 and a value ∼ 10−2 or larger for the small parametermg/2π~

2.
In the MIT sodium experiment [16] on achieving the quasi2D regime for a trapped condensate,
this small parameter was about 10−2 and the number of atoms was ∼ 105. Therefore, even at
temperatures somewhat higher than µ the gas was in the regime of true BEC. Note, however,
that the coupling constant g in the MIT experiment [16] was rather small as the scattering
length for sodium is only 28 Å. One can think of achieving the quasicondensate regime for the
same trapping parameters and N as at MIT, by using Feshbach resonances and tuning the
coupling constant to much larger values.

Presently, the largest obtained 2D Bose-condensed gas is the one of spin-polarized atomic
hydrogen on liquid helium surface [15]. In this system the temperature is about 100 mK, the
density exceeds 1013 cm−3, and the number of particles is ∼ 108. Estimates show that the
state should be a quasicondensate rather than a true condensate. However, this should still be
proven experimentally.

Problem: Prove that to zero order in perturbation theory the coupling constant for the 2D
Bose-condensed gas is g = ~

2f/m, where f is the scattering amplitude (as defined in Eq.(2.13))
at energy of the relative motion E = 2µ. (Yu.E. Lozovik, 1971).
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3 LECTURE 3. TRUE AND QUASICONDENSATES IN 1D TRAPPED GASES

One-dimensional Bose systems at low temperature show a remarkable physics not encountered
in 2D and 3D. In particular, the 1D Bose gas with repulsive interparticle interaction becomes
more non-ideal with decreasing 1D density n [42, 43]. The regime of a weakly interacting gas
requires the correlation length lc = ~/

√
mng to be much larger than the mean interparticle

separation 1/n. For small n or large interaction, where this condition is violated, the gas
acquires fermionic properties as the wavefunction strongly decreases at short interparticle dis-
tances [42, 43]. In this case it is called a gas of impenetrable bosons or Tonks-Girardeau gas
(cf. [44]).

Spatially uniform 1D Bose gases with repulsive interparticle interaction have been exten-
sively studied in the last decades. For the delta-functional interaction, Lieb and Liniger [43]
have calculated the ground state energy and the excitation spectrum which at low momenta
turns out to be phonon-like. Generalizing the Lieb-Liniger approach, Yang and Yang [45]
have proved the analyticity of thermodynamical functions at any finite temperature T , which
indicates the absence of a phase transition.

However, at sufficiently low T the correlation properties of a 1D Bose gas are qualitatively
different from classical high-T properties. In the regime of a weakly interacting gas the density
fluctuations are suppressed [9], whereas at finite T the long-wave fluctuations of the phase lead
to an exponential decay of the single-particle correlation function at large distances [9, 46]. A
similar picture, with a power-law decay of the density matrix, was found at T = 0 [47, 48].
Therefore, the Bose-Einstein condensate is absent at any T , including T = 0. These findings
are consistent with the Bogoliubov k−2 theorem at finite T , and with a related treatment at
T = 0 [49].

Earlier studies of 1D Bose systems (see [1] for review) allow us to conclude that in uniform
1D gases the decrease of temperature leads to a continuous transformation of correlation prop-
erties from ideal-gas classical to interaction/statistics dominated. In the weakly interacting
regime at low T , where the density fluctuations are suppressed and the phase fluctuates on a
distance scale much larger than the correlation length lc, one can speak of a phase-fluctuating
Bose-condensed state (quasicondensate). A 1D classical field model for calculating correlation
functions in the conditions, where both the density and phase fluctuations are important, was
developed in [50] and for Bose gases in [51]. The use of the Bogoliubov approach for describing
1D uniform (quasi)condensates is recently discussed in [52] and is presented in the lectures of
Yvan Castin.

In order to avoid misunderstanding, we should make a remark on the presence of a qua-
sicondensate in the uniform weakly interacting 1D Bose gas. It is sometimes stated that in
this case the quasicondensate exists only at T = 0, and its presence is related to the power
law decay of the single-particle correlation function at large distances (see, for example, [53]).
However, at finite temperatures where this correlation function decays exponentially, the phase
coherence length lφ can greatly exceed the healing length lc. This is the case for small density
fluctuations, and then the physical picture is similar to that in uniform finite-temperature 2D
gases or zero-temperature 1D gases. The system can be divided into blocks of size L̃ satisfying
the inequalities lc ≪ L̃ ≪ lφ, and inside each block one has a true condensate with a phase
that is not correlated with phases in other blocks. In this sense, the term quasicondensate can
also be used in weakly interacting uniform 1D Bose gases at finite temperatures.

The 1D regime for trapped atomic condensates has been achieved in several experiments
by tightly confining the motion of particles in two directions [16, 54, 55]. In this Lecture we
will discuss the various quantum degenerate states that are present in finite-temperature 1D
trapped Bose gases and focus attention on the case of a weakly interacting gas.
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3.1 Weakly interacting regime in 1D

We will discuss 1D Bose gases with repulsive short-range interaction between particles (coupling
constant g > 0). Present realizations of the 1D regime imply particles in a cylindrical trap,
which are tightly confined in the radial direction, with the confinement frequency ω0 greatly
exceeding the mean-field interaction. Then, at sufficiently low T the radial motion of particles
is essentially “frozen” and is governed by the ground-state wavefunction of the radial harmonic
oscillator. If the radial extension of the wavefunction, l0 = (~/mω0)

1/2, is much larger than
the radius of the interatomic potential Re, the interaction between particles acquires a 3D
character and is characterized by the 3D scattering length a. For this case, the coupling
constant has been found by Olshanii [56], and for l0 ≫ a it can also be obtained by averaging
the 3D interaction over the radial (harmonic oscillator) density profile:

g =
2~

2

m

a

l20
; l0 ≫ a . (3.1)

Statistical properties of such quasi1D samples are the same as those of a purely 1D system
with the coupling constant given by Eq.(3.1).

As well as in the 2D case, we obtain the criterion of the weakly interacting regime at T = 0
by comparing the interaction energy per particle, I = ng, with a characteristic kinetic energy
of particles at a mean separation r̄ between them. In the 1D case we have r̄ ∼ 1/n, and this
kinetic energy is K ≈ ~

2n2/m. In the weakly interacting regime, where the wavefunction of
particles is not influenced by the interaction at interparticle distances of the order of r̄, one
should have I ≪ K. This leads to the criterion of the weakly interacting regime

γ =
mg

~2n
≪ 1 . (3.2)

From Eq.(3.2) one really sees that in contrast to 2D and 3D gases, the 1D Bose gas becomes
more interacting with decreasing density. In the purely 1D case this statement is valid as long
as the mean interparticle separation 1/n remains much larger than the radius of interparticle
interaction Re. For quasi1D weakly interacting gases realized in present experiments, the
density should still be such that the healing length lc = ~/

√
mng ≫ l0, otherwise the gas

leaves the 1D regime. Assuming a≪ l0, this gives the condition na≪ 1.
The parameter γ can also be interpreted as a ratio of the mean interparticle separation to the

characteristic interaction length for two particles, rg = ~
2/mg. This quantity determines the

distance scale on which the repulsion between the particles reduces their relative wavefunction.
Under the condition rg ≫ 1/n, which is equivalent to Eq.(3.2), this reduction is practically
absent and, hence, the gas is weakly interacting. In contrast, for rg ≪ 1/n or, equivalently,
γ ≫ 1, the relative wavefunction is strongly reduced at distances smaller than 1/n. The gas
then enters the strongly interacting Tonks-Girardeau regime and acquires fermionic properties.

For particles trapped in a harmonic (axial) potential V (z) = mω2z2/2, one can introduce
a complementary dimensionless quantity

α =
mg l

~2
, (3.3)

where l =
√

~/mω is the amplitude of axial zero point oscillations. The parameter α provides
a relation between the interaction strength g and the trap frequency ω. Actually, it represents
the ratio of l to the interaction length rg. For α ≪ 1, the strongly interacting regime is not
present at all as the relative motion of two particles on approach to each other is governed by
their harmonic confinement rather than the interparticle interaction.
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3.2 True BEC and diagram of states at T = 0

The nature of quantum degenerate states in the trapped 1D gas is strongly influenced by the
interparticle interaction and by the presence of the trapping potential. The latter introduces
a finite size of the sample and provides a low-momentum cut-off for the phase and density
fluctuations. This reduces the fluctuations compared to the uniform case.

We first discuss the case of T = 0. For simplicity, we will consider a uniform gas with a
finite size L. We assume a priori that there is a true condensate with a density n0 greatly
exceeding the density of non-condensed particles n′. Then, for a large value of L we have the
Bogoliubov excitation spectrum given by Eq.(2.33) and the excitation wavefunctions following
from Eq.(2.32). The density of non-condensed particles is given by an equation similar to
Eq.(2.34). The difference is that now the lower limit of integration over the excitation momenta
is non-zero. It is related to a finite size of the system and is equal to π/L. We thus have

n′

n0
=

∫ ∞

π/L

dk

π

v2
k

n0
, (3.4)

and a straightforward calculation yields

n′

n0
=

√
γ

π
ln

(

2L

eπlc

)

. (3.5)

For a realistic size L of a trapped 1D Bose gas, the logarithmic factor in Eq.(3.5) does not
exceed 10. Hence, for γ ≪ 1 we have n′ ≪ n0. This proves that fluctuations are small and
justifies our initial assumption on the presence of a true BEC in a weakly interacting trapped
Bose gas at T = 0. An analysis of vacuum fluctuations for 1D Bose gases in harmonic traps is
given in [41].

Thus, in a harmonically trapped 1D Bose gas at T = 0 we have a true condensate with the
density profile determined by the Gross-Pitaevskii equation (2.25). In the Thomas-Fermi (TF)
regime, where the chemical potential is µ ≫ ~ω, the kinetic energy term can be omitted and
we have a parabolic density distribution typical for condensates in harmonic traps:

n0(z) = n0m

(

1 − z2

R2
TF

)

(3.6)

for −RTF ≤ z ≤ RTF , and is equal to zero otherwise. The (half)size of the condensate is
RTF = (2µ/mω2)1/2, and the maximum density is n0(0) = n0m = µ/g. Integrating Eq.(3.6)
over dz we obtain a relation between the chemical potential and the number of particles N :

µ = ~ω

(

3Nα

4
√

2

)2/3

, (3.7)

where the parameter α is given by Eq.(3.3).
For α ≫ 1 we are always in the TF regime. In this case, Eq.(3.2) requires a sufficiently

large number of particles:
N ≫ N∗ = α2 , (3.8)

which reflects the fact that the weakly interacting regime requires sufficiently large densities.
For α≪ 1 the criterion (3.2) of a weakly interacting gas is satisfied at any N . The condensate
is in the TF regime if N ≫ α−1. In the opposite limit the mean-field interaction is much
smaller than the level spacing in the trap ~ω. Hence, one has a macroscopic occupation of the
ground state of the trap, i.e. there is an ideal gas condensate with a Gaussian density profile.
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Fig. 5. Diagram of states for a trapped 1D gas at T = 0.

If α ≫ 1 and N ≪ N∗, then the trapped 1D gas is in the strongly interacting Tonks-
Girardeau regime. The one-to-one mapping of this system to a gas of free fermions [42] ensures
the fermionic spectrum and density profile. The chemical potential is equal to N~ω, and the
density distribution is n(z) = (

√
2N/πl)

√

1 − (z/R)2, where the size of the cloud is R =
√

2Nl.
Note that this profile is different from both the profile of the zero-temperature condensate and
the classical distribution of particles. Correlation properties of strongly interacting 1D Bose
gases will be discussed in Lecture 4.

In Fig.5, we present the diagram of states for the zero-temperature trapped 1D Bose gas in
terms of N and α. This diagram clearly shows the presence of three states as discussed above:
Thomas-Fermi BEC, condensate with a Gaussian density profile, and the Tonks-Girardeau gas.

3.3 Regimes of quantum degeneracy at finite temperature

The characteristic temperature of quantum degeneracy for a trapped 1D Bose gas is Td ≈ N~ω.
In the weakly interacting regime, the character of finite-temperature Bose-condensed states at
T ≪ Td is determined by thermal fluctuations. Before describing these states, we briefly
analyze a cross-over to the BEC regime in 1D trapped gases.

As we discussed in Lecture 1, for an ideal gas one has a sharp cross-over to BEC. Ket-
terle and van Druten [8] found that the decrease of T to below Tc = N~ω/ ln(2N) strongly
increases the population of the ground state, which rapidly becomes macroscopic. This sharp
cross-over originates from the discrete structure of the trap levels. However, the presence
of the interparticle interaction changes the picture drastically. One can distinguish between
the (lowest) trap levels only if the interaction between particles occupying a particular level
is much smaller than the level spacing. Otherwise the interparticle interaction smears out
the discrete structure of the levels. For T close to Tc the occupation of the ground state is
∼ Tc/~ω ≈ N/ ln(2N) [8] and, hence, the mean-field interaction between the particles in this
state (per particle) is Ng/l ln(2N). The sharp BEC cross-over requires this quantity to be
much smaller than ~ω, and we arrive at the condition N/ ln(2N) ≪ α−1. For a realistic num-
ber of particles (N ∼ 103 − 104) this is practically equivalent to the condition N ≪ α−1 at
which one has the ideal gas Gaussian condensate.

As we see, the sharp BEC cross-over requires small α. For possible realizations of 1D gases,
using the coupling constant (3.1) for l0 ≫ a, we obtain α = 2al/l20. Then, even for the ratio
l/l0 ∼ 10 and moderate radial confinement with l0 ∼ 1 µm, we have α ∼ 0.1 for Rb atoms
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(a ≈ 50 Å). Clearly, for a reasonably large number of particles the (sharp) cross-over condition
N ≪ α−1 can only be fulfilled at extremely small interparticle interaction. One can think of
reducing a to below 1Å and achieving α < 10−3 by using Feshbach resonances. In this case
one can expect the sharp BEC cross-over already for N ∼ 103.

Otherwise, similarly to the uniform 1D case, the decrease of temperature to below Td con-
tinuously transforms a classical 1D gas to the regime of quantum degeneracy. If the condition
(3.2) is satisfied, one has a weakly interacting gas which at T = 0 becomes a true TF con-
densate. To understand the nature of a Bose-condensed state at finite T ≪ Td, we analyze
the behavior of the single-particle correlation function by calculating the fluctuations of the
density and phase [57].

We assume a priori that the weakly interacting trapped 1D Bose gas is characterized by
small density fluctuations and justify this assumption later. Then the operators of the density
and phase fluctuations are given by Eqs. (2.48) and (2.49), and the spectrum and wavefunctions
of elementary excitations follow from Eqs. (2.30) and (2.31) in which the density distribution
is the one of the zero-temperature condensate. It has already been shown in section 3.2 that
vacuum fluctuations of the density and phase are small. Therefore, we now discuss only thermal
fluctuations. Using Eq.(3.7) we find that µ/Td ∼ (α2/N)1/3 ≪ 1. Accordingly, our analysis
will include both cases, T ≪ µ and T ≫ µ.

Fluctuations coming from the high-energy part of the excitations (εν > µ) are small.
Similarly to the uniform case discussed in Lecture 2, this part can be viewed as an ideal
thermal gas of particles, with chemical potential equal to −µ. One then finds that the number
of particles in the high-energy part becomes exponentially small for T ≪ µ, and for T ≫ µ
it is ∼ (T/Td)N ≪ N . We therefore confine ourselves to fluctuations coming from low-energy
excitations (εν < µ).

The solution of Eqs. (2.30) and (2.31) for these excitations gives the spectrum εj =

~ω
√

j(j + 1) [40, 41] and wavefunctions

f±
j =

(

j + 1/2

RTF

)1/2 [
2µ

εj
(1 − x2)

]1/2

Pj(x) , (3.9)

where j is a positive integer, Pj are Legendre polynomials, and x = z/RTF . Using Eqs. (2.48)
and (3.9), for the mean square (thermal) fluctuations of the density we have

〈(δn̂(z) − δn̂(z′))2〉T ≡ 〈δn2
zz′〉T =

εj<µ
∑

j=1

εjn0m(j + 1/2)

µRTF
(Pj(x) − Pj(x

′))2Nj , (3.10)

withNj = [exp(εj/T )−1] being the occupation numbers for the excitations. Assuming T ≫ ~ω,
the main contribution to the density fluctuations comes from quasiclassical excitations (j ≫ 1).
These fluctuations are largest on a distance scale |z − z′| greatly exceeding the de Broglie
wavelength of the excitations. In this case we obtain

〈δn2
zz′〉T
n2

0m

=
T

Td
min{(T/µ), 1} . (3.11)

Thus, we see that the density fluctuations are small at any temperature T ≪ Td.
The result of Eq.(3.11) looks quite different from what one finds for a uniform 1D Bose gas.

In the latter case, using the Bogoliubov spectrum (2.33) and excitations wavefunctions (2.32),
for T ≫ µ we have 〈δn2

zz′〉T ∼ (T/
√
µTd)n

2. The difference from Eq.(3.11) is related to the fact
that in the trapped case the density profile shrinks when decreasing temperature well below the
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global temperature of quantum degeneracy Td = N~ω. Therefore, at T ≪ Td the local value
of the degeneracy temperature in the center of the trap is T0 ∼ 2π~

2n2
0m/m ∼ T 2

d /µ ≫ Td.
Expressing Td in Eq.(3.11) through T0 we restore qualitatively the uniform-gas result.

As the low-energy fluctuations of the density are suppressed and high-energy fluctuations
are also small, for finding the single-particle correlation function we may use the field operator
in the form (2.51): Ψ̂(z) =

√

n0(z) exp(iφ̂p(z)), where the operator φ̂z represents the low-
energy part of the phase fluctuations. Then, similarly to the 2D case, the correlation function
is expressed through the mean square fluctuations of the phase:

g1(z, z
′) ≡ 〈Ψ̂†(z′)Ψ̂(z)〉 =

√

n0(z)n0(z′) exp

(

−1

2
〈δφ̂2

zz′ 〉
)

, (3.12)

where δφ̂zz′ = φ̂p(z) − φ̂p(z
′). On the basis of Eqs. (2.49) and (2.30), for the thermal phase

fluctuations we have

〈δφ̂2
zz′ 〉T =

εj<µ
∑

j=1

µ(j + 1/2)

εjn0mRTF
(Pj(x) − Pj(x

′))2Nj . (3.13)

In contrast to the 2D gas, thermal fluctuations of the phase in 1D are mostly provided by the
contribution of the lowest excitations. A direct calculation of Eq.(3.13) yields

〈δφ̂2
zz′ 〉T =

4Tµ

3Td~ω

∣

∣

∣

∣

ln

[

(1 − x′)

(1 + x′)

(1 + x)

(1 − x)

]
∣

∣

∣

∣

. (3.14)

For z and z′ close to the trap center, the logarithmic term in Eq.(3.14) is equal to 2|z −
z′|/RTF ≪ 1. Otherwise, it is of order unity, except for the region close to the Thomas-Fermi
border of the density distribution.

The temperature Tφ at which the quantity 〈δφ̂2
zz′ 〉 is of order unity on a distance scale

|z − z′| ∼ RTF , is given by

Tφ = Td
~ω

µ
. (3.15)

Thus, for T ≪ Tφ both the density and phase fluctuations are suppressed, and there is a true
condensate. The condition (3.8) always provides the ratio Tφ/~ω ≈ (4N/α2)1/3 ≫ 1.

In the temperature range, where Td ≫ T ≫ Tφ, the density fluctuations are suppressed,
but the phase fluctuates on a distance scale lφ ≈ RTF (Tφ/T ) ≪ RTF . Hence, similarly
to the 2D case, we have a condensate with fluctuating phase (quasicondensate). The phase
coherence length lφ greatly exceeds the correlation length: lφ ≈ lc(Td/T ) ≫ lc. Therefore,
the quasicondensate has the same density profile and local correlation properties as the true
condensate.

In Fig. 6, we present the state diagram for the finite-temperature trapped 1D gas at α = 10
(N∗ = 100). One clearly sees three quantum degenerate regimes: the BEC regimes of a
quasicondensate and true condensate, and the regime of a trapped Tonks gas [57]. For N ≫ N∗,
the decrease of temperature to below Td leads to the appearance of a quasicondensate which at
T < Tφ turns to the true condensate. In the T −N plane the approximate border line between
the two BEC regimes is determined by the equation (T/~ω) = (32N/9N∗)

1/3. For N < N∗

the system can be regarded as a trapped Tonks gas.

A cross-over from one regime to another is always smooth. The absence of a sharp transi-
tion from true to quasiBEC is seen from the behavior of the single-particle correlation function.
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Fig. 6. Diagram of states for a finite-temperature trapped 1D Bose gas.
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Using Eqs. (3.12) and (3.14) and omitting small vacuum fluctuations, for the normalized cor-
relation function at z′ = −z we obtain

g1(z,−z)
n0(z)

=

(

1 − |z|/RTF

1 + |z|/RTF

)4T/3Tφ

. (3.16)

This function is displayed in Fig. 7 for various ratios T/Tφ. In particular, we see that the full
phase coherence requires temperatures well below Tφ.

Present facilities allow one to achieve both the true and quasicondensate regimes for the
1D trapped Bose gas. For example, in the case of 103 rubidium atoms trapped in a cylindrical
harmonic potential with axial frequency ω ∼ 1 Hz, we have the temperature of quantum
degeneracy Td ∼ 100 nK. Then, if the tight radial confinement providing the 1D regime is
made at a frequency ω0 ∼ 100 Hz, the characteristic temperature Tφ is about 10 nK.

The phase fluctuations lead to a drastic difference of the phase coherence properties of a
quasicondensate from those of a true condensate. This can be understood from a gedanken
‘juggling’ experiment similar to those with 3D condensates at NIST and Munich [58,59]. Small
clouds of atoms are ejected from the main cloud by stimulated Raman or RF transitions.
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Observing the interference between two clouds, simultaneously ejected from different parts of
the sample, allows the reconstruction of the spatial phase coherence properties. Repeatedly
juggling clouds of a small volume Ω from points z and z′ of the 1D sample, for equal time of
flight to the detector we have the averaged detection signal I = Ω[n0(z)+n0(z

′)+2〈ψ̂†(z)ψ(z′)〉]
and thus measure directly the single-particle correlation function g1(z, z

′) = 〈ψ̂†(z)ψ(z′)〉.
In the regime of a weakly interacting gas, at T ≪ Tφ the phase fluctuations are small

and one has a true condensate. In this case, for z′ = −z we have 〈ψ̂†(z)ψ̂(z′)〉 = n0(z) and
I = 4Ωn0(z), which shows a pronounced interference effect. The detected signal is twice as
large as the number of atoms in the ejected clouds. The phase fluctuations grow with T and for
T > Tφ, where the true condensate turns into a quasicondensate, the detection signal decreases
as described by g1(z,−z) from Eq.(3.16). For T ≫ Tφ the phase fluctuations completely destroy
the interference between the two ejected clouds, and I = 2Ωn0(z).

The time-dependent single-particle correlation function 〈Ψ̂†(z, t)Ψ̂(z′, t′)〉 has been calcu-
lated in [53] and it has been shown how this correlation function can be measured in two-photon
Rahman outcoupling experiments.

3.4 Phase coherence in 3D elongated condensates

The one-dimensional character of thermal phase fluctuations is also present in a very elon-
gated 3D Bose gas, which leads to the appearance of a quasicondensate in this system. This
phenomenon, predicted [60] and observed [61–65] in recent studies, is described by the fol-
lowing physical picture. Excitations of elongated condensates can be divided into two groups:
“low energy” axial excitations with energies εν < ~ω0, and “high energy” excitations with
εν > ~ω0. The latter have 3D character as their wavelengths are smaller than the radial size
R⊥. Therefore, as in ordinary 3D condensates, these excitations can only provide small phase
fluctuations. The “low-energy” axial excitations have wavelengths larger than R⊥ and exhibit
a pronounced 1D behavior. Just these excitations give the most important contribution to the
long-wave axial fluctuations of the phase.

A detailed description of fluctuations in elongated 3D condensates is given in [60], and
in this Lecture we only briefly outline the results. We consider a cylindrical Thomas-Fermi
condensate with an axial size RTF greatly exceeding the radial size R⊥, and assume that most
particles are Bose-condensed. The axial thermal fluctuations of the phase, with wavelengths
larger than R⊥, are similar to the fluctuations in the 1D case. In particular, one finds that the
mean square fluctuations on a distance scale ∼ RTF are approximately equal to T/Tφ, where
the characteristic temperature Tφ is given by

Tφ = 15
(~ω)2

32µ
N , (3.17)

with N being the number of particles, and ω the axial trap frequency. This is qualitatively
the same as the result of Eq.(3.15) where one substitutes Td = N~ω. Accordingly, the phase
coherence length is again determined by the relation lφ = RTF (Tφ/T ). It is much larger
than the healing length: lφ/lc ≈ (Tc/T )(Tc/~ω0)

2 ≫ 1, with Tc ≈ (Nω2
0ω)1/3 being the BEC

transition temperature, and ω0 the radial confinement frequency (ω0 ≫ ω).
We thus see that the situation is quite similar to that in 1D trapped gases. One has a

continuous transformation of a quasicondensate into a true BEC when decreasing temperature
to below Tφ.

Most important is the dependence of the phase fluctuations on the aspect ratio of the cloud
ω0/ω. Fig. 8 shows the ratios Tc/Tφ, µ/Tφ, and the temperature Tφ as functions of ω0/ω for
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Fig. 8. The ratios Tc/Tφ and µ/Tφ in (a) and the temperature Tφ in (b), versus the aspect ratio ω0/ω

for trapped Rb condensates with N = 105 and ω0 = 500 Hz.

Thomas-Fermi rubidium condensates at N = 105 and ω0 = 500 Hz. From these results we see
that 3D quasicondensates can be obtained in elongated geometries with ω0/ω & 50.

The phase fluctuations are very sensitive to temperature. From Fig.8 we see that one can
have Tφ/Tc < 0.1, and the phase fluctuations are still significant at T < µ, where only a
tiny indiscernible thermal cloud is present. This suggests a principle for thermometry of 3D
Bose-condensed gases with indiscernible thermal clouds. If the sample is not an elongated
quasicondensate by itself, it is first transformed to this state by adiabatically increasing the
aspect ratio ωρ/ωz. This does not change the ratio T/Tc as long as the condensate remains
in the 3D Thomas-Fermi regime. Second, the phase coherence length lφ or the single-particle
correlation function are measured. These quantities depend on temperature if the latter is of
the order of Tφ or larger. One thus can measure the ratio T/Tc for the initial cloud, which is
as small as the ratio Tφ/Tc for the elongated cloud.

Pronounced phase fluctuations have been first observed in Hannover experiments with very
elongated cylindrical 3D condensates of up to 105 rubidium atoms [61, 62]. The expanding
cloud released from the trap was imaged after 25 ms of time of flight and the images showed
clear modulations of the density (stripes) in the axial direction (see Fig. 9). The physical reason
for the appearance of stripes is the following. In a trap the density distribution does not feel
the presence of the phase fluctuations, since the mean-field interparticle interaction prevents
the transformation of local velocity fields provided by the phase fluctuations into modulations
of the density. After switching off the trap, the cloud rapidly expands in the radial direction,
whereas the axial phase fluctuations remain unaffected. As the mean-field interaction drops to
almost zero, the axial velocity fields are then converted into the density distribution.

The mean square modulations of the density in the expanding cloud provide a measure
of the phase fluctuations in the initial trapped condensate. A direct relation between these
quantities has been established from analytical and numerical solutions of the Gross-Pitaevskii
equation for the expanding cloud, with explicitly included initial fluctuations of the phase [61].
The obtained phase coherence length was inversely proportional to T , in agreement with theory,
and for most measurements it was smaller than the axial size of the trapped Thomas-Fermi
cloud. This implies that the measurements were performed in the regime of quasicondensation.

The properties of quasicondensates and the phase coherence length were measured directly
in Bragg spectroscopy experiments with elongated rubidium BECs at Orsay [63]. In this type
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Fig. 9. Absorption images and corresponding density profiles of BECs after 25 ms time-of-flight in the

Hannover experiment for aspect ratios [ω0/ω = 10 (a), 26 (b), 51 (c)].

of experiment one measures the momentum distribution of particles in the trapped gas. The
Orsay studies [63] find a Lorentzian momentum distribution characteristic of quasicondensates
with axially fluctuating phase [64], whereas a true condensate has a Gaussian distribution.
The width of the Lorentzian momentum distribution is related to the phase coherence length
at the trap center. These investigations are described in detail in the lecture of Philippe
Bouyer. The phase coherence length has also been found in Hannover experiments [65] from
the measurement of the intensity correlation function of two interfering spatially displaced
copies of phase-fluctuating condensates.

It is important to emphasize that the measurement of phase correlations will allow one
to study the evolution of phase coherence in the course of the formation of a condensate out
of a non-equilibrium thermal cloud. This problem has a rich physics. For example, recent
experiments on the formation kinetics of trapped condensates [66] indicate the appearance of
non-equilibrium quasicondensates slowly evolving towards the equilibrium state.

Problem: Calculate the momentum distribution for the weakly interacting 1D Bose gas in
a rectangular box of size L at temperatures much smaller than the temperature of quantum
degeneracy. Describe how the momentum distribution changes when the gas transforms from
the true to quasicondensate.
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4 LECTURE 4. CORRELATIONS IN STRONGLY INTERACTING 1D BOSE GASES

In Lectures 2 and 3, we saw that the reduction of spatial dimensionality in trapped Bose
gases increases the number of possible quantum degenerate states. In 3D we have (true) Bose-
Einstein condensates and they were extensively studied in a large variety of experiments during
last years. In the 2D case, there are two types of Bose-condensed states: true condensates and
quasicondensates. In 1D, besides these BEC states, one can have a trapped Tonks gas which
should exhibit some of the fermionic properties. Static and dynamical properties of strongly
interacting trapped Bose gases are discussed in the lectures of Maxim Olshanii and Sandro
Stringari.

In this Lecture we discuss correlation properties of strongly interacting Bose gases, which are
drastically different from those in the weakly interacting regime. This is especially interesting
in view of a rapid progress of experimental studies which have already reached an intermediate
regime between the weakly and strongly interacting ones [67, 68].

Beyond the weakly interacting regime one can no longer use the mean-field Bogoliubov
approach. Nevertheless, long-wave properties are generic and can be studied relying on the
quantum hydrodynamic approach developed by Haldane [48] and widely used for uniform 1D
systems (see [69] for a recent overview). We will employ this approach for studying long-
distance phase coherence in 1D trapped Bose gases [70].

The problem of short-range correlations requires more sophisticated approaches. The term
”short-range” is used in the sense that the distance is of the order of or smaller than the
characteristic correlation length of the gas, which for repulsive interaction is lc = ~/

√
mµ with

µ being the chemical potential. However, the distance is still much larger than the radius
of interatomic potential, Re. Then, in the purely 1D case such short-range correlations may
be investigated by using the Lieb-Liniger model which assumes a delta-functional interaction
between the atoms.

The Lieb-Liniger model for a uniform system is exactly solvable by using the Bethe Ansatz
[71]. Thermodynamic functions for this model at zero and finite temperatures have been
found by Lieb and Liniger [43] and by Yang and Yang [45]. On the other hand, the problem
of correlation properties is far from being completely resolved, except for some correlation
functions in the limiting cases of weak and strong interactions. For example, the case of
infinitely strong interactions is to a certain extent equivalent to that of free fermions and the
interactions play the role of Pauli principle [42]. In this limit, any correlation function of the
density is given by the corresponding expression for fermions [72]. The expressions for the
one-body and two-body correlations for an arbitrary interaction strength were obtained by
using the Inverse Scattering Method [73]. However, closed analytical results can be found only
as perturbative expansions in the limiting cases of strong and weak interactions [74–78].

We will demonstrate the use of the Lieb-Liniger model for finding local 2-body and 3-body
correlations, that is the correlations at distances much smaller than the correlation length
lc [70, 79, 80]. These correlations are responsible for the stability of the gas with regard to
intrinsic inelastic processes, such as 3-body recombination.

4.1 Lieb-Liniger model for trapped 1D gases

In the case of 1D trapped gases, particles undergo zero point oscillations in two (radial) tightly
confined directions and there is a question to which extent one can use the 1D Lieb-Liniger
model for describing the system. We will consider repulsive interaction between particles. The
1D regime is realized if the amplitude of radial zero point oscillations l0 =

√

~/mω0 is much
smaller than the (axial) correlation length lc = ~/

√
mµ, where ω0 is the frequency of the
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radial confinement and µ is the chemical potential of the 1D system. This is equivalent to
the condition µ ≪ ~ω0. One then has a 1D system of bosons interacting with each other via
a short-range potential characterized by an effective coupling constant g > 0. This constant
is expressed through the 3D scattering length a [56] and for l0 ≫ a is given by Eq.(3.1).
Accordingly, the 1D interaction (scattering) length is rg ∼ l20/a≫ a. In the weakly interacting
regime, the chemical potential is µ ≈ gn, and the condition lc ≫ l0 leads to the inequality
na ≪ 1. In the Tonks-Girardeau regime the correlation length lc ∼ 1/n, and one should have
nl0 ≪ 1. We thus see that irrespective of the interaction strength, it is sufficient to satisfy the
inequalities

a≪ l0 ≪ 1

n
. (4.1)

Then the 1D regime is reached and correlation properties of the system can be analyzed on
the basis of the 1D Lieb-Liniger model, which in the absence of an axial trapping potential is
described by the Hamiltonian

H =

N
∑

j=1

− ~
2

2m
∂2

xj
+ g

∑

i<j

δ(xi − xj) , (4.2)

with N being the number of particles. From the Hamiltonian (4.2) one easily finds that the
ratio of the characteristic kinetic energy of particles at the mean interparticle separation to the
interaction energy per particle, is given by the parameter γ = mg/~2n introduced in Lecture
3 in Eq.(3.2). In the strongly interacting regime we have γ ≫ 1.

At zero temperature the energy of the system E0 can be written as

E0

N
=

~
2n2

2m
e(γ) , (4.3)

where γ is given by Eq.(3.2) but is not necessarily small, and the function e(γ) follows from the
Bethe Ansatz solution found by Lieb and Liniger [43]. This function is calculated numerically
for any value of γ [43, 81, 82]. In the weakly interacting regime of a quasicondensate (γ ≪ 1)
we have

e(γ) = γ − 4

3
√
π
γ3/2 ; γ ≪ 1 , (4.4)

which coincides with the result of the Bogoliubov approach. For the strongly interacting
Tonks-Girardeau regime (γ ≫ 1) the function e(γ) is given by

e(γ) =
π2

3

(

1 − 4

γ

)

; γ ≫ 1 . (4.5)

The expression for the chemical potential follows immediately from Eq.(4.3):

µ =
∂E0

∂N
=

~
2n2

2m

(

3e(γ) − γ
de(γ)

dγ

)

. (4.6)

Accordingly, in the weakly interacting regime (γ ≪ 1) we have µ = ng, and in the strongly
intertacting Tonks-Girardeau regime the chemical potential is

µ =
π2

~
2n2

2m

(

1 − 8

3γ

)

; γ ≫ 1 . (4.7)

In the presence of an (axial) trapping potential V (z) = mω2z2/2, one should add this
potential to the Hamiltonian (4.2). Then, for an arbitrary γ the model is no longer integrable.
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However, if the chemical potential of the 1D trapped gas satisfies the inequality µ0 ≫ ~ω,
one can use the local density approximation [81, 83]. Namely, assuming local equilibrium, the
density distribution is governed by the equation

µ(n(z)) + V (z) = µ0 , (4.8)

where the local value of the chemical potential µ(n(z)) follows from the solution of the Lieb-
Liniger model for a uniform gas with density equal to n(z). In other words, the local chemical
potential is given by Eq.(4.6) in which n = n(z) and γ = mg/~2n(z).

As µ(n(z)) should be positive at any local density, Eq.(4.8) leads to the Thomas-Fermi
density profile with a (half)size RTF = (2µ0/mω

2)1/2. So, in the interval of distances, −RTF <
z < RTF , the density distribution is governed by Eq.(4.8), and otherwise one has n(z) = 0.
The density is maximum at the trap center (z = 0) and it smoothly decreases to zero when
moving to the Thomas-Fermi border of the trapped gas. The normalization condition

∫ RT F

−RT F

dz n(z) = N ,

gives a relation between the chemical potential µ0 and the number of particles N .

4.2 Phase coherence at zero temperature

In Lecture 3 we showed that for a realistic (axial) size of the sample, the ground state of the
weakly interacting trapped 1D Bose gas (γ ≪ 1 and T = 0) is a true Bose-Einstein condensate.
The question now is how deeply one should be in the weakly interacting regime that this
statement is valid. In other words, how small should be the parameter γ at the trap center for
having the full phase coherence of the trapped 1D gas.

We will consider a harmonically trapped 1D Bose gas in the Thomas-Fermi regime at
T = 0 and calculate the single-particle correlation function g1(z, z

′) for distances |z − z′|
greatly exceeding the correlation length lc [70]. Assuming a priori small density fluctuations
at such distances, we will rely on the 1D hydrodynamic approach [48] which describes long-

wave properties of the 1D fluid in terms of the density fluctuations δn̂ and phase φ̂. Small
fluctuations of the density at large distances lead to linearized continuity and Euler equations:

π
∂δn̂

∂t
= − ∂

∂z
vJ (z)

∂φ

∂z
, (4.9)

∂φ

∂t
= −πvN (z)δn̂(z) , (4.10)

where the velocities vJ and vN are given by

vJ =
π~n(z)

m
, (4.11)

vN =
1

π~

∂µ

∂n

∣

∣

∣

n=n(z)
. (4.12)

and the ratio K(z) =
√

vJ(z)/vN (z) is the local value of the Luttinger parameter. Using
commutation relations (2.40) equations (4.9) and (4.10) can be obtained as equations of motion
from the quantum hydrodynamic Hamiltonian:

Ĥ =
~

2π

∫

dz
(

vN (z)(πδn̂)2 + vJ (z)(∂zφ̂)2
)

=
∑

j

εj b̂
†
j b̂j , (4.13)
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where εj and b̂j are eigenenergies and annihilation operators of elementary excitations. Note
that in the uniform case these excitations are phonons and the velocity of sound is cs =

√
vJvN .

Similarly, for the trapped gas the local value of the sound velocity is cs =
√

vJ (z)vN (z). The
Hamiltonian (4.13) is a generalization of the effective Hamiltonian of Haldane [48] to a non-
uniform system.

The solution of Eqs. (4.9) and (4.10) is given by the expansion of operators δn̂ and φ in
eigenmodes characterized by an integer quantum number j > 0:

δn̂(z, t) =
∑

j

(

εj

2π~vN(0)RTF

)1/2

fj(z)b̂j exp (−iεjt/~) + h.c. , (4.14)

φ̂(z, t) =
∑

j

−i
(

π~vN (0)

2εjRTF

)1/2

fj(z)b̂
†
j exp (−iεjt/~) + h.c. . (4.15)

The eigenfunctions fj(z) are normalized by the condition

∫ 1

−1

dx
vN (0)

vN (x)
f∗

j (x)fj′ (x) = δjj′ ,

where we have introduced a dimensionless coordinate x = z/RTF . Equations (4.9) and (4.10)
are then reduced to the eigenmode equation:

vN (z)
∂f(z)

∂z
vJ (z)

∂f(z)

∂z
+
ε2j
~2
fj(z) = 0 . (4.16)

Considering fj as a function of the reduced coordinate x = z/RTF , Eq.(4.16) takes the form:

(1 − x2)f ′′
j − (2x/β(x))f ′

j + (2ε2/β(x)~2ω2)fj = 0 . (4.17)

The quantity β(x) = d lnµ/d lnn is determined by the local parameter γ(z) = mg/~2n(z). In
the Tonks regime (γ → ∞) we have β = 2, and in the weakly interacting regime β = 1.

The coordinate dependence of β is smooth and we simplify Eq. (4.17) by setting β(z) =
β(γ0) ≡ β0, where γ0 is the value of γ at maximum density. This simplification has been re-
cently used [83,84] to study the excitation spectrum of trapped 1D Bose gases. Then Eq. (4.17)
yields the spectrum

ε2j = ~
2ω2(jβ0/2)(j + 2/β0 − 1) ,

and the eigenfunctions fj(x) are expressed through Jacobi polynomials:

fJ(x) =

√

(j + α+ 1/2)Γ(j + 1)Γ(j + 2α+ 1)

2αΓ(j + α+ 1)
P

(α,α)
j (x) ,

where α = 1/β0 − 1.
As the density fluctuations on a large distance scale are small, for the single-particle corre-

lation function one can write

g1(z, z
′) ≡ 〈Ψ̂†(z)Ψ̂(z′)〉 =

√

n(z)n(z′) exp

(

−1

2
〈(φ̂(z) − φ̂(z′))2〉

)

. (4.18)

Using Eq. (4.15) the mean square fluctuations of the phase in the exponent of Eq. (4.18) are
reduced to the sum over j-dependent terms containing eigenfunctions fj and eigenenergies εj.
For the vacuum phase fluctuations this sum is logarithmically divergent at large j, which is
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Fig. 10. Normalized single-particle correlation function g1(z,−z)/n(z) versus z/RTF , for N = 104

and various values of γ0. The solid curves show numerical results, and the dashed curves the results

of the quasiclassical approach.

similar to the high-momentum divergence in the uniform case. Accordingly, we introduce a
cut-off jmax following from the condition εj ≈ min{µ(z), µ(z′)} and ensuring a phonon-like
character of excitations at distances z and z′. This is equivalent to having only the low-
energy part of the phase fluctuations, 〈(φ̂p(z) − φ̂p(z

′))2〉, in the exponent of Eq.(4.18) when
considering the weakly interacting regime.

The vacuum phase fluctuations have been calculated by using two approaches: numerical
summation over the eigenmodes with exact fj , εj from the simplified Eq. (4.17), and quasiclas-
sical approach assuming that the main contribution comes from excitations with j ≫ 1. In the
latter case, for z′ = −z we obtain

〈

(

φ̂(z) − φ̂(−z)
)2
〉

≈ K−1(z) ln

( |2z|
lc(z)

)

, (4.19)

which is close to Haldane’s result for a uniform system [48] with the Luttinger parameter
K(z) and correlation length lc(z). In the Tonks regime we have K = 1 and lc = 1/n(x) =
1/n(0)

√

1 − (x/RTF )2. Remarkably, in this limit the hydrodynamical expression (4.19) coin-
cides with the recently obtained exact result [85] for the single-particle correlation function of
a harmonically trapped Tonks gas.

The dependence of g1 on the dimensionless coordinate x is governed by two parameters: γ0

and the number of particles N . In Fig. 10 we present the quantity g1(z,−z)/n(z) for N = 104

and various values of γ0. As expected, the phase coherence is completely lost in the strongly
interacting regime (γ0 ≫ 1). Moreover, on a distance scale z ∼ RTF the coherence is already
lost for γ0 ≈ 1, and the full phase coherence requires γ0 well below 0.1.

4.3 Local correlations at T = 0

The strong transverse confinement required for the 1D regime can lead to high 3D densities of
a trapped gas. At a large number of particles the 3D density can exceed 1015 cm−3 and one
expects a fast decay due to 3-body recombination. It is then crucial to understand how the
correlation properties of the gas influence the decay rate. For this purpose, we calculate local
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correlations in the 1D Bose gas and show that the decay rates are suppressed in the Tonks-
Girardeau and intermediate regimes, which is promising for achieving these regimes with a
large number of particles.

The rate of 3-body recombination is proportional to the local 3-particle correlation func-
tion g3 = 〈Ψ̂†(z)Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)Ψ̂(z)〉 [86], where all field operators are taken for the
same time. Similarly, the rates of 2-body inelastic processes involve the correlation function
g2 = 〈Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉. Assuming that local correlation properties are insensitive to the
geometry of the system we consider a uniform 1D gas of N bosons on a ring of circumference
L. The gas is described by the Lieb-Liniger Hamiltonian (4.2) which we now rewrite in the
second quantization:

Ĥ =

∫

dz

(

~
2

2m

∂Ψ̂†

∂z

∂Ψ̂

∂z
+
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)

. (4.20)

For finding g2 at T = 0, we use the Hellmann-Feynman theorem [88,89]. Namely, one shows
that the expectation value of the four-operator term in the Hamiltonian (4.20) is proportional
to the derivative of the ground state energy with respect to the coupling constant:

dE0

dg
= 〈Φ0|

dH

dg
|Φ0〉 =

g2L

2
.

The first identity follows from the normalization of the ground state wavefunction Φ0, and
the second one is obtained straightforwardly from the Hamiltonian (4.20). The ground state
energy is given by Eq.(4.3), and for the 2-particle local correlation, we then obtain

g2(γ) = n2 de(γ)

dγ
. (4.21)

In fact, the original work of Lieb and Liniger contains a similar calculation of the interaction
energy.

The function g2(γ)/n
2 calculated by using numerical results for e(γ) from [82], is shown in

Fig. 11. The quantum Monte Carlo calculations of g2 [87] arrive at the same results. For small
and large values of γ, relying on Eqs. (4.4) and (4.5), we obtain:

g2(γ)

n2
= 1 − 2

π

√
γ , γ ≪ 1 ; (4.22)

g2(γ)

n2
=

4π2

3γ2
, γ ≫ 1 . (4.23)

The results in Fig. 11 and Eq. (4.23) clearly show that 2-particle correlations and, hence,
the rates of pair inelastic processes are suppressed for γ & 1. This provides a possibility for
identifying the Tonks-Girardeau and intermediate regimes of a trapped 1D Bose gas through
the measurement of photoassociation in pair interatomic collisions.

Note that for the weakly interacting regime the result of Eq.(4.22) can be obtained directly
from the Bogoliubov approach. Writing the field operator in the form (2.39) and using the
commutation relations ( 2.40), we find

Ψ̂†(z)Ψ̂†(z′)Ψ̂(z)Ψ̂(z′) = n̂(z)n̂(z′) − n̂δ(z − z′) .

We then represent the operator of the density as n̂(z) = n+ δn̂(z) and confine ourselves to the
second order in small density fluctuations δn̂(z) around the mean density n. This gives

〈Ψ̂†(z)Ψ̂†(z′)Ψ̂(z)Ψ̂(z′)〉 = n2 + 〈(δn̂(z)δn̂(z′))〉 − nδ(z − z′) .
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Using the expansion of the density fluctuations in terms of Bogoliubov excitations, given by
Eq.(2.46), we obtain:

〈Ψ̂†(z)Ψ̂†(z′)Ψ̂(z)Ψ̂(z′)〉 = n2 + n

∫ ∞

−∞

dk

2π

[

|f−
k |2(1 + 2Nk) − 1

]

exp[ik(z − z′)] ,

where Ek = ~
2k2/2m, εk =

√

E2
k + 2µEk is the Bogoliubov excitation energy, and the Bogoli-

ubov function f−
k is determined by Eq.(2.32). Then, taking the limit z′ → z we arrive at the

expression for the local 2-body correlation:

g2 = 〈Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉 = n2 + n

∫ ∞

−∞

dk

2π

[

Ek

εk
(1 + 2Nk) − 1

]

. (4.24)

For T = 0 the occupation numbers for the excitations, Nk = 0, and the integration of Eq.(4.24)
immediately gives the result of Eq.(4.22).

The 3-particle local correlation g3 cannot be obtained from the Hellmann-Feynman theorem.
In the weakly interacting regime (γ ≪ 1) one can use the Bogoliubov approach, which gives
Eq.(4.24) with an extra factor 3 in the second term of the rhs. At T = 0 we then have

g3(γ)

n3
≃ 1 − 6

π

√
γ , γ ≪ 1 . (4.25)

For the Tonks-Girardeau regime (γ ≫ 1) we demonstrate a method for calculating the
leading behavior of local correlations. Details are given in [80], and here we present a compact
derivation of g3 at T = 0 [70]. In the first quantization the expression for this function reads

g3(γ) =
N !

3!(N − 3)!

∫

dz4 . . . dzN

∣

∣

∣
Φ

(γ)
0 (0, 0, 0, z4, . . . , zN )

∣

∣

∣

2

, (4.26)

where Φ
(γ)
0 is the ground state function given in the domain 0 < z1 < . . . < zN < L by the

Bethe Ansatz solution:

Φ
(γ)
0 (z1, z2, . . . , zN) ∝

∑

P

a(P ) exp
(

i
∑

kPj
zj

)

, (4.27)
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where P is a permutation of N numbers, quasimomenta kj are solutions of the Bethe Ansatz
equations, and

a(P ) =
∏

j<l

(

iγn+ kPj
− kPl

iγn− kPj
+ kPl

)
1

2

.

For γ ≫ 1, we extract the leading contribution to Φ
(γ)
0 at three coinciding points by sym-

metrizing the amplitudes a(P ) over the first three elements of the permutation P :

1

3!

∑

p

a(Pp1
, Pp2

, Pp3
, P4, . . . PN )≃ εP

(iγn)3

∏

j<l

(kPj
− kPl

) , (4.28)

where j, l = 1, 2, 3. The sign of the permutation P is εP , and p runs over six permutations of
1, 2, 3. For large γ, the difference of quasi-momenta kj from their values at γ = ∞ is of order
1/γ and can be neglected. Then, from Eqs. (4.27) and (4.28) we conclude that to this level of
accuracy the ground state wave function at three coinciding points is given by derivatives of

the wave function of free fermions Φ
(∞)
0 (z1, z2, z3, z4, . . .) at z1 = z2 = z3 = 0:

Φ
(γ)
0 (0, 0, 0, z4, . . .) ≃ − 1

(γn)3

[

∏

j<l

(∂zj
− ∂zl

)
]

Φ
(∞)
0 . (4.29)

Substituting Eq. (4.29) into Eq. (4.26) we express the local correlation g3 through derivatives of
the 3-body correlation function of free fermions. Using Wick’s theorem the latter is given by a

sum of products of 1-particle fermionic Green functions G(x− y) =
∫ kF

−kF
dk eik(x−y)/2π, where

kF = πn is the Fermi wavevector. The calculation from Eq. (4.26) is then straightforward and
in the considered limit of γ ≫ 1 we obtain

g3(γ)

n3
=

36

γ6n9

[

(G′′(0))
3 −G(4)(0)G′′(0)G(0)

]

, (4.30)

which yields
g3
n3

=
16π6

15γ6
. (4.31)

This result for g3 and the result of Eq.(4.23) for g2, have a transparent physical explanation.
A characteristic distance related to the interaction between particles is rg = ~

2/mg ∼ 1/γn,
and the strong repulsion between particles provides fermionic correlations at interparticle dis-
tances z & rg . For smaller z the correlation functions practically do not change. Therefore,
the local correlation g2 at a finite large γ is nothing else than the pair correlation function for
free fermions at a distance rg . The latter is g2 ∼ n2(kF rg)

2 ∼ n2/γ2, which agrees with the
result of Eq.(4.23). Similarly, g3 is the free-fermion 3-particle correlation function at distances
∼ rg. It is approximately equal to the product of three pair correlation functions, i.e. we have
g3 ∼ n6/γ6 in qualitative agreement with Eq.(4.23).

Thus, from Eq. (4.31) we conclude that the 3-body decay of 1D trapped Bose gases is
strongly suppressed in the Tonks-Girardeau regime. Moreover, Eq. (4.25) shows that even in
the weakly interacting regime of a quasicondensate, with γ ≈ 10−2, one has a 20% reduction
of the 3-body rate. Thus, one also expects a significant reduction of the 3-body decay in the
intermediate regime.

For l0 ≫ a, the 3-body recombination process in 1D trapped gases occurs at interparticle
distances much smaller than l0. Therefore, the equation for the recombination rate is the
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same as in 3D cylindrical Bose-Einstein condensates with the Gaussian radial density profile
n3D = (n/πl20) exp

(

−ρ2/l20
)

, where ρ is the radial coordinate. There is only an extra reduction
by a factor of g3/n

3. A characteristic decay time τ is then given by the relation

n

τ
= g3α3D

∫

2πρdρ
(n3D

n

)3

=
α3Dg3
3(πl20)

2
, (4.32)

where α3D is the recombination rate constant for a 3D condensate. Even for 3D densities
n/πl20 ∼ 1015 cm−3 the life-time τ can greatly exceed seconds when approaching the Tonks-
Girardeau regime.

In the recent rubidium experiment at NIST [68], an array of 1D tubes of bosons was created
by optically confining the atoms with a radial frequency ω0 ≈ 30 kHz (l0 ≈ 350 Å). Then, for
the number of atoms N ≈ 200 in each 1D tube, the intermediate regime with γ ∼ 1 has
been achieved. The measurement of the 3-body decay showed a reduction of the rate by
approximately a factor of seven.

4.4 Finite-temperature local correlations

We now discuss local correlations in 1D Bose gases at finite temperatures and confine our-
selves to two-body correlations in the uniform case [79]. The calculation of g2 will allow us to
identify the various regimes of quantum degeneracy, which is important for the development of
possible atom lasers in 1D waveguides. At zero temperature there are two physically distinct
regimes of quantum degeneracy: the weakly interacting regime of a quasicondensate for γ ≪ 1,
and the strongly interacting Tonks-Girardeau regime where the 1D gas undergoes “fermion-
ization”. These regimes are also present at finite temperatures. However, we will see that
for a very small interaction strength one can have a decoherent quantum regime, where the
fluctuations are enhanced and reach the non-interacting Bose gas level with g2 → 2n2 (rather
than g2 → n2 characteristic for the quasicondensate regime). We will also see that for a large
interaction strength the reduction of local correlations is present at temperatures exceeding the
temperature of quantum degeneracy Td = 2π~

2n2/m and, in this respect, one has the regime
of ”high-temperature fermionization”.

So, we again consider a 1D uniform gas of N bosons on a ring of circumference L, described
by the Hamiltonian (4.2) or, equivalently, by the Hamiltonian (4.20). The exact solution of this
problem at finite T has been found by Yang and Yang [45] using the Bethe Ansatz. They derived
exact integral equations for thermodynamic functions and proved their analyticity. Note that in
trapped gases at finite temperatures, the 1D regime requires the thermal de Broglie wavelength
of particles ΛT to be much smaller than the amplitude of zero point oscillations in the tightly
confined directions, l0. This requirement should be added to Eq.(4.1), and we thus obtain
the inequalities a ≪ l0 ≪ {1/n, ΛT }. They allow us to analyze finite-temperature correlation
properties of the 1D trapped gas at any γ by using the Yang-Yang results.

The behavior of the 2-body local correlation at finite temperatures is governed by two
parameters: γ and τ = 4πT/Td. We first show how g2 has been calculated by using the
Hellmann-Feynman theorem [88, 89]. Consider the partition function Z = exp(−F/T ) =
Tr exp(−Ĥ/T ) which determines the free energy F . Here the trace is taken over the states
of the system with a fixed number of particles in the canonical formalism or, for the grand
canonical description, one has to replace the condition of a constant particle number by the
condition of a constant chemical potential µ and add the term −µN̂ to the Hamiltonian. For
the derivative of the free energy with respect to the coupling constant one has

∂F

∂g
= −T ∂ logZ

∂g
=

1

Z
Tr

[

∂Ĥ

∂g
exp

(

− Ĥ
T

)]

=
g2L

2
. (4.33)
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Fig. 12. Correlation function g(2) = g2/n2 versus γ at different τ = 4πT/Td.

Introducing the free energy per particle f(γ, τ) = F/N , the 2-particle correlation function is:

g2 = 〈Ψ†Ψ†ΨΨ〉 =
2m

~2

(

∂f(γ, τ)

∂γ

)

n,τ

. (4.34)

In Fig. 12 we present the results for g2, found by numerically calculating f(γ, τ) from the
Yang-Yang exact integral equations and then using Eq.(4.34) [79].

We now give a physical description of different regimes determined by the values of the
coupling constant γ and the reduced temperature τ [79]. As well as at T = 0, in the strongly
interacting regime the correlation function g2 reduces dramatically due to the strong repulsion
between particles, and the physics resembles that of free fermions. Interestingly, this regime
is realized both below and above the quantum degeneracy temperature. Similarly to g3 and
g2 at zero temperature, the finite-temperature g2 can be expressed through derivatives of the
Green function of free fermions G(x) =

∫

dk nF (k) exp (ikx)/(2π), where nF (k) are occupation
numbers for free fermions. For the correlation function we obtain

g2
n2

=
4

γ2n4

[

(G′(0))
2 −G′′(0)G(0)

]

.

In the regime of quantum degeneracy, τ ≪ 1, the local correlation is dominated by the
ground state distribution nF (k) = θ(k2

F − k2), where kF = πn is the Fermi momentum, and
one only obtains a small finite-temperature correction to the zero-temperature result (4.23).

In the temperature interval 1 ≪ τ ≪ γ2 the gas is non-degenerate, but the interaction
length rg is still much smaller than the thermal de Broglie wavelength ΛT . As well as at
zero temperature, g2 can be viewed as the pair correlation function for free fermions at a
distance ∼ rg. Taking into account that the characteristic momentum of particles is now the

thermal momentum kT =
√

2mT/~, one finds g2 ∼ n2(kT rg)2 ∼ n2τ/γ2. Calculating the
Green function G(x) for the classical distribution nF (k), we obtain:

g2
n2

=
2n2τ

γ2
, 1 ≪ τ ≪ γ2 , (4.35)
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which agrees with the given qualitative estimate. The correlation function g2/n
2 is still much

smaller than unity and we thus have a regime of “high-temperature fermionization”. The result
of Eq. (4.35) agrees with the outcome of numerical calculations.

In the weakly interacting regime of a quasicondensate, one may use Eq.(4.24). For tem-
peratures τ ≫ γ, thermal fluctuations are more important than vacuum fluctuations, and we
obtain:

g2
n2

= 1 +
τ

2
√
γ

, γ ≪ τ ≪ √
γ ≪ 1 . (4.36)

The phase coherence length is determined by thermal long-wavelength fluctuations of the phase.
The calculation, similar to that for a trapped gas in Lecture 3, gives lφ ≈ ~

2n/mT . The condi-
tion lφ ≫ lc, which is necessary for the existence of a quasicondensate and for the applicability
of the Bogoliubov approach, immediately yields the inequality τ ≪ √

γ. Thus, Eq. (4.36) is
valid under the condition γ ≪ τ ≪ √

γ, and the second term on the rhs of this equation is a
small correction. In the region of its validity, the result of Eq.(4.36) agrees well with numerical
data.

At a very weak coupling strength given by γ ≪ τ2 ≪ 1, the gas is in a decoherent quantum
regime [51,79], where both phase and density fluctuations are large and the local correlation is
always close to the result for free bosons, g2 = 2n2. The only consequence of quantum degener-
acy is the quantum Bose distribution for occupation numbers of particles, and the decoherent
quantum regime can be treated asymptotically by employing a standard perturbation theory
with regard to the coupling constant g.

The presence of the quantum decoherent regime helps to explain the apparent contradiction
that in the thermodynamic limit a free Bose gas at any finite temperature is known to display
large thermal (Gaussian) density fluctuations with g2 = 2n2. For the 3D gas this result
requires the grand canonical description [90], whereas in 1D and 2D it is valid for any choice
of the ensemble. On the other hand, the widely used mean-field Bogoliubov approach for
an interacting Bose gas leads to g2 ≈ n2. The above discussed results explain this fact in
the exactly solvable 1D case: there is a continuous transition from the quasicondensate to
decoherent regime, depending on the density and temperature. As γ is decreased towards a
free gas, the quasicondensate result of g2 ≃ n2 only holds above a certain interaction strength.
Below this, there is a dramatic increase in fluctuations, with g2 → 2n2 in the free gas limit.

Problem: Prove that the density fluctuations for the uniform Tonks-Girardeau gas are small
in the limit of large distances. Find the distance scale on which they become large.
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