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Our recent measurements on the expansion of a chromium dipolar condensate after release from
an optical trapping potential are in good agreement with an exact solution of the hydrodynamic
equations for dipolar Bose gases. We report here the theoretical method used to interpret the
measurement data as well as more details of the experiment and its analysis. The theory reported
here is a tool for the investigation of different dynamical situations in time-dependent harmonic
traps.

PACS numbers: 03.75.F, 75.80 , 51.60 , 34.20.C

Keywords: chromium; Bose-Einstein condensation; dipole-dipole interaction; hydrodynamic

I. INTRODUCTION

Recent developments in the manipulation of cold
atoms and molecules are paving the way towards the
analysis of polar gases, for which the dipole-dipole in-
teraction may play a significant, or even dominant role.
In this sense, exciting perspectives towards the gener-
ation of ultra cold polar molecules have been recently
opened by experiments on direct cooling and trapping of
molecules, as well as on photoassociation and on Fesh-
bach resonances in binary mixtures of ultra cold atoms
[1, 2, 3, 4, 5, 6]. However, up to now, no degenerate gas
of ultra cold polar molecules has been ever realized.

On the other hand, the realization of a Bose-Einstein
condensate (BEC) of polarized chromium [7] constitutes
the first example of a quantum degenerated dipolar gas.
The large magnetic moment of chromium (6 Bohr mag-
netons) makes its magnetic dipole-dipole interaction suf-
ficiently strong to induce qualitative differences in the
BEC properties.

Dipole-dipole interactions are long-range and
anisotropic (partially attractive and partially repulsive),
in clear contrast to the up to now usual short-range
isotropic interactions. Chromium is hence the first
atomic species to be Bose-condensed that has a visible
anisotropic interaction. By means of an appropriate
rotating magnetic field, this anisotropy may be employed
to tune the dipolar interactions [8], introducing a second
control mechanism in addition to the tuning of the
isotropic interactions by means of Feshbach resonances
[9]. The dipolar anisotropy should also cause sound to
propagate with different speed in different directions
providing an interesting tool to investigate dissipation
mechanisms, e.g. the Landau criterion for superfluidity.

Moreover, the partially attractive and partially repul-
sive nature of the dipolar interaction together with its
long range character makes the question of stability for
strong dipolar interactions more intricate [10, 11, 12].
Indeed, an homogeneous dipolar condensate is unstable
when the dipolar interaction is stronger than the s-wave
scattering interaction [10, 11, 13], an issue which may

become especially relevant for ultra cold heteronuclear
molecules with electric dipole moments of the order of
one Debye.

Many other new exciting phenomena are expected in
dipolar quantum gases oriented by an external field. Re-
cent theoretical analyses have shown that stability and
excitations of dipolar gases are crucially determined by
the trap geometry [10, 11, 14, 15, 16, 17, 18, 19]. Dipolar
degenerate quantum gases are also attractive in the con-
text of strongly-correlated atoms [20, 21, 22, 23, 24], as
physical implementation of quantum information [25, 26]
and for the study of ultracold chemistry [27].

In a recent Letter [28], we reported the first observa-
tion of mechanical effects due to the magnetic dipole-
dipole interaction in a degenerate quantum gas. We
investigated the expansion of a chromium BEC polar-
ized by an external magnetic field after release from an
anisotropic trap. The anisotropy of the magnetic dipolar
interaction was shown to lead to a measurable anisotropic
deformation of the expanding chromium BEC, which is
quantitatively in very good agreement with the theoret-
ical predictions. The expansion technique has been used
since the earliest experiments with cold atoms in order to
show the existence of the Bose-Einstein condensed phase
[29, 30] and to probe the coherence properties of bosonic
atoms on a lattice [31] and in the context of ultra cold
Fermi gases to point out superfluid effects [32, 33]. In
this paper, we report in detail the theoretical methods
that have been used to interpret the experimental data
on the expansion, as well as a more detailed description
of the experiment. The theory generalizes a recent ex-
act result obtained for the Thomas-Fermi dynamics of
a dipolar condensate [18, 34] obtained explicitly for the
case of cylindrical-symmetric traps to the case of non-
axisymmetric traps.

The paper is organized as follows: In section 2.A we
introduce the hydrodynamic theory of a dipolar super-
fluid. The general equations for the dynamics of dipolar
condensate in the hydrodynamic limit in the presence
of a general time-dependent non-axisymmetric harmonic
trap are presented in section 2.B. The calculation of the
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ground state density profile and of the expansion of a
dipolar condensate are a direct application of the theory
(sections 2.C and 2.D, respectively), which are used to
explain the mechanisms that are responsible for the re-
ported observations quantitatively and qualitatively. In
section 3.A we briefly summarize the experimental pro-
cedure we used to obtain the expansion data, which are
compared with the theory subsequently in section 3.B.
Section 4 conclude. Appendix A discusses some proper-
ties of the dipole-dipole mean-field integral. Appendix B
contains the expression for the mean-field dipole-dipole
potential.

II. THEORY

The expansion of the chromium Bose-Einstein conden-
sate can be studied theoretically by solving the general-
ized form of the time-dependent Gross-Pitaevskii equa-
tions given in Subsection 2.A. These equations are a tool
to investigate a large number of dynamical situations in
addition to the expansion, e.g. large amplitude collective
oscillations (see for instance the review [35] for the case
of pure s-wave contact interaction) and their frequencies
[36]. The generalized time-dependent Gross-Pitaevskii
equations (1) and (2) or the equivalent hydrodynamic
equations (6) and (7) have been introduced earlier to
study the static and stability properties of a dipolar con-
densate theoretically in [10, 11, 37] for the case of mag-
netic dipole-dipole interaction and in [38, 39, 40] for the
case of laser-induced dipole-dipole interaction. The ex-
pansion of a dipolar condensate has been previously theo-
retically investigated in the case of cylindrical symmetry
in [41] for the Thomas-Fermi limit and in [16, 37] for the
case of an s-wave scattering length tuned close to zero.

A. Hydrodynamic equations of a dipolar superfluid

The generalized time-dependent Gross-Pitaevskii
equation is given by

− ih̄
∂

∂t
Ψ(~r, t) = − h̄2

2m
∇2 Ψ(~r, t) + Vext(~r, t)Ψ(~r, t)

+Vmf(~r, t)Ψ(~r, t) (1)

where Vext is an external potential and Vmf is the mean
field potential given by

Vmf(~r, t) = g n(~r, t) +

∫

d3r′Udd(~r − ~r ′)n(~r ′, t) (2)

where n(~r, t) = |Ψ(~r, t)|2 is the condensate atomic den-
sity and m is the atomic mass. In equation (2) g is the
s-wave scattering coupling constant given by

g =
4πh̄2 a

m
(3)

where a is the s-wave scattering length. Here

Udd(~r) =
µ0µ

2
m

4πr3

(

1 − 3(êµ~r)2

r2

)

(4)

is the (dipole-dipole) interaction energy between two
equally oriented magnetic dipoles ~µm = µmêµ aligned by

a polarizing magnetic field (êµ‖ ~B) and with relative co-

ordinate ~r. The polarizing magnetic field ~B is assumed
parallel to one of the symmetry axes of the harmonic
trap. A measure of the strength of the dipole-dipole in-
teraction relative to the s-wave scattering energy is given
by the dimensionless quantity

εdd =
µ0µ

2m

12πh̄2a
(5)

In complete equivalence of equations (1) and (2), one
can solve the corresponding collisionless hydrodynamic
equations, i.e. the continuity and Euler equations, given
respectively by

∂n

∂t
= −~∇ · (n~v) (6)

m
∂~v

∂t
= −~∇

(

− h̄2 ∇2
√

n

2 m
√

n
+

mv2

2
+ Vext + Vmf

)

(7)

where ~v is the superfluid velocity, which is related
to the phase of the macroscopic condensate wave
function Ψ(~r, t) =

√

n(~r, t) exp[iφ(~r, t)] by ~v(~r, t) =

(h̄/m)~∇φ(~r, t). Eqs. (6) and (7) describe the potential
flow of a fluid in the presence of a self-consistent poten-
tial due to the presence of the long-range dipolar inter-
action (the second contribution on the right side of (2))
and whose pressure P and density n are related by the
equation of state P = (g/2)n2.

B. Hydrodynamic solutions for time-dependent

harmonic potentials

An exact class of solutions of the generalized GPE
equations (1) and (2) or equivalently of the hydrody-
namic equations (6) and (7) in the Thomas-Fermi limit
has been obtained for harmonic time-dependent potential
[18] of the form given by

Vho(~r, t) =
m

2

(

ω2

x(t)x2 + ω2

y(t)y2 + ω2

z(t)z2
)

(8)

In the Thomas-Fermi or hydrodynamic limit the quan-
tum pressure term h̄2 ∇2

√
n/(2 m

√
n) proportional to

the Laplacian of the modulus of the wave function is ne-
glected. The solutions have the form given by

n(~r, t) =
15N

8πRxRyRz

[

1 − x2

R2
x

− y2

R2
y

− z2

R2
z

]

(9)

~v(~r, t) =
1

2
~∇

[

αxx2 + αyy2 + αzz
2
]

(10)
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valid until the right hand side of (9) is ≥ 0 otherwise
n(~r, t) = 0. The existence of this class of solutions for
harmonic traps is due to the harmonic nature of the ex-
ternal and self-consistent potentials and the Bernoulli
term. The density n(~r, t) and the velocity field ~v(~r, t)
depend on time only through the time-dependence of the
condensate radii Rj(t) and the αj(t) coefficients. The
later are simply given by

αj(t) =
∂

∂t
log(Rj(t)) (11)

The time dependence of the condensate radii Rj are given
by solving a simpler equation which can be written in a
compact form as

Nm

7

d2 Rj

dt 2
= − ∂

∂Rj
Htot (Rx, Ry, Rz) (12)

where Htot/N is the expectation value of the total energy
per particle. The various contributions to Htot are:
(a) the classical contribution to the kinetic energy

Hkin =
Nm

14

(

Ṙ2

x + Ṙ2

y + Ṙ2

z

)

(13)

which does not depend on the radii but only on their
time derivative
(b) the potential energy in the harmonic trap

Hho =
Nm

14

(

ω2

xR2

x + ω2

yR2

y + ω2

zR2

z

)

(14)

(c) the mean-field energy due to s-wave scattering

Hs =
15

7

(

N2h̄2a

m

)

1

RxRyRz
(15)

(d) the mean-field magnetic dipole-dipole energy

Hx
dd = −15

7

(

N2h̄2a

m

)

εdd f(κyx, κzx)

RxRyRz
(16)

Here the magnetic field is assumed parallel to the x̂ axes
and κyx = Ry/Rx and κzx = Rz/Rx are condensate
aspect ratios. The function f is given by

f(κyx, κzx) = 1 + 3κyxκzx
E(ϕ \ α) − F(ϕ \ α)

(1 − κ2
zx)

√

1 − κ2
yx

(17)

with

sin ϕ =
√

1 − κ2
yx (18)

sin2 α =
1 − κ2

zx

1 − κ2
yx

(19)

Here F(ϕ \ α) and E(ϕ \ α) are the incomplete elliptic
integrals of the first and second kinds [42]. The func-
tion f is a smooth and decreasing function with values
in the interval (−2, 1). See Figures and discussion on f
in appendix A.
C. Equilibrium configuration and scaling property

The equations for the equilibrium values of the conden-
sate radii can be easily derived from Newton’s equations
(12) and from equations (14), (15) and (16) and are given
by

ω2

x =

(

15 Nh̄2a

m2 (Rx)3RyRz

) [

1 − εdd f

(

Ry

Rx
,
Rz

Rx

)

+ εdd
Ry

Rx

∂f

∂κ1

(

Ry

Rx
,
Rz

Rx

)

+ εdd
Rz

Rx

∂f

∂κ2

(

Ry

Rx
,
Rz

Rx

)]

(20)

ω2

y =

(

15 Nh̄2a

m2 Rx(Ry)3Rz

) [

1 − εdd f

(

Ry

Rx
,
Rz

Rx

)

− εdd
Ry

Rx

∂f

∂κ1

(

Ry

Rx
,
Rz

Rx

)]

(21)

ω2

z =

(

15 Nh̄2a

m2 RxRy(Rz)3

) [

1 − εdd f

(

Ry

Rx
,
Rz

Rx

)

− εdd
Rz

Rx

∂f

∂κ2

(

Ry

Rx
,
Rz

Rx

)]

(22)

These equations are solved numerically for the case of a
trapped Cr condensate. Using the value of the chromium
scattering length obtained from the Feshbach resonance
measurements [43], ǫdd results of order of ǫCr

dd ≈ 0.15
To get insight into the modifications of the condensate
radii and of the shape and volume of the condensate,

we consider the case of small ǫdd, which is also rele-
vant for the chromium condensate. The variations of
the condensate radii ∆Ri = Ri − R0

i with i = x, y, z and

R0
i =

(

15 N h̄2 a/m2 ω2
i

)1/5

are given to the first order in
ǫdd by
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∆Rx

R0
x

= −εdd
1

5
f

(

ωx

ωy
,
ωx

ωz

)

− εdd
1

2

ωx

ωy

∂f

∂κ1

(

ωx

ωy
,
ωx

ωz

)

− εdd
1

2

ωx

ωz

∂f

∂κ2

(

ωx

ωy
,
ωx

ωz

)

(23)

∆Ry

R0
y

= −εdd
1

5
f

(

ωx

ωy
,
ωx

ωz

)

+ εdd
1

2

ωx

ωy

∂f

∂κ1

(

ωx

ωy
,
ωx

ωz

)

(24)

∆Rz

R0
z

= −εdd
1

5
f

(

ωx

ωy
,
ωx

ωz

)

+ εdd
1

2

ωx

ωz

∂f

∂κ2

(

ωx

ωy
,
ωx

ωz

)

(25)

These can be used to show that the rate of change
of the condensate volume, i.e. the product of V =

(4π/3)Rx Ry Rz is proportional to the function f , i.e.

∆V

V 0
= −εdd

3

5
f

(

ωx

ωy
,
ωx

ωz

)

(26)

In contrast, the rate of change of the aspect ratio is related to the derivative of f

∆(Ry/Rx)

(R0
y/R0

x)
= εdd

ωx

ωy

∂f

∂κ1

(

ωx

ωy
,
ωx

ωz

)

+ εdd
1

2

ωx

ωz

∂f

∂κ2

(

ωx

ωy
,
ωx

ωz

)

(27)

∆(Rz/Rx)

(R0
z/R0

x)
= εdd

1

2

ωx

ωy

∂f

∂κ1

(

ωx

ωy
,
ωx

ωz

)

+ εdd
ωx

ωz

∂f

∂κ2

(

ωx

ωy
,
ωx

ωz

)

(28)

Since the derivatives of f are always negative, the aspect
ratios Ry/Rx and Rz/Rx are always decreasing meaning
that the condensate tends to have a shape elongated in

the direction of the magnetic field. It has been shown
numerically that this result is valid also for any value of
ǫdd in the interval (0, 1) (where the Thomas-Fermi ap-
proximation has still a clear meaning) and in the case of
cylindrical symmetry [34]. Equations (26), (27) and (28)
are the generalization of equations (16) and (15) of [41],
which hold in the case of cylindrical symmetry. Equa-
tion (16) of [41] contains an extra term proportional to
the derivative of f , which is rectified by (26).

It is noteworthy that the scaling known for the case of
s-wave scattering only, i.e. Rx, Ry, Rz ∝ (N a)1/5 is also
valid in presence of dipole-dipole interaction. The right
hand sides of equations (20), (21) and (22) are written as
the product of two different terms: the first on the left
is proportional to N and is a function of the condensate
radii; the second is a function only on ratios of radii.

Thus the first terms fix the scaling of the radii in the
same way as in the usual Thomas-Fermi solution with
contact interaction. Therefore all of the condensate radii
Ri rescaled by N1/5 are independent from the number of
atoms.

D. Expansion

The expansion can be studied numerically integrating
Newton’s equations (12) for the particular case

ωx(t) = 0, ωy(t) = 0, ωz(t) = 0 for t ≥ 0 (29)

with initial condition Ri(0) at t = 0 the initial equilib-
rium condensate radii. We write below a general set of
equations of motion for the rescaled variables

bi(t) = Ri(t)/Ri(0) (30)

These are given by

d2 bx

dt 2
= −ω2

x(t) bx +
ω̄2

x

b2
xbybz

[

1 − εdd f

(

by

bx
κ0

y,
bz

bx
κ0

z

)

− εdd bx
∂f

∂bx

(

by

bx
κ0

y,
bz

bx
κ0

z

)]

d2 by

dt 2
= −ω2

y(t) by +
ω̄2

y

bxb2
ybz

[

1 − εdd f

(

by

bx
κ0

y,
bz

bx
κ0

z

)

− εdd by
∂f

∂by

(

by

bx
κ0

y,
bz

bx
κ0

z

)]

d2 bz

dt 2
= −ω2

z(t) bz +
ω̄2

z

bxbyb2
z

[

1 − εdd f

(

by

bx
κ0

y,
bz

bx
κ0

z

)

− εdd bz
∂f

∂bz

(

by

bx
κ0

y,
bz

bx
κ0

z

)]

(31)
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where κ0
y = Ry(0)/Rx(0) and κ0

z = Rz(0)/Rx(0) are con-
densate aspect ratios at equilibrium at t = 0. Here

ω̄2

i =
15 Nh̄2a

m2 (Ri)2RxRyRz
, (32)

with i = x, y, z. From these equations, we see that, as for
the case of contact interaction, the condensate radii once
rescaled obey equations that are independent from the
number of atoms for a general time-dependent harmonic
confinement. The scaling is valid during the dynamics as
the time scale of any evolution is uniquely fixed by the
trap frequencies [41]. The scaling properties have impor-
tant practical consequences as the number of condensate
atoms is a difficult parameter to control experimentally.

Before discussing the physics of an expanding dipolar
condensate, we shall briefly discuss the expansion dynam-
ics in the case of only contact interaction present (see,
e.g. [30, 35]). The density distribution of the trapped
condensate has the shape of an inverted paraboloid re-
flecting the trap anisotropy, e.g. for an isotropic trap
the density distribution is also symmetric as depicted
in Fig. 1. When the condensate is released from the
trap the only force acting on the condensate atoms in
the Thomas-Fermi limit is (apart from the homogeneous
gravity) equal to minus the gradient of the s-wave scat-
tering mean-field potential, which is proportional to the
gradient of the condensate density. Thus the accelera-
tion is stronger in the directions of stronger confinement
of the condensate. Since the aspect ratio of the expanded
condensate is asymptotically equal to the ratio of the rate
of which the condensate radii expand, an inversion of the
aspect ratio is generally expected. Therefore, a cigar-
shaped condensate results in a pancake-shaped conden-
sate after long times of expansion and viceversa (see also
Figure 3).

The effect of dipolar interaction on the condensate ex-
pansion can be a little counterintuitive. As already dis-
cussed, a trapped cigar-shaped condensate oriented in the
direction of the magnetic field has a more pronounced
cigar shape before expansion. On the other hand, the
more pronounced cigar shape does not manifest in a more
pancake shape after the condensate expansion (see Fig-
ure 5) as one would expect from the experience of the
expansion without dipolar forces. On the contrary, the
expanded condensate has a less pancake-like shape. The
general trend of deforming the condensate with an elon-
gation along the magnetization and a contraction in the
transversal directions is kept also during the expansion of
the condensate as can be seen from the schematic draw-
ing of Figure 3. Let us discuss that in more details.

To get insight into this behaviour, we should look at
the dipole-dipole mean-field potential Φdd. The general
expression of Φdd is given in appendix B. Its main charac-
teristics relevant for the present discussion are contained
in the special case of a spherical symmetric condensate
with radius RTF (see Figure 2). For r < RTF , the dipole-
dipole mean-field potential at a position ~r with distance

r from the center of mass is given by [8]

Φdd(~r) =
εddmω2

0

5

[

1 − 3

(

~eµ · ~r
|r|

)2
]

r2 for r ≤ RTF .

(33)
From this equation, it becomes clear that the potential
is harmonic in r but has an angular dependence. Note
that the term in square brackets varies depending on the
angle between the orientation of the dipoles ~eµ and the
position vector ~r between −2 if the position and the po-
larization are parallel and +1 if they are orthogonal. The
potential therefore has the form of a saddle with a neg-
ative curvature along the direction of magnetization and
a positive curvature in transverse direction.

After a sudden switch-off of the external potential,
the only forces stem from the gradient of the contact
mean-field potential (repulsive in all directions) and the
gradient of the dipole-dipole mean-field interaction (re-
pulsive and attractive). Due to its direct proportional-
ity to the local density, the contact part of the mean-
field potential reveals the same parabola shape as de-
picted in Fig. 1. The dipole-dipole potential Φdd(~r)
still has its (harmonic) saddle shape (see Figure 2).
Note that in the direction of magnetization, the gra-
dient of the potential energy of the total mean field
(Umf = g|φ(~r)|2 + Φdd(~r)) will be larger than without
dipole-dipole interaction. Therefore the atoms will obey
a larger acceleration along the direction of magnetiza-
tion than without dipole-dipole interaction. In the direc-
tions perpendicular to the magnetization, the condensate
atoms attract each other. Thus the repulsive contact in-
teraction is weakened by the dipole-dipole interaction in
transversal direction and the acceleration that atoms feel
perpendicular to the magnetization will be smaller. This
explains why the general trend of deforming the conden-
sate with an elongation along the magnetization and a
contraction in the transversal directions is kept also dur-
ing the expansion of the condensate.

III. EXPERIMENT

To measure the effect of the magnetic dipole-dipole in-
teraction on the expansion dynamics of the condensate,
we prepare a BEC in a crossed optical dipole trap. The
details of the preparation of the chromium BEC are dis-
cussed in [44]. By decreasing the intensity of the hor-
izontal trapping beam from initially 9.3W to 280mW
and keeping the vertical intensity constant at 4.5W, we
produce almost pure condensates containing on average
a number of 40000 atoms. A schematic illustration of
the subsequent experimental cycle is depicted in Fig-
ure 4. After 250ms equilibration, the intensity of the
horizontal beam is increased adiabatically to 2.3W to
form an anisotropic trap (trap parameters fx =942Hz,
fy =712Hz, and fz =128Hz). Throughout the prepa-
ration procedure, we keep a homogeneous offset field of
∼11.5G along the y−axis until the trap has been ramped
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Figure 1: (Color) Inverted parabolic profile of a BEC in
the Thomas-Fermi limit without dipole-dipole interaction.
When the trapping potential is symmetric the distribution
is also spherically symmetric.

Figure 2: (Color) Saddle shaped dipole potential generated
by dipolar atoms of a BEC in a spherical trap. The atomic
dipoles which are illustrated as small magnets in the Figure
are aligned by an external magnetic field B. Note the orien-
tation of the saddle potential relative to the magnetic field
direction.

no dipoles

µ=0
B, µ B, µ

in-trap shape

t<0

polarization

shape after

some time of

expansion

t>0

Figure 3: (Color) Figure to illustrate the change of the condensate shape under the influence of magnetization in-trap (top
row) and during time of flight (bottom row). Left column: magnetization in transversal direction; center column: non-dipolar
atoms; right column: longitudinal polarization. Dashed ellipses represent the non-dipolar condensate.

up [44]. After this change of the trap parameters, we ei-
ther keep the field aligned along y (situation b) in Fig. 4)
or we rotate the field adiabatically from the y− to the
z−direction (situation a) in Fig. 4). This is done by
increasing the field in z−direction linearly within 40ms
to ∼11.5G while reducing the field in y−direction dur-
ing the same time to 0 G. After the field has reached
the steady state, we keep the atoms for another 7ms in
the trap to give them enough time to redistribute. The
total storage time in both cases of longitudinal (z) or
transversal (y) magnetization is equal. Subsequently, the
atoms are released by a sudden switch-off of the trapping
beams. The polarization field is kept constant for 1ms af-
ter release from the trap and then rotated quickly to the
transversal x−axis in either case by switching on the field
in the x−direction and switching off the z− or y− fields.
The field along x is needed to align the atomic magnetic

moments for absorption imaging in this direction. The
1ms of free expansion before switching the field is long
enough for the mean-field energy to drop to such a small
part of its initial value that changing the alignment of
the dipoles after this time does not influence the expan-
sion anymore. In other words, after this time, the gas is
already so dilute that any kind of interaction among the
atoms can be neglected compared to the kinetic energy.
After an additional time of flight of up to 18ms plus 1ms
for the detection field to settle (total time of flight 2ms
to 20ms), an absorption image of the cloud is taken.

The images were evaluated by two dimensional fits to
the density profiles. Figure 5 shows 1D cuts through the
density profile of an expanded, almost pure condensate
in the y- and z- direction, respectively. The most con-
venient quantity to analyse the expansion is the aspect
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Figure 4: (Color) Experimental cycle for measuring the dipole-dipole interaction. Left Figures: alignment of the field relative
to the chamber just before releasing them. Gravity ~g marks y as the vertical axis. Right Figures: schematic cycle. The magnetic
field during preparation is in both cases along the y-axis. To measure with z−polarization (a), the field has to be turned slowly
(within 40 ms) within the trap before releasing the atoms. After 1ms of expansion, the field is switched to x-direction. For
y−polarization (b), the field is kept in y−direction until 1ms after release.
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Figure 5: (Color) Density profiles in y- and z-direction of an almost pure condensate after 90 ms of expansion. Grey shaded
areas have been excluded from the fit of the condensate cloud.

ratio κ = Ry/Rz since it is insensitive to fluctuations of
the number of atoms. The only quantities that have to
be known exactly are the trap parameters and the ra-
tio εdd between magnetic dipole-dipole interaction and
contact interaction (5). The trap frequencies have been
determined using a parametric heating technique [44].

Figure 6 shows the aspect ratio of the BEC for different
times of ballistic expansion. The set of data marked with
red squares represent the experiments performed with
polarization in vertical (y−) direction and black circles
represent the results with horizontal (z−) polarization.
The upper graph shows the result of sequential experi-
ments were the total time of flight was varied between

2ms and 14ms. Since one run (i.e. catching atoms in
the CLIP trap, Doppler cooling, compressing, rf-cooling,
transfer to the ODT, pumping, plain evaporation in the
ODT, forced evaporation, modification of the trap and
the fields, taking an image, resetting the system), takes
about 1minute and 20 seconds, the data of the time of
flight series presented in Figure 6 corresponds to a total
measuring time of more than 4 hours. To reduce the
influence of systematic drifts during that time, the time
of flight of subsequent pictures was chosen randomly. For
the same reason, we also changed between y− and z−
polarization every 10 runs. An 11-point linear moving
average (corresponding to averaging over 2.2ms in the
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Figure 6: (Color) Aspect ratio of the expanding dipolar condensate. Data points in Figure (a) are averaged with an 11-point
moving average. Error bars in the upper graph represent errors from the fits to the density distribution. Upper, red data: Field
aligned in vertical y-direction. Lower, black data: Field in horizontal z-direction. The solid lines represent the corresponding
theoretical predictions. The blue dotted line is the behavior that one would expect for pure contact interaction without the
presence of dipole-dipole interaction among the atoms. Figure (c) illustrates the evolution of the condensate shape as seen by
the camera. Figure (b) shows in details the grey shaded area in Figure (a). At ten milliseconds time of flight, we have performed
a series of measurements under the same conditions. The two data points represent the mean values of 42 measurements with
y-polarisation (red circle) and 32 with z-polarisation (black square). The solid error bars are derived from the statistics of the
measured value and represent one standard deviation in both directions. They do not include the systematic error on the single
measurements. These errors affect both the measurements with z- and y-polarisation in the same way and do not change the
significance of the measured difference in the expansion dynamics with different polarisation. The shift of the measured aspect
ratios due to such systematic errors is indicated by the dashed/dotted representation of the error-bars (displaced laterally for
clarity) in Figure (b).



9

Figure) has been applied to both sets of data in the
left graph to average out fluctuations in the determined
condensate widths. A moving average of that length is
reasonable since the expected behavior does not show
features on shorter time scales that could be concealed
by the averaging. This has been proven by applying the
same moving average to the theoretical values. To be
able to display also all the measured data for short times
of flight, the range of the moving average was increased
from 1 to 11 within the first six data points. The data
point corresponding to 2 ms time of flight is thus not
averaged, the one at 2.2ms is averaged over 3 points,
the one at 2.4ms over 5, and so on. Thus, only the data
corresponding to 2ms to 2.8ms TOF are avereaged over
less than 11 points.

A. Comparison of experiment and theory

The measured data for the condensate aspect ratio are
compared to the numerical results obtained integrating
Newton’s equations (12) in Figure 6. The theory con-
tains no adjustable parameters. It only relies on known
or measured quantities, namely the trap frequencies,
the magnetic moment, and the s-wave scattering length
that characterises the contact interaction [43]. The
dotted line represents the expectation for a gas inter-
acting solely via s-wave scattering. Compared to this
non-dipolar behavior, the expansion of the condensate
shows a dependence on the polarization of the atoms
that is in agreement with the theory: With transversal
polarization (field along the y−axis), the condensate is
elongated in the transversal direction and the aspect
ratio is increased; if the polarization is in longitudinal
direction (field along the z−axis), the condensate is
contracted in vertical direction and the aspect ratio is
decreased. Also the quantitative agreement is remark-
able.

The error bars in the first graph of Figure 6 include
only errors that stem from the fit of the condensate size.
Systematic errors, e.g. uncertainty of the magnification
are not contained. These systematic errors can be found
in the lower graph of Figure 6 where the mean value of
the results of 42 and 32 measurements with y− and z−
polarization, respectively, are presented. All these mea-
surements were performed after the same time of flight
of 10ms. In all, 50 measurements have been performed
at 10ms with both polarizations. However, some of the
measurements had to be withdrawn due to an obvious
instability of the system which on the one hand lead to
a number of shots where the number of atoms was sub-
stantially smaller than the average (4.0±0.6) ·104 of the
remaining measurements. On the other hand, some of
the condensates did not fall down vertically but moved
significantly to one or the other side during their flight,
which we considered as a signature that the condensate

was kicked (probably by mechanical noise on the optical
table) prior to or when switching of the trap and also
these images were withdrawn. The error bars directly
connected to the two data points are the statistical errors
of all measurements and represent ±1 standard deviation
from the mean value. The error bars on the left represent
the systematic errors, that are additionally contained in
the data, assuming a systematic 2 % uncertainty in the
size of the cloud. Note that such an error is contained
in all data points in the same way and would not change
the relative difference between the expansion data for the
two polarizations. Taking also this systematic error into
account, also the upper data point for y−polarization,
which deviates a little from the theoretical expectation, is
also within error bars with respect to the theoretical pre-
diction obtained with ǫCr

dd ≈ 0.15. A finer investigation
of the agreement between the theory and the experiment
will be the subject of a further work.

IV. CONCLUSION

The observed mechanical manifestation of dipole-
dipole interaction in a Bose-condesate gas of chromium
is in very good quantitative agreement with the theory
of dipolar gases in the Thomas-Fermi limit. The trapped
condensate atoms redistribute depending on the direc-
tion of the applied magnetic field. Similar to what oc-
curs with magnetic solid particles or liquids (ferrofluids),
the strongly magnetic chromium atoms align preferably
along the direction of magnetization. This induces a
change in the shape of the condensate. The micron-
sized chromium condensate needs to be released from
the trap in order to be imaged after expansion. The in-
duced change in shape remains visible also after release of
the condensate from the trap and are quantitatively well
described within the framework of a generalized Gross-
Pitaevskii equation, which proves to be an appropriate
description.

The chromium Bose-Einstein condensate opens fasci-
nating perspectives for the experimental study of dipole-
dipole interaction induced magnetism in gaseous systems.
Since one can exploit Feshbach resonances [43] to ad-
just contact-like (isotropic and short-range) atom-atom
interactions and use rotating magnetic fields to tune the
dipole-dipole interaction [8], interaction regimes ranging
from only contact to purely dipolar can be realized. De-
pending on the relative strengths of these two interac-
tions and on the absolute strength of the dipole-dipole
interaction, many exciting phenomena are expected.
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Appendix A: DIPOLE-DIPOLE MEAN-FIELD

ENERGY

The mean-field magnetic dipole-dipole energy is given
by

Hx
dd = −15

7

(

N2h̄2a

m

)

εdd f(κyx, κzx)

RxRyRz
(A1)

where the magnetic field is assumed parallel to the x̂
axes and κyx = Ry/Rx and κzx = Rz/Rx are condensate
aspect ratios. The function f is given by

f(κyx, κzx) = 1 + 3κyxκzx
E(ϕ \ α) − F(ϕ \ α)

(1 − κ2
zx)

√

1 − κ2
yx

(A2)

with

sinϕ =
√

1 − κ2
yx (A3)

sin2 α =
1 − κ2

zx

1 − κ2
yx

(A4)

Here F(ϕ \ α) and E(ϕ \ α) are the incomplete elliptic
integrals of the first and second kinds [42]. Figure 7 and

Figure 7: Log-linear plot of the function f(x, y) defined in
equation (A2) versus x and for different values of y (dashed
lines). The chosen values of y correspond to different powers
of 2. Due to symmetry property f(x, y) = f(y, x) of the func-
tion f the asymptotic values of f(x, y) for large x correspond
to the function fa(y) defined in (A8) which is also shown as
function of x (solid line).

8 show the typical behavior of the function f , which is
symmetric

f(x, y) = f(y, x) (A5)

and is a smooth and limited function with the property
that

1 ≥ f(x, y) ≥ −2 (A6)

For small values of one of its arguments f is equal to 1

f(x, 0) = 1 (A7)

When one of the argument is very large its asymptotical
values are given by the following function

fa(x) = f(∞, x)

= 1 − 3
(1 − x)x

1 − x2
(A8)

with the property

fa(x) + fa(1/x) + 1 = 0 (A9)

When both arguments are very large

f(∞,∞) = −2 (A10)

In the special case of equal arguments, f becomes a func-
tion of only one variable and is given by

fs(κ) = f(κ, κ)

=
1 + 2κ2

1 − κ2
− 3κ2tanh−1

√
1 − κ2

(1 − κ2)
3/2

(A11)

which was already introduced considering the special case
of cylindrical symmetric condensate [18, 34, 41]. More-
over, f obeys the sum rule

f(x, y) + f

(

y

x
,
1

x

)

+ f

(

1

y
,
x

y

)

= 0 (A12)

This equation has the physical meaning that the average
over all directions of the polarization gives zero contribu-
tion to the dipolar energy. Using the above equation, it
is possible to show for instance that

f(x, 1) = −1

2
fs

(

1

x

)

(A13)

With the above relationship, it is easy to calculate a
polynomial expansion of f around the point (x, y) =
(1, 1) which represents a spherical condensate. We give
below the expression of a cubic approximation that can
be useful for aspect ratios of order of unity

f(1 + x, 1 + y) ≈ −2 (x + y)

5
+

9 (x2 + y2) − 8 x y

35

+
12

(

x2 y + x y2
)

− 16
(

x3 + y3
)

105
(A14)

For aspect ratios in the range of (0.5, 1.6) the absolute
error of the above polynomial approximation fapprox is
given by 0 < f − fapprox < 0.02.

Appendix B: THE MEAN-FIELD

DIPOLE-DIPOLE POTENTIAL

The magnetic dipole-dipole contribution to the mean-
field potential for dipoles polarized in the x̂ direction is
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Figure 8: (Color) Log-linear 3-dimensional plot of the func-
tion f(x, y) defined in equation (A2) versus x, y.

given by

V x
mf =

45εddNh̄2a

2mRxRyRz

(

−1

3
f + fx

x2

R2
x

+ fy
y2

R2
y

+ fz
z2

R2
z

)

(B1)

where {f, fx, fy, fz} are function of the aspect ratios
{κyx, κzx} and are given below

fx(κyx, κzx) =
1

3
−

κ2
yxκ2

zx

(1 − κ2
yx)(1 − κ2

zx)
+ 2

κyxκzx
√

1 − κ2
yx(1 − κ2

zx)2

(

1 +
1 − κ2

zx

1 − κ2
yx

)

E(ϕ \ α)

− κyxκzx
√

1 − κ2
yx(1 − κ2

zx)2

(

2 +
1 − κ2

zx

1 − κ2
yx

)

F(ϕ \ α) (B2)

fy(κyx, κzx) =
1

3
+

κ2
yxκ2

zx

κ2
yx − κ2

zx

+
κ4

yxκ2
zx

(1 − κ2
yx)(κ2

yx − κ2
zx)

+
κ3

yxκzx(κ2
zx − κ2

yx − 1)

(1 − κ2
yx)3/2(1 − κ2

zx)2(κ2
yx − κ2

zx)
E(ϕ \ α)

+
κ3

yxκzx

(1 − κ2
yx)3/2(1 − κ2

zx)2
F(ϕ \ α) (B3)

fz(κyx, κzx) = fy(κzx, κyx) (B4)

Here F(ϕ\α) and E(ϕ\α) are the incomplete elliptic inte-
grals of the first and second kinds [42]. Their arguments
are given by

sinϕ =
√

1 − κ2
yx (B5)

sin2 α =
1 − κ2

zx

1 − κ2
yx

(B6)

The {f, fx, fy, fz} obeys the identity given by

f = fx + fy + fz (B7)
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