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Abstract We study temperature chaos in a two-dimensional Ising spin glass with random
quenched bimodal couplings, by an exact computation of the partition functions on large systems.
We study two temperature correlators from the total free energy and from the domain wall free en-
ergy: in the second case we detect a chaotic behavior. We determine and discuss the chaos exponent
and the fractal dimension of the domain walls.

PACS numbers: 75.10.Nr, 05.50.+q, 75.40.Gb, 75.40.Mg

Introduction — A characteristic feature of spin
glasses is the presence of chaos under small changes in the
quenched couplings, in the temperature, or in the mag-
netic field [1, 2, 3, 4, 5, 6, 7, 8, 9]. With the expression
temperature chaos we refer to the fragility of the equilib-
rium states of a disordered system under small temper-
ature changes. Let us consider two typical equilibrium
configurations of such a system under the same realiza-
tion of the quenched disorder: the first configuration is in
equilibrium at temperature T , while the second one is in
equilibrium at temperature T ′ = T + ∆T . One says that
there is temperature chaos if for arbitrarily small (but
non-zero) values of ∆T , the typical overlap of two con-
figurations at T and T ′ goes to zero when the system size
diverges. The spatial distance ℓ(T, ∆T ) over which such
overlaps decay is called the chaos length, and, as we will
discuss better in the following, it scales as ℓ ∼ ∆T−1/ζ

when ∆T → 0.
The droplet picture [2, 10] of spin glasses predicts that

ζ =
ds

2
− θ , (1)

where ds is the fractal dimension of the droplet inter-
faces and θ is the usual spin glass stiffness exponent. In
two-dimensional (2D) spin glasses with continuous dis-
tributions of spin-spin couplings, one has ds ≈ 1.27 ([11])
and θ ≈ −0.285, leading to the prediction ζ ≈ 0.92; di-
rect measurements of ζ [2, 12] are in good agreement with
this prediction. The situation in the model with binary
couplings (Jij = ±1) is notably different: no study of
temperature chaos has been performed, but if one works
exactly at T = 0 using the estimates dT=0

s ≈ 1.0 ([13])
and θT=0 = 0 ([14, 15]), one would expect ζT=0 ≈ 0.5
which is very different from the continuous distribution
case, suggesting two universality classes. However, even
though the T = 0 properties of spin glasses with continu-
ous and discrete distributions are different, a new picture
has recently emerged [16] in which one shows that only

one universality class exists for T > 0 critical properties

when we consider the limit T → 0. In our work here we
measure ζT→0 in the ±J model and show that its value
is compatible with the one of the model with Gaussian
couplings, giving further credence to the generalized uni-
versality scenario [15, 16].

Our study is based on exact partition function com-
putations for large but finite size systems, for many re-
alizations of the quenched disordered couplings [17, 18].
Availability of the full density of states of a large system
is a very powerful tool and it allows us to investigate the
chaotic behavior of the free energy for the ±J model. We
also extract entropies of domain walls and thus provide
an improved estimate of the exponent ds.

The outline of the paper is as follows. First we discuss
the model, our observables and the methods we use. We
discuss how to detect temperature chaos. We analyze
what happens for the total free energy, finding there is
no temperature chaos there. Then we move on to domain
wall free energies. There we compute the two exponents,
ds from the entropy of T = 0 domain walls, and ζ from
T > 0 scaling of two temperature correlators. We close
by concluding that ζ has a value compatible with our
generalized universality picture but not with the naive
application of Eq. 1 (i.e. assuming T = 0 values for the
domain-wall and chaos exponents).

Model, observables and methods — We analyze the
2D Edwards–Anderson spin glass with Ising spins (σi =
±1). Its Hamiltonian has the form

HJ (σ) ≡ −
∑

<ij>

Jij σi σj , (2)

where the sum runs over all pairs of nearest neighbor
sites on a square 2D lattice of linear size L with periodic
boundary conditions. The couplings Jij are independent
quenched random variables taking the two values ±1,
each with probability 1/2.

To analyze the possible chaotic behavior of the system,
we look at correlation functions of observables computed
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at two different temperatures. For a generic observable
O we use the correlation function

CO(L, T, ∆T ) ≡ (O(T ) −O(T ))(O(T ′) −O(T ′))√
(O(T ) −O(T ))2

√
(O(T ′) −O(T ′))2

,

(3)
where T ′ ≡ T + ∆T , L is the linear size of the lattice
and the bar stands for the quenched average over the
distribution of the couplings Jij . In the rest of this note
we will focus on two main cases: in the first one O is the
total free energy F of the system, while in the second
case it is the domain wall free energy, FDW .

We consider a L × L lattice with given quenched
couplings Jij , and we determine F (T ) and FDW (T )
via the exact computation of the partition function
Z [17, 18, 19]. We can then average over different samples
to obtain (up to some statistical errors) the correlation
functions CO(L, T, ∆T ).

The total free energy — We start by discussing the
computation of the free energy, where we identify O with
the total free energy F of the system, and we compute
CF (L, T, ∆T ). In a system where the total free energy
has a chaotic behavior we would expect that in the large
L limit CF should drop very fast [20], as a function of
L, even for infinitesimal values of ∆T . In the following
we analyze CF and we do not find a chaotic behavior.
We use these results to show that even in the T → 0
limit the total free energy does not behave chaotically in
temperature.

We have averaged over a number of samples for differ-
ent values of the system size V ≡ L×L. Specifically, we
have collected 99809 samples at L = 10, 31571 samples at
L = 20, 3117 samples at L = 30, 818 samples at L = 40
and 336 samples at L = 50. Our error bars have been
computed by using the jack–knife method (for details see
[21]).

In our approach we obtain the full density of states,
that allows us to compute expectation values at every
temperature (or couple of temperatures) we are inter-
ested in. Because of that we select our temperature
ranges (both for T and for ∆T ) using the physical be-
havior of the system: we want to be for example as much
as possible in a scaling regime, i.e. at low T , but not at
very low T [19] (i.e. where, at given L, the system al-
ready shows an unphysical behavior dictated by the pres-
ence of a gap). Because of these facts we will present in
our study data that span a range of temperatures going
from T = Tmin ≃ 0.2 to T = Tmax ≃ 0.4: these val-
ues are chosen such that, for the considered linear sizes,
we are in the scaling region where the relevant physical
phenomena occur.

In figure 1 we plot lnCF (L, T, ∆T ) as a function of
∆T , for T = 0.25; (that we know from [16, 19] to be
in the scaling regime for L ∼ 50); we use in the plot
a ∆T step of 0.01 (reasonably small with respect to T ).
Somehow already this first, simple plot hints that the free
energy of the system does not unveil a chaotic behavior.

-0.004

-0.003

-0.002

-0.001

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

ln
 C

F
(L

, T
, ∆

 T
)

∆ T

L=10
L=20
L=30
L=40
L=50

FIG. 1: log{CF (L, T, ∆T )} versus ∆T , for T = 0.25.

In fact one sees that the correlation function rises when
L is increased. This trend is even more evident for larger
values of ∆T . Such a behavior is the opposite of what
we would expect in a chaotic scenario, where for large L
values no correlation survives.

The issue of a possible presence of chaos in the free
energy in the limit T → 0 (i.e. when T approaches the
T = 0 critical point) has to be dealt more carefully. For
doing that we need a quantitative analysis of our data.
We start by taking the infinite volume limit of our cor-
relation functions. We present here the analysis of the
correlation function with T = 0.25, but the other T val-
ues follow the same pattern. We have analyzed a number
of temperatures in the scaling region that we are able to
access (say for T going from 0.2 up to 0.4 [16, 19]). For
each value of ∆T we fit CF (L, T = 0.25, ∆T ) to the func-
tional form:

CF (L, T = 0.25, ∆T ) = C̃F (T = 0.25, ∆T ) +

+
A(T = 0.25, ∆T )

L
, (4)

determining in this way the large L limit C̃F (T, ∆T ).
As we noticed already, the correlation function increases
with L: the fit to the form of Eq. 4 works very well, and
CF reaches a strictly positive asymptotic value in the
thermodynamic limit.

From there, we are able to study C̃F (T, ∆T ) as a func-
tion of ∆T (and, again, we do this for different values of
T ). A very good fit is obtained by assuming the func-
tional dependence:

C̃F (T, ∆T ) = exp (−a(T )∆T 2) . (5)

In all cases this fit works very well; for example at T =
0.25 we estimate a ≃ 0.114. We find that in the limit
T → 0 the function a(T ) smoothly goes to a constant
value (as opposed to its possible divergence, that would
indicate chaos in the free energy): in the limit T → 0
there is no chaos in the total free energy of the system.
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Domain walls and their fractal dimension — Our sec-
ond observable is based on domain walls. We introduce
a domain wall into the system by applying to a given
realization of the random quenched couplings first peri-
odic boundary conditions (pbc) and then anti-periodic
boundary conditions (apbc). For each sample, at any
temperature, we define the domain-wall free energy as
the difference of the free energies of these two systems;
the same can be done for the energy and entropy. So for
each realization of the couplings we compute the parti-
tion function twice: once with pbc and once with apbc
(equivalently, we compute the partition function of two
different systems with pbc, where in the second system
we have inverted the sign of one line of couplings of the
first).

Before discussing our results for this interesting corre-
lation function we discuss a byproduct of this approach,
that will be crucial in our final discussion of the physics of
two-dimensional spin glasses. A nice feature of the exact
partition function approach is that it gives us in particu-
lar the entropy of the domain wall even at zero tempera-
ture: this is a quantity that vanishes in the models with
continuous Jij coupling values, but that is non-zero in the
model with binary quenched random couplings where the
ground state degeneracy is high.

The zero temperature domain-wall entropy ∆SDW has
a disorder mean of zero (since inverting a number of cou-
plings maps us to another sample in the disorder ensem-
ble that has the same probability but has the opposite
value of ∆SDW ). We thus focus on the mean square
fluctuations; these have a characteristic size growing as

|∆SDW | ∼ L
ds
2 (6)

when L → ∞. Previous work by Kardar and Saul [13]
(also based on partition function computations, but with
smaller statistics and for smaller L values than us) gave
the estimation ds ≈ 1.0. We have used our data to obtain
a more precise measurement of ds. In Fig. 2 we show the
scaling with L of the absolute value of ∆SDW (to exhibit
the very accurate power scaling). We also show our best
fit which gives ds = 1.03±0.02 (where we only quote the
statistical error). This exponent ds is usually interpreted
as the fractal dimension of the domain wall created in the
system; when ds > 1, the domain wall is rough. However,
in the ±J model there are many ground states and so it
is not appropriate to think of ds as associated with one
interface; in fact it is not a priori necessary that ds ≥
1. We note again that for Gaussian quenched random
couplings one finds ds = 1.27 [11, 12]; we thus see that
having many domain walls in our degenerate system leads
to smaller entropy fluctuations.

The chaos exponent ζ — Let us now discuss temper-
ature chaos in the domain wall free energy FDW , defined
as the difference of the free energy in the system when
using periodic boundary conditions versus anti–periodic
boundary conditions. Given this quantity we use the
definition (3) and we compute CFDW . Notice that the
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FIG. 2: |∆SDW | versus L.
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FIG. 3: log{CFDW (L, T, ∆T )} versus ∆T , for T = 0.25.

relation (3) is simplified from the fact that FDW = 0.

Here we have used slightly smaller sizes than in the
other case. For the linear sizes L = 10, 12, 20, 24,
30 we use different numbers of samples: 99808, 94351,
31570, 4098, 3116 respectively. In figure 3 we plot
lnCFDW (L, T, ∆T ) as a function of ∆T for T = 0.25.

Fig. 3 is very different from Fig. 1: the linear correla-
tion coefficient of the domain wall free energies at two dif-
ferent temperatures (with ∆T being fixed) decreases as L
increases. As opposed to the case of the total free energy
of the system, this trend is compatible with an emergent
chaotic behavior. The same pattern arises when looking
at the domain wall energy (EDW = Epbc −Eapbc) and at
the domain wall entropy, (SDW = Spbc −Sapbc) and ana-
lyzing the related correlation functions CEDW (L, T, ∆T )
and CSDW (L, T, ∆T ).

The fact that the total free energy does not show any
sign of chaos while the domain wall free energy hints for
a possible chaotic behavior is, as we have already dis-
cussed, very natural. The small value of the exponent θ
implies that in the domain wall free energy large cancella-
tions play an important role [2] [3]. This suggests in turn
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that the domain wall energy and the domain wall entropy
(times T ) exhibit a very similar temperature dependence
and greatly contribute to this cancellation. This behavior
has as a natural consequence the presence of temperature
chaos: as soon as the parameters of the system get mod-
ified, even very slightly, cancellations will act in a differ-
ent way and select completely different domain walls (the
same arguments suggests the presence of chaos under a
small change in the quenched disorder).

In the scaling theories, the domain wall free energy
scales with the lattice size as Lθ (where θ is the stiffness
exponent) and the domain wall entropy scales as Lds/2

(where ds is the fractal surface of domain wall) [3]. Con-
sider first the system at temperature T . Here the domain
wall free energy scales with L as:

FDW (T ) ≡ EDW − TSDW ≈ Y (T )Lθ , (7)

where Y (T ) is the generalized stiffness coefficient. Now
if the system is at temperature (T + ∆T ), the domain
wall free energy scales as:

FDW (T + ∆T ) = EDW − (T + ∆T )SDW ≈
≈ Y (T )Lθ − ∆TLds/2 . (8)

Since the droplet theory predicts that ds/2 > θ, the quan-
tity (8) for large L can change the sign between T and
T +∆T . This implies that the equilibrium state changes
when one reaches a length ℓ such that

ℓθ ∼ ∆T ℓds/2 , (9)

that is

ℓ ≈
(

1

∆T

) 1

ds/2−θ

≡
(

1

∆T

) 1

ζ

. (10)

It is important to note that these scaling laws are valid
for small T > 0, and so both θ and ds should be construed
as being obtained at T > 0; this subtlety will be essential
for interpreting our data.

When ∆T is small and all relevant length scales diverge
one expects that [5]

CFDW (L, T, ∆T ) ≈ 1 −
(

L

ℓ(T, ∆T )

)2ζ

, (11)

for L smaller than ℓ(T, ∆T ), i.e. for small enough ∆T .
In other words in this limit 1 − CFDW (L, T, ∆T ) scales
as a power of L. In figure 4 we plot (1 − CFDW ) vs. L
on log-log scale for small values of ∆T (∆T = 0.01, 0.03,
0.05, 0.07), when T = 0.25 (similar results are obtained
for other values of T ). The scaling in L allows us to
obtain ζ and ℓ(T, ∆T ) from a linear fit to ln(1−CFDW );
we obtain ζ values between 0.92 and 0.99, depending on
the values of T and ∆T .

We have also extracted from our fits the quantity
ℓ(T, ∆T ). Fig. 5 shows that this length scale diverges
as predicted in Eq. 10. The different best fit values for
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ζ can be summarized by quoting ζ = 0.95 ± 0.05; we do
not detect any systematic dependence on T .

In Fig. 6 we show an interesting data collapse. We
plot 1 − CFDW as a function of L/ℓ(T, ∆T ), for T =
0.25 and T = 0.3 in double logarithmic scale. The fact
that we get a single curve shows that the assumption
that CFDW (L, T, ∆T ) is only a function of L/ℓ(T, ∆T )
is reasonable. The fact that the curve is straight gives
further support to Eq. 11.

Discussion and conclusions — This note spells a
number of results. Let us start by summarizing them.
First, when considering 2D Ising spin glasses with binary
couplings, the free energy F does not show any tempera-
ture chaotic behavior, even in the T → 0 limit. This is in
contrast [20] with what happens in the directed polymer
in a random medium, but in line with the prediction [9]
of the Migdal-Kadanoff approximation. A simple inter-
pretation is that the sample to sample non-chaotic fluc-
tuations of F are O(L), far larger than the chaotic O(Lθ)
fluctuations arising from droplets.

As opposed to the total free energy, the domain wall
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free energy does behave chaotically in T . The question of
interest is whether the ±J model has chaotic behavior in
the same class as the continuous distribution models. We
first measured the fractal dimension of domain walls at
T = 0 exactly and found dT=0

s ∼ 1.0. Then we measured
directly the temperature chaos exponent ζ in the limit of
small T and found ζ = 0.95± 0.05. (Note that these two
measurements are conceptually very different.)

The point of view introduced by [15] and [16] is the
following. If T > 0, all 2D Ising spin glasses, indepen-
dently of the distributions of the quenched couplings,
enjoy a strong, generalized universality [16]: a binary
distribution of the couplings gives rise to the same criti-
cal behavior as the Gaussian distribution. Only exactly
at T = 0 a very peculiar set of coupling distributions
(including binary couplings) generates an anomalous be-
havior [15]: for cases where, by composing an arbitrary
number of couplings, an energy gap survives (for example
a distribution where J = ±2,±3 is in this class, while a
distribution where J = ±

√
2,±

√
3 is not), then at T = 0

one gets θ = 0. Our findings here for T → 0 complete
the scenario designed in [15, 16] and are completely con-
sistent with it. If we use indeed the relation implied by
the droplet theory ζ = ds/2 − θ and plug in both the
value θ ∼ −.285 of the model with Gaussian quenched
couplings and the value ds ∼ 1.27 obtained by [14] and
by [11] we would expect ζ ∼ 0.92, in very good agreement
with our estimate ζT→0 = 0.95 ± 0.05. We believe that
this is a very important point of support of the picture
proposed and advocated in [15], [16]: there is one single
critical theory that emerges, when T → 0 in 2D spin
glasses. The exponents of this theory are, at this point,
well determined.

Our measurements also confirm that T = 0 is for the
J = ±1 distribution, a singular point. In that model

at T = 0, we found dT=0

s ∼ 1.0. This, together with
the value θ = 0, implies that, exactly at T = 0, if the
relation ζ = ds/2 − θ were to be valid, we would have
ζT=0 = 1/2. The difference of the physics at T = 0 and
what one observes when T → 0 (as defined from the order
used for taking the T → 0 and the L → ∞ limits) is at
this point self-evident.
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